/*************************************************************** * * Authors : Antonin Maire, Boris Hippolyte * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //----------------------------------------------------------------- // AliAnalysisTaskCheckPerformanceCascade class // This task is for a performance study of cascade identification. // It works with MC info and ESD. // Use with AOD tree = under development // Origin : A.Maire Mar2009, antonin.maire@ires.in2p3.fr // Modified : A.Maire Nov2010, antonin.maire@ires.in2p3.fr //----------------------------------------------------------------- #include #include "TList.h" #include "TFile.h" #include "TH1F.h" #include "TH2F.h" #include "TVector3.h" #include "TCanvas.h" #include "TParticle.h" #include "TMath.h" #include "AliLog.h" #include "AliHeader.h" #include "AliMCEvent.h" #include "AliStack.h" #include "AliMultiplicity.h" #include "AliInputEventHandler.h" #include "AliAnalysisManager.h" #include "AliCFContainer.h" #include "AliESDpid.h" #include "AliESDtrackCuts.h" // #include "AliV0vertexer.h" // #include "AliCascadeVertexer.h" #include "AliESDEvent.h" #include "AliESDcascade.h" #include "AliAODEvent.h" #include "AliAnalysisTaskCheckPerformanceCascade.h" ClassImp(AliAnalysisTaskCheckPerformanceCascade) //_____Dummy constructor________________________________________________________________ AliAnalysisTaskCheckPerformanceCascade::AliAnalysisTaskCheckPerformanceCascade() : AliAnalysisTaskSE(), // <- take care to AliAnalysisTask( empty ) fDebugCascade(0), fAnalysisType("ESD"), fTriggerMaskType("kMB"), fCollidingSystems(0), fESDpid(0), fESDtrackCuts(0), /*fPaveTextBookKeeping(0),*/ fkRerunV0CascVertexers (0), fkQualityCutZprimVtxPos (kTRUE), fkRejectEventPileUp (kTRUE), fkQualityCutNoTPConlyPrimVtx (kTRUE), fkQualityCutTPCrefit (kTRUE), fkQualityCut80TPCcls (kTRUE), fkIsDataRecoWith1PadTPCCluster (kTRUE), fkExtraSelections (0), // - Cascade part initialisation fListHistCascade(0), fHistMCTrackMultiplicity(0), // - Resolution of the multiplicity estimator f2dHistRecoPrimTrckMultVsMCMult(0), f2dHistRecoEstimateMultVsMCMult(0), fHistEtaGenProton(0), fHistEtaGenAntiProton(0), // Xi- fHistEtaGenCascXiMinus(0), f2dHistGenPtVsGenYGenXiMinus(0), fHistThetaGenCascXiMinus(0), f2dHistGenPtVsGenYFdblXiMinus(0), fHistThetaLambdaXiMinus(0), fHistThetaBachXiMinus(0), fHistThetaMesDghterXiMinus(0), fHistThetaBarDghterXiMinus(0), fHistPtBachXiMinus(0), fHistPtMesDghterXiMinus(0), fHistPtBarDghterXiMinus(0), // Xi+ fHistEtaGenCascXiPlus(0), f2dHistGenPtVsGenYGenXiPlus(0), fHistThetaGenCascXiPlus(0), f2dHistGenPtVsGenYFdblXiPlus(0), fHistThetaLambdaXiPlus(0), fHistThetaBachXiPlus(0), fHistThetaMesDghterXiPlus(0), fHistThetaBarDghterXiPlus(0), fHistPtBachXiPlus(0), fHistPtMesDghterXiPlus(0), fHistPtBarDghterXiPlus(0), // Omega- fHistEtaGenCascOmegaMinus(0), f2dHistGenPtVsGenYGenOmegaMinus(0), fHistThetaGenCascOmegaMinus(0), f2dHistGenPtVsGenYFdblOmegaMinus(0), fHistThetaLambdaOmegaMinus(0), fHistThetaBachOmegaMinus(0), fHistThetaMesDghterOmegaMinus(0), fHistThetaBarDghterOmegaMinus(0), fHistPtBachOmegaMinus(0), fHistPtMesDghterOmegaMinus(0), fHistPtBarDghterOmegaMinus(0), // Omega+ fHistEtaGenCascOmegaPlus(0), f2dHistGenPtVsGenYGenOmegaPlus(0), fHistThetaGenCascOmegaPlus(0), f2dHistGenPtVsGenYFdblOmegaPlus(0), fHistThetaLambdaOmegaPlus(0), fHistThetaBachOmegaPlus(0), fHistThetaMesDghterOmegaPlus(0), fHistThetaBarDghterOmegaPlus(0), fHistPtBachOmegaPlus(0), fHistPtMesDghterOmegaPlus(0), fHistPtBarDghterOmegaPlus(0), // Part 2 - Association to MC fHistMassXiMinus(0), fHistMassXiPlus(0), fHistMassOmegaMinus(0), fHistMassOmegaPlus(0), // - Effective mass histos with combined PID fHistMassWithCombPIDXiMinus(0), fHistMassWithCombPIDXiPlus(0), fHistMassWithCombPIDOmegaMinus(0), fHistMassWithCombPIDOmegaPlus(0), // - PID Probability versus MC Pt(bachelor track) f2dHistPIDprobaKaonVsMCPtBach(0), f2dHistPIDprobaPionVsMCPtBach(0), // - Effective mass histos with perfect MC PID on the bachelor fHistMassWithMcPIDXiMinus(0), fHistMassWithMcPIDXiPlus(0), fHistMassWithMcPIDOmegaMinus(0), fHistMassWithMcPIDOmegaPlus(0), // - Effective mass histos for the cascade candidates associated with MC fHistAsMCMassXiMinus(0), fHistAsMCMassXiPlus(0), fHistAsMCMassOmegaMinus(0), fHistAsMCMassOmegaPlus(0), // - Generated Pt Vs generated y, for the cascade candidates associated with MC + Info Comb. PID f2dHistAsMCandCombPIDGenPtVsGenYXiMinus(0), f2dHistAsMCandCombPIDGenPtVsGenYXiPlus(0), f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus(0), f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus(0), // - Generated Pt Vs generated y, for the cascade candidates associated with MC f2dHistAsMCGenPtVsGenYXiMinus(0), f2dHistAsMCGenPtVsGenYXiPlus(0), f2dHistAsMCGenPtVsGenYOmegaMinus(0), f2dHistAsMCGenPtVsGenYOmegaPlus(0), // - Generated Eta of the the cascade candidates associated with MC fHistAsMCGenEtaXiMinus(0), fHistAsMCGenEtaXiPlus(0), fHistAsMCGenEtaOmegaMinus(0), fHistAsMCGenEtaOmegaPlus(0), // - Resolution in Pt as function of generated Pt f2dHistAsMCResPtXiMinus(0), f2dHistAsMCResPtXiPlus(0), f2dHistAsMCResPtOmegaMinus(0), f2dHistAsMCResPtOmegaPlus(0), // - Resolution in R(2D) as function of generated R f2dHistAsMCResRXiMinus(0), f2dHistAsMCResRXiPlus(0), f2dHistAsMCResROmegaMinus(0), f2dHistAsMCResROmegaPlus(0), // - Resolution in phi as function of generated Pt f2dHistAsMCResPhiXiMinus(0), f2dHistAsMCResPhiXiPlus(0), f2dHistAsMCResPhiOmegaMinus(0), f2dHistAsMCResPhiOmegaPlus(0), // - Correlation in Pt between the cascade and its (anti)proton daughter f2dHistAsMCPtProtonVsPtXiMinus(0), f2dHistAsMCPtAntiProtonVsPtXiPlus(0), f2dHistAsMCPtProtonVsPtOmegaMinus(0), f2dHistAsMCPtAntiProtonVsPtOmegaPlus(0), fCFContCascadePIDAsXiMinus(0), fCFContCascadePIDAsXiPlus(0), fCFContCascadePIDAsOmegaMinus(0), fCFContCascadePIDAsOmegaPlus(0), fCFContAsCascadeCuts(0) { // Dummy constructor for(Int_t iAlephIdx = 0; iAlephIdx < 5; iAlephIdx++ ) { fAlephParameters [iAlephIdx] = -1.; } for(Int_t iV0selIdx = 0; iV0selIdx < 7; iV0selIdx++ ) { fV0Sels [iV0selIdx ] = -1.; } for(Int_t iCascSelIdx = 0; iCascSelIdx < 8; iCascSelIdx++ ) { fCascSels [iCascSelIdx ] = -1.; } } //_____Non-default Constructor________________________________________________________________ AliAnalysisTaskCheckPerformanceCascade::AliAnalysisTaskCheckPerformanceCascade(const char *name) : AliAnalysisTaskSE(name), fDebugCascade(0), fAnalysisType("ESD"), fTriggerMaskType("kMB"), fCollidingSystems(0), fESDpid(0), fESDtrackCuts(0), /*fPaveTextBookKeeping(0),*/ fkRerunV0CascVertexers (0), fkQualityCutZprimVtxPos (kTRUE), fkRejectEventPileUp (kTRUE), fkQualityCutNoTPConlyPrimVtx (kTRUE), fkQualityCutTPCrefit (kTRUE), fkQualityCut80TPCcls (kTRUE), fkIsDataRecoWith1PadTPCCluster (kTRUE), fkExtraSelections (0), // - Cascade part initialisation fListHistCascade(0), fHistMCTrackMultiplicity(0), // - Resolution of the multiplicity estimator f2dHistRecoPrimTrckMultVsMCMult(0), f2dHistRecoEstimateMultVsMCMult(0), fHistEtaGenProton(0), fHistEtaGenAntiProton(0), // Xi- fHistEtaGenCascXiMinus(0), f2dHistGenPtVsGenYGenXiMinus(0), fHistThetaGenCascXiMinus(0), f2dHistGenPtVsGenYFdblXiMinus(0), fHistThetaLambdaXiMinus(0), fHistThetaBachXiMinus(0), fHistThetaMesDghterXiMinus(0), fHistThetaBarDghterXiMinus(0), fHistPtBachXiMinus(0), fHistPtMesDghterXiMinus(0), fHistPtBarDghterXiMinus(0), // Xi+ fHistEtaGenCascXiPlus(0), f2dHistGenPtVsGenYGenXiPlus(0), fHistThetaGenCascXiPlus(0), f2dHistGenPtVsGenYFdblXiPlus(0), fHistThetaLambdaXiPlus(0), fHistThetaBachXiPlus(0), fHistThetaMesDghterXiPlus(0), fHistThetaBarDghterXiPlus(0), fHistPtBachXiPlus(0), fHistPtMesDghterXiPlus(0), fHistPtBarDghterXiPlus(0), // Omega- fHistEtaGenCascOmegaMinus(0), f2dHistGenPtVsGenYGenOmegaMinus(0), fHistThetaGenCascOmegaMinus(0), f2dHistGenPtVsGenYFdblOmegaMinus(0), fHistThetaLambdaOmegaMinus(0), fHistThetaBachOmegaMinus(0), fHistThetaMesDghterOmegaMinus(0), fHistThetaBarDghterOmegaMinus(0), fHistPtBachOmegaMinus(0), fHistPtMesDghterOmegaMinus(0), fHistPtBarDghterOmegaMinus(0), // Omega+ fHistEtaGenCascOmegaPlus(0), f2dHistGenPtVsGenYGenOmegaPlus(0), fHistThetaGenCascOmegaPlus(0), f2dHistGenPtVsGenYFdblOmegaPlus(0), fHistThetaLambdaOmegaPlus(0), fHistThetaBachOmegaPlus(0), fHistThetaMesDghterOmegaPlus(0), fHistThetaBarDghterOmegaPlus(0), fHistPtBachOmegaPlus(0), fHistPtMesDghterOmegaPlus(0), fHistPtBarDghterOmegaPlus(0), // Part 2 - Association to MC fHistMassXiMinus(0), fHistMassXiPlus(0), fHistMassOmegaMinus(0), fHistMassOmegaPlus(0), // - Effective mass histos with combined PID fHistMassWithCombPIDXiMinus(0), fHistMassWithCombPIDXiPlus(0), fHistMassWithCombPIDOmegaMinus(0), fHistMassWithCombPIDOmegaPlus(0), // - PID Probability versus MC Pt(bachelor track) f2dHistPIDprobaKaonVsMCPtBach(0), f2dHistPIDprobaPionVsMCPtBach(0), // - Effective mass histos with perfect MC PID on the bachelor fHistMassWithMcPIDXiMinus(0), fHistMassWithMcPIDXiPlus(0), fHistMassWithMcPIDOmegaMinus(0), fHistMassWithMcPIDOmegaPlus(0), // - Effective mass histos for the cascade candidates associated with MC fHistAsMCMassXiMinus(0), fHistAsMCMassXiPlus(0), fHistAsMCMassOmegaMinus(0), fHistAsMCMassOmegaPlus(0), // - Generated Pt Vs generated y, for the cascade candidates associated with MC + Info Comb. PID f2dHistAsMCandCombPIDGenPtVsGenYXiMinus(0), f2dHistAsMCandCombPIDGenPtVsGenYXiPlus(0), f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus(0), f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus(0), // - Generated Pt Vs generated y, for the cascade candidates associated with MC f2dHistAsMCGenPtVsGenYXiMinus(0), f2dHistAsMCGenPtVsGenYXiPlus(0), f2dHistAsMCGenPtVsGenYOmegaMinus(0), f2dHistAsMCGenPtVsGenYOmegaPlus(0), // - Generated Eta of the the cascade candidates associated with MC fHistAsMCGenEtaXiMinus(0), fHistAsMCGenEtaXiPlus(0), fHistAsMCGenEtaOmegaMinus(0), fHistAsMCGenEtaOmegaPlus(0), // - Resolution in Pt as function of generated Pt f2dHistAsMCResPtXiMinus(0), f2dHistAsMCResPtXiPlus(0), f2dHistAsMCResPtOmegaMinus(0), f2dHistAsMCResPtOmegaPlus(0), // - Resolution in R(2D) as function of generated R f2dHistAsMCResRXiMinus(0), f2dHistAsMCResRXiPlus(0), f2dHistAsMCResROmegaMinus(0), f2dHistAsMCResROmegaPlus(0), // - Resolution in phi as function of generated Pt f2dHistAsMCResPhiXiMinus(0), f2dHistAsMCResPhiXiPlus(0), f2dHistAsMCResPhiOmegaMinus(0), f2dHistAsMCResPhiOmegaPlus(0), // - Correlation in Pt between the cascade and its (anti)proton daughter f2dHistAsMCPtProtonVsPtXiMinus(0), f2dHistAsMCPtAntiProtonVsPtXiPlus(0), f2dHistAsMCPtProtonVsPtOmegaMinus(0), f2dHistAsMCPtAntiProtonVsPtOmegaPlus(0), fCFContCascadePIDAsXiMinus(0), fCFContCascadePIDAsXiPlus(0), fCFContCascadePIDAsOmegaMinus(0), fCFContCascadePIDAsOmegaPlus(0), fCFContAsCascadeCuts(0) { // Constructor // Define input and output slots here // Input slot #0 works with a TChain // Output slot #1 writes into a TList container (cascade) for(Int_t iAlephIdx = 0; iAlephIdx < 5; iAlephIdx++ ) { fAlephParameters [iAlephIdx] = -1.; } // New Loose : 1st step for the 7 TeV pp analysis fV0Sels[0] = 33. ; // max allowed chi2 fV0Sels[1] = 0.02; // min allowed impact parameter for the 1st daughter (LHC09a4 : 0.05) fV0Sels[2] = 0.02; // min allowed impact parameter for the 2nd daughter (LHC09a4 : 0.05) fV0Sels[3] = 2.0 ; // max allowed DCA between the daughter tracks (LHC09a4 : 0.5) fV0Sels[4] = 0.95; // min allowed cosine of V0's pointing angle (LHC09a4 : 0.99) fV0Sels[5] = 1.0 ; // min radius of the fiducial volume (LHC09a4 : 0.2) fV0Sels[6] = 100. ; // max radius of the fiducial volume (LHC09a4 : 100.0) fCascSels[0] = 33. ; // max allowed chi2 (same as PDC07) fCascSels[1] = 0.05 ; // min allowed V0 impact parameter (PDC07 : 0.05 / LHC09a4 : 0.025 ) fCascSels[2] = 0.010; // "window" around the Lambda mass (PDC07 : 0.008 / LHC09a4 : 0.010 ) fCascSels[3] = 0.03 ; // min allowed bachelor's impact parameter (PDC07 : 0.035 / LHC09a4 : 0.025 ) fCascSels[4] = 2.0 ; // max allowed DCA between the V0 and the bachelor (PDC07 : 0.1 / LHC09a4 : 0.2 ) fCascSels[5] = 0.95 ; // min allowed cosine of the cascade pointing angle (PDC07 : 0.9985 / LHC09a4 : 0.998 ) fCascSels[6] = 0.4 ; // min radius of the fiducial volume (PDC07 : 0.9 / LHC09a4 : 0.2 ) fCascSels[7] = 100. ; // max radius of the fiducial volume (PDC07 : 100 / LHC09a4 : 100 ) // Hyper Loose "à la 900 GeV 2009 data", with lower cosine of pointing angle for Xi (0.95 down to 0.82) = 900 GeV paper /* fV0Sels[0] = 33. ; // max allowed chi2 fV0Sels[1] = 0.001; // min allowed impact parameter for the 1st daughter (LHC09a4 : 0.05) fV0Sels[2] = 0.001; // min allowed impact parameter for the 2nd daughter (LHC09a4 : 0.05) fV0Sels[3] = 5.0 ; // max allowed DCA between the daughter tracks (LHC09a4 : 0.5) fV0Sels[4] = 0.0 ; // min allowed cosine of V0's pointing angle (LHC09a4 : 0.99) fV0Sels[5] = 0.1 ; // min radius of the fiducial volume (LHC09a4 : 0.2) fV0Sels[6] = 100. ; // max radius of the fiducial volume (LHC09a4 : 100.0) fCascSels[0] = 33. ; // max allowed chi2 (same as PDC07) fCascSels[1] = 0.001; // min allowed V0 impact parameter (PDC07 : 0.05 / LHC09a4 : 0.025 ) fCascSels[2] = 0.008; // "window" around the Lambda mass (PDC07 : 0.008 / LHC09a4 : 0.010 ) fCascSels[3] = 0.001; // min allowed bachelor's impact parameter (PDC07 : 0.035 / LHC09a4 : 0.025 ) fCascSels[4] = 5.0 ; // max allowed DCA between the V0 and the bachelor (PDC07 : 0.1 / LHC09a4 : 0.2 ) fCascSels[5] = 0.82 ; //FIXME min allowed cosine of the cascade pointing angle (PDC07 : 0.9985 / LHC09a4 : 0.998 ) fCascSels[6] = 0.1 ; // min radius of the fiducial volume (PDC07 : 0.9 / LHC09a4 : 0.2 ) fCascSels[7] = 100. ; // max radius of the fiducial volume (PDC07 : 100 / LHC09a4 : 100 ) */ //New default vtxR (http://alisoft.cern.ch/viewvc?view=rev&root=AliRoot&revision=40955, 5 May 2010) /* fV0Sels[0] = 33. ; // max allowed chi2 fV0Sels[1] = 0.05; // min allowed impact parameter for the 1st daughter (LHC09a4 : 0.05) fV0Sels[2] = 0.05; // min allowed impact parameter for the 2nd daughter (LHC09a4 : 0.05) fV0Sels[3] = 1.5 ; // max allowed DCA between the daughter tracks (LHC09a4 : 0.5) fV0Sels[4] = 0.9 ; // min allowed cosine of V0's pointing angle (LHC09a4 : 0.99) fV0Sels[5] = 0.2 ; // min radius of the fiducial volume (LHC09a4 : 0.2) fV0Sels[6] = 100. ; // max radius of the fiducial volume (LHC09a4 : 100.0) fCascSels[0] = 33. ; // max allowed chi2 (same as PDC07) fCascSels[1] = 0.01 ; // min allowed V0 impact parameter (PDC07 : 0.05 / LHC09a4 : 0.025 ) fCascSels[2] = 0.008; // "window" around the Lambda mass (PDC07 : 0.008 / LHC09a4 : 0.010 ) fCascSels[3] = 0.01 ; // min allowed bachelor's impact parameter (PDC07 : 0.035 / LHC09a4 : 0.025 ) fCascSels[4] = 2.0 ; // max allowed DCA between the V0 and the bachelor (PDC07 : 0.1 / LHC09a4 : 0.2 ) fCascSels[5] = 0.98 ; // min allowed cosine of the cascade pointing angle (PDC07 : 0.9985 / LHC09a4 : 0.998 ) fCascSels[6] = 0.2 ; // min radius of the fiducial volume (PDC07 : 0.9 / LHC09a4 : 0.2 ) fCascSels[7] = 100. ; // max radius of the fiducial volume (PDC07 : 100 / LHC09a4 : 100 ) */ DefineOutput(1, TList::Class()); } AliAnalysisTaskCheckPerformanceCascade::~AliAnalysisTaskCheckPerformanceCascade() { // // Destructor // // For all TH1, 2, 3 HnSparse and CFContainer are in the fListCascade TList. // They will be deleted when fListCascade is deleted by the TSelector dtor // Because of TList::SetOwner() if (fListHistCascade) { delete fListHistCascade; fListHistCascade = 0x0; } if (fESDpid) { delete fESDpid; fESDpid = 0x0;} // fESDpid is not stored into the TList if (fESDtrackCuts) { delete fESDtrackCuts; fESDtrackCuts = 0x0; } /*if (fPaveTextBookKeeping) { delete fPaveTextBookKeeping; fPaveTextBookKeeping = 0x0; } // fPaveTextBookKeeping is not stored into the TList*/ } //________________________________________________________________________ void AliAnalysisTaskCheckPerformanceCascade::UserCreateOutputObjects() { // Create histograms // Called once // Option for AliLog AliLog::SetGlobalLogLevel(AliLog::kError); // to suppress the extensive info prompted by a run with MC // Definition of the output datamembers fListHistCascade = new TList(); fListHistCascade->SetOwner(); // See http://root.cern.ch/root/html/TCollection.html#TCollection:SetOwner if(! fESDpid){ if(fkIsDataRecoWith1PadTPCCluster){ // Home made parameterization for LHC10f6a production = p+p 7 TeV fAlephParameters[0] = 0.04; fAlephParameters[1] = 17.5; fAlephParameters[2] = 3.4e-09; fAlephParameters[3] = 2.15; fAlephParameters[4] = 3.91720e+00; // Home made parameterization for LHC10e13 production = p+p 900 GeV/c } else { // Reasonable parameters extracted for p-p simulation (LHC09a4) - A.Kalweit // fAlephParameters[0] = 4.23232575531564326e+00/50;//50*0.76176e-1; // fAlephParameters[1] = 8.68482806165147636e+00;//10.632; // fAlephParameters[2] = 1.34000000000000005e-05;//0.13279e-4; // fAlephParameters[3] = 2.30445734159456084e+00;//1.8631; // fAlephParameters[4] = 2.25624744086878559e+00;//1.9479; // Param for LHC09d10 prod - A.Kalweit fAlephParameters[0] = 2.15898e+00/50.; fAlephParameters[1] = 1.75295e+01; fAlephParameters[2] = 3.40030e-09; fAlephParameters[3] = 1.96178e+00; fAlephParameters[4] = 3.91720e+00; } Printf("CheckPerfCascade - Check Aleph Param in case of MC Data (fAlephParameters[3] = %f) (To be compared with : 2.15 for 1-pad-cluster prod. / 1.96178 otherwise)\n", fAlephParameters[3]); fESDpid = new AliESDpid(); fESDpid->GetTPCResponse().SetBetheBlochParameters( fAlephParameters[0], fAlephParameters[1], fAlephParameters[2], fAlephParameters[3], fAlephParameters[4] ); } if(! fESDtrackCuts ){ fESDtrackCuts = AliESDtrackCuts::GetStandardITSTPCTrackCuts2010(kTRUE); // Std definition of primary (see kTRUE argument) tracks for 2010 fESDtrackCuts->SetEtaRange(-0.8,+0.8); fESDtrackCuts->SetPtRange(0.15, 1e10); Printf("CheckCascade - ESDtrackCuts set up to 2010 std ITS-TPC cuts..."); } /* if( !fPaveTextBookKeeping){ fPaveTextBookKeeping = new TPaveText(0.1, 0.1, 0.9, 0.9,"NDC"); fPaveTextBookKeeping->SetName("fPaveTextBookKeeping"); fPaveTextBookKeeping->SetBorderSize(0); fPaveTextBookKeeping->SetTextAlign(12); fPaveTextBookKeeping->SetFillColor(kWhite); fPaveTextBookKeeping->SetTextFont(42); // regular Arial or Helvetica, fPaveTextBookKeeping->SetTextColor(kGray+3); fPaveTextBookKeeping->AddText( "Task CHECK PERFORMANCE CASCADE analysis" ); fPaveTextBookKeeping->AddText("- - - - - - - - - - - "); fPaveTextBookKeeping->AddText( Form("AnalysisType : %s ", fAnalysisType.Data() )); if(!fCollidingSystems) fPaveTextBookKeeping->AddText("Colliding system : p-p collisions "); else fPaveTextBookKeeping->AddText("Colliding system : A-A collisions "); fPaveTextBookKeeping->AddText("- - - - - - - - - - - "); if(fkRerunV0CascVertexers){ fPaveTextBookKeeping->AddText("A.1. With V0 vertexer : "); fPaveTextBookKeeping->AddText( Form(" - V0 #chi^{2} _________________ < %.3f ", fV0Sels[0] )); fPaveTextBookKeeping->AddText( Form(" - DCA(prim. Vtx/ 1^{st} daughter) ___ > %.3f cm ", fV0Sels[1] )); fPaveTextBookKeeping->AddText( Form(" - DCA(prim. Vtx/ 2^{nd} daughter) __ > %.3f cm", fV0Sels[2] )); fPaveTextBookKeeping->AddText( Form(" - DCA between V0 daughters ___ < %.3f cm", fV0Sels[3] )); fPaveTextBookKeeping->AddText( Form(" - cos(V0 pointing angle) _______ > %.3f ", fV0Sels[4] )); fPaveTextBookKeeping->AddText( Form(" - R_{transv}(V0 decay) ________ > %.3f cm", fV0Sels[5] )); fPaveTextBookKeeping->AddText( Form(" - R_{transv}(V0 decay) ________ < %.3f cm", fV0Sels[6] )); fPaveTextBookKeeping->AddText(" "); fPaveTextBookKeeping->AddText("A.2. With Casc. vertexer : "); fPaveTextBookKeeping->AddText( Form(" - Casc. #chi^{2} ______________ < %.3f ", fCascSels[0] )); fPaveTextBookKeeping->AddText( Form(" - DCA(prim. Vtx/ V0) _________ > %.3f cm", fCascSels[1] )); fPaveTextBookKeeping->AddText( Form(" - | M_{#Lambda}(reco) - M_{#Lambda}(pdg) | _______ < %.3f GeV/c^{2}", fCascSels[2] )); fPaveTextBookKeeping->AddText( Form(" - DCA(prim. Vtx/ Bach) _______ > %.3f cm", fCascSels[3] )); fPaveTextBookKeeping->AddText( Form(" - DCA between Bach/ #Lambda ______ < %.3f cm", fCascSels[4] )); fPaveTextBookKeeping->AddText( Form(" - cos(Casc. pointing angle) ____ > %.3f ", fCascSels[5] )); fPaveTextBookKeeping->AddText( Form(" - R_{transv}(Casc. decay) ______ > %.3f cm", fCascSels[6] )); fPaveTextBookKeeping->AddText( Form(" - R_{transv}(Casc. decay) ______ < %.3f cm", fCascSels[7] )); } else{ fPaveTextBookKeeping->AddText("A. No rerunning of the V0/Casc. vertexers ... See std cuts in (AliRoot+Rec.C) used for this prod. cycle");} fPaveTextBookKeeping->AddText("- - - - - - - - - - - "); if(fkQualityCutZprimVtxPos) fPaveTextBookKeeping->AddText("B. Quality Cut(prim. Vtx z-Pos) = ON "); else fPaveTextBookKeeping->AddText("B. Quality Cut(prim. Vtx z-Pos) = Off "); if(fkQualityCutNoTPConlyPrimVtx) fPaveTextBookKeeping->AddText("C. Quality Cut(No TPC prim. vtx) = ON "); else fPaveTextBookKeeping->AddText("C. Quality Cut(No TPC prim. vtx) = Off "); if(fkQualityCutTPCrefit) fPaveTextBookKeeping->AddText("D. Quality Cut(TPCrefit) = ON "); else fPaveTextBookKeeping->AddText("D. Quality Cut(TPCrefit) = Off "); if(fkQualityCut80TPCcls) fPaveTextBookKeeping->AddText("E. Quality Cut(80 TPC clusters) = ON "); else fPaveTextBookKeeping->AddText("E. Quality Cut(80 TPC clusters) = Off "); if(fkExtraSelections) fPaveTextBookKeeping->AddText("F. Extra Analysis Selections = ON "); else fPaveTextBookKeeping->AddText("F. Extra Analysis Selections = Off "); fPaveTextBookKeeping->AddText("- - - - - - - - - - - "); fPaveTextBookKeeping->AddText("G. TPC Aleph Param : "); fPaveTextBookKeeping->AddText( Form(" - fAlephParam [0] = %.5g", fAlephParameters[0] )); fPaveTextBookKeeping->AddText( Form(" - fAlephParam [1] = %.5g", fAlephParameters[1] )); fPaveTextBookKeeping->AddText( Form(" - fAlephParam [2] = %.5g", fAlephParameters[2] )); fPaveTextBookKeeping->AddText( Form(" - fAlephParam [3] = %.5g", fAlephParameters[3] )); fPaveTextBookKeeping->AddText( Form(" - fAlephParam [4] = %.5g", fAlephParameters[4] )); fListHistCascade->Add(fPaveTextBookKeeping); } */ // - General if (!fHistMCTrackMultiplicity) { fHistMCTrackMultiplicity = new TH1F("fHistMCTrackMultiplicity", "MC Track Multiplicity;Number of MC tracks;Events", 100, 0, 500); // fHistMCTrackMultiplicity = new TH1F("fHistMCTrackMultiplicity", "Multiplicity distribution;Number of tracks;Events", 200, 0, 40000); //HERE fListHistCascade->Add(fHistMCTrackMultiplicity); } // - Resolution of the multiplicity estimator if(! f2dHistRecoPrimTrckMultVsMCMult){ f2dHistRecoPrimTrckMultVsMCMult = new TH2F("f2dHistRecoPrimTrckMultVsMCMult", "Resolution of the multiplicity estimator (prim. tracks in |#eta| < 0.8); Reco Multiplicity (prim. tracks); MC multiplicity (gen. part. in |#eta| < 0.8)", 120, 0., 120., 300, 0., 300.); fListHistCascade->Add(f2dHistRecoPrimTrckMultVsMCMult); } if(! f2dHistRecoEstimateMultVsMCMult){ f2dHistRecoEstimateMultVsMCMult = new TH2F("f2dHistRecoEstimateMultVsMCMult", "Resolution of the multiplicity estimator (EstimateMult. in |#eta| < 1.0); Reco Multiplicity (tr(ITS-TPC)+ITSsa+tracklets); MC multiplicity (gen. part. in |#eta| < 1.0)", 160, 0., 160., 300, 0., 300.); fListHistCascade->Add(f2dHistRecoEstimateMultVsMCMult); } if (!fHistEtaGenProton) { fHistEtaGenProton = new TH1F("fHistEtaGenProton", "#eta of any gen. p^{+};#eta;Number of prim. protons", 200, -10, 10); fListHistCascade->Add(fHistEtaGenProton); } if (!fHistEtaGenAntiProton) { fHistEtaGenAntiProton = new TH1F("fHistEtaGenAntiProton", "#eta of any gen. #bar{p}^{-};#eta;Number of prim. #bar{p}", 200, -10, 10); fListHistCascade->Add(fHistEtaGenAntiProton); } //-------- // I - Xi- // - Pseudo-Rapidity distribution if (!fHistEtaGenCascXiMinus) { fHistEtaGenCascXiMinus = new TH1F("fHistEtaGenCascXiMinus", "#eta of any gen. #Xi^{-};#eta;Number of Casc", 200, -10, 10); fListHistCascade->Add(fHistEtaGenCascXiMinus); } if (!f2dHistGenPtVsGenYGenXiMinus) { f2dHistGenPtVsGenYGenXiMinus = new TH2F("f2dHistGenPtVsGenYGenXiMinus", "MC P_{t} Vs MC Y of Gen #Xi^{-} ;Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYGenXiMinus); } // - Info at the generation level of multi-strange particle if (!fHistThetaGenCascXiMinus) { fHistThetaGenCascXiMinus = new TH1F("fHistThetaGenCascXiMinus", "#theta of gen. #Xi^{-};#theta;Number of Casc.", 200, -10, 190); fListHistCascade->Add(fHistThetaGenCascXiMinus); } if (!f2dHistGenPtVsGenYFdblXiMinus) { f2dHistGenPtVsGenYFdblXiMinus = new TH2F("f2dHistGenPtVsGenYFdblXiMinus", "MC P_{t} Vs MC Y of findable Gen #Xi^{-}; Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYFdblXiMinus); } // - Theta distribution the daughters (control plots) if (!fHistThetaLambdaXiMinus) { fHistThetaLambdaXiMinus = new TH1F("fHistThetaLambdaXiMinus", "#theta of gen. #Lambda (Xi dghter);#theta_{#Lambda};Number of #Lambda^0", 200, -10, 190); fListHistCascade->Add(fHistThetaLambdaXiMinus); } if (!fHistThetaBachXiMinus) { fHistThetaBachXiMinus = new TH1F("fHistThetaBachXiMinus", "#theta of gen. Bach.;#theta_{Bach};Number of Bach.", 200, -10, 190); fListHistCascade->Add(fHistThetaBachXiMinus); } if (!fHistThetaMesDghterXiMinus) { fHistThetaMesDghterXiMinus = new TH1F("fHistThetaMesDghterXiMinus", "#theta of gen. Meson #Lambda dghter;#theta_{MesDght};Number of Mes.", 200, -10, 190); fListHistCascade->Add(fHistThetaMesDghterXiMinus); } if (!fHistThetaBarDghterXiMinus) { fHistThetaBarDghterXiMinus = new TH1F("fHistThetaBarDghterXiMinus", "#theta of gen. Baryon #Lambda dghter;#theta_{BarDght};Number of Bar.", 200, -10, 190); fListHistCascade->Add(fHistThetaBarDghterXiMinus); } // - Pt distribution (control plots) if (!fHistPtBachXiMinus) { fHistPtBachXiMinus = new TH1F("fHistPtBachXiMinus", "p_{t} of gen. Bach.;pt_{Bach};Number of Bach.", 200, 0, 10); fListHistCascade->Add(fHistPtBachXiMinus); } if (!fHistPtMesDghterXiMinus) { fHistPtMesDghterXiMinus = new TH1F("fHistPtMesDghterXiMinus", "p_{t} of gen. Meson #Lambda dghter;pt_{MesDght};Number of Mes.", 200, 0, 10); fListHistCascade->Add(fHistPtMesDghterXiMinus); } if (!fHistPtBarDghterXiMinus) { fHistPtBarDghterXiMinus = new TH1F("fHistPtBarDghterXiMinus", "p_{t} of gen. Baryon #Lambda dghter;pt_{BarDght};Number of Bar.", 200, 0, 10); fListHistCascade->Add(fHistPtBarDghterXiMinus); } //-------- // II - Xi+ // - Pseudo-Rapidity distribution if (!fHistEtaGenCascXiPlus) { fHistEtaGenCascXiPlus = new TH1F("fHistEtaGenCascXiPlus", "#eta of any gen. #bar{#Xi}^{+};#eta;Number of Casc", 200, -10, 10); fListHistCascade->Add(fHistEtaGenCascXiPlus); } if (!f2dHistGenPtVsGenYGenXiPlus) { f2dHistGenPtVsGenYGenXiPlus = new TH2F("f2dHistGenPtVsGenYGenXiPlus", "MC P_{t} Vs MC Y of Gen #bar{#Xi}^{+} ;Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYGenXiPlus); } // - Info at the generation level of multi-strange particle if (!fHistThetaGenCascXiPlus) { fHistThetaGenCascXiPlus = new TH1F("fHistThetaGenCascXiPlus", "#theta of gen. #bar{#Xi}^{+};#theta;Number of Casc.", 200, -10, 190); fListHistCascade->Add(fHistThetaGenCascXiPlus); } if (!f2dHistGenPtVsGenYFdblXiPlus) { f2dHistGenPtVsGenYFdblXiPlus = new TH2F("f2dHistGenPtVsGenYFdblXiPlus", "MC P_{t} Vs MC Y of findable Gen #bar{#Xi}^{+} ;Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYFdblXiPlus); } // - Theta distribution the daughters (control plots) if (!fHistThetaLambdaXiPlus) { fHistThetaLambdaXiPlus = new TH1F("fHistThetaLambdaXiPlus", "#theta of gen. #Lambda (Xi dghter);#theta_{#Lambda};Number of #Lambda", 200, -10, 190); fListHistCascade->Add(fHistThetaLambdaXiPlus); } if (!fHistThetaBachXiPlus) { fHistThetaBachXiPlus = new TH1F("fHistThetaBachXiPlus", "#theta of gen. Bach.;#theta_{Bach};Number of Bach.", 200, -10, 190); fListHistCascade->Add(fHistThetaBachXiPlus); } if (!fHistThetaMesDghterXiPlus) { fHistThetaMesDghterXiPlus = new TH1F("fHistThetaMesDghterXiPlus", "#theta of gen. Meson #Lambda dghter;#theta_{MesDght};Number of Mes.", 200, -10, 190); fListHistCascade->Add(fHistThetaMesDghterXiPlus); } if (!fHistThetaBarDghterXiPlus) { fHistThetaBarDghterXiPlus = new TH1F("fHistThetaBarDghterXiPlus", "#theta of gen. Baryon #Lambda dghter;#theta_{BarDght};Number of Bar.", 200, -10, 190); fListHistCascade->Add(fHistThetaBarDghterXiPlus); } // - Pt distribution (control plots) if (!fHistPtBachXiPlus) { fHistPtBachXiPlus = new TH1F("fHistPtBachXiPlus", "p_{t} of gen. Bach.;pt_{Bach};Number of Bach.", 200, 0, 10); fListHistCascade->Add(fHistPtBachXiPlus); } if (!fHistPtMesDghterXiPlus) { fHistPtMesDghterXiPlus = new TH1F("fHistPtMesDghterXiPlus", "p_{t} of gen. Meson #Lambda dghter);pt_{MesDght};Number of Mes.", 200, 0, 10); fListHistCascade->Add(fHistPtMesDghterXiPlus); } if (!fHistPtBarDghterXiPlus) { fHistPtBarDghterXiPlus = new TH1F("fHistPtBarDghterXiPlus", "p_{t} of gen. Baryon #Lambda dghter);pt_{BarDght};Number of Bar.", 200, 0, 10); fListHistCascade->Add(fHistPtBarDghterXiPlus); } //--------- // III - Omega- // - Pseudo-Rapidity distribution if (!fHistEtaGenCascOmegaMinus) { fHistEtaGenCascOmegaMinus = new TH1F("fHistEtaGenCascOmegaMinus", "#eta of any gen. #Omega^{-};#eta;Number of Casc", 200, -10, 10); fListHistCascade->Add(fHistEtaGenCascOmegaMinus); } if (!f2dHistGenPtVsGenYGenOmegaMinus) { f2dHistGenPtVsGenYGenOmegaMinus = new TH2F("f2dHistGenPtVsGenYGenOmegaMinus", "MC P_{t} Vs MC Y of Gen #Omega^{-} ;Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYGenOmegaMinus); } // - Info at the generation level of multi-strange particle if (!fHistThetaGenCascOmegaMinus) { fHistThetaGenCascOmegaMinus = new TH1F("fHistThetaGenCascOmegaMinus", "#theta of gen. #Omega^{-};#theta;Number of Casc.", 200, -10, 190); fListHistCascade->Add(fHistThetaGenCascOmegaMinus); } if (!f2dHistGenPtVsGenYFdblOmegaMinus) { f2dHistGenPtVsGenYFdblOmegaMinus = new TH2F("f2dHistGenPtVsGenYFdblOmegaMinus", "MC P_{t} Vs MC Y of findable Gen #Omega^{-}; Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYFdblOmegaMinus); } // - Theta distribution the daughters (control plots) if (!fHistThetaLambdaOmegaMinus) { fHistThetaLambdaOmegaMinus = new TH1F("fHistThetaLambdaOmegaMinus", "#theta of gen. #Lambda (Omega dghter);#theta_{#Lambda};Number of #Lambda", 200, -10, 190); fListHistCascade->Add(fHistThetaLambdaOmegaMinus); } if (!fHistThetaBachOmegaMinus) { fHistThetaBachOmegaMinus = new TH1F("fHistThetaBachOmegaMinus", "#theta of gen. Bach.;#theta_{Bach};Number of Bach.", 200, -10, 190); fListHistCascade->Add(fHistThetaBachOmegaMinus); } if (!fHistThetaMesDghterOmegaMinus) { fHistThetaMesDghterOmegaMinus = new TH1F("fHistThetaMesDghterOmegaMinus", "#theta of gen. Meson #Lambda dghter;#theta_{MesDght};Number of Mes.", 200, -10, 190); fListHistCascade->Add(fHistThetaMesDghterOmegaMinus); } if (!fHistThetaBarDghterOmegaMinus) { fHistThetaBarDghterOmegaMinus = new TH1F("fHistThetaBarDghterOmegaMinus", "#theta of gen. Baryon #Lambda dghter;#theta_{BarDght};Number of Bar.", 200, -10, 190); fListHistCascade->Add(fHistThetaBarDghterOmegaMinus); } // - Pt distribution (control plots) if (!fHistPtBachOmegaMinus) { fHistPtBachOmegaMinus = new TH1F("fHistPtBachOmegaMinus", "p_{t} of gen. Bach.;pt_{Bach};Number of Bach.", 200, 0, 10); fListHistCascade->Add(fHistPtBachOmegaMinus); } if (!fHistPtMesDghterOmegaMinus) { fHistPtMesDghterOmegaMinus = new TH1F("fHistPtMesDghterOmegaMinus", "p_{t} of gen. Meson #Lambda dghter);pt_{MesDght};Number of Mes.", 200, 0, 10); fListHistCascade->Add(fHistPtMesDghterOmegaMinus); } if (!fHistPtBarDghterOmegaMinus) { fHistPtBarDghterOmegaMinus = new TH1F("fHistPtBarDghterOmegaMinus", "p_{t} of gen. Baryon #Lambda dghter);pt_{BarDght};Number of Bar.", 200, 0, 10); fListHistCascade->Add(fHistPtBarDghterOmegaMinus); } //--------- // IV - Omega+ // - Pseudo-Rapidity distribution if (!fHistEtaGenCascOmegaPlus) { fHistEtaGenCascOmegaPlus = new TH1F("fHistEtaGenCascOmegaPlus", "#eta of any gen. #bar{#Omega}^{+};#eta;Number of Casc", 200, -10, 10); fListHistCascade->Add(fHistEtaGenCascOmegaPlus); } if (!f2dHistGenPtVsGenYGenOmegaPlus) { f2dHistGenPtVsGenYGenOmegaPlus = new TH2F("f2dHistGenPtVsGenYGenOmegaPlus", "MC P_{t} Vs MC Y of Gen #bar{#Omega}^{+} ;Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYGenOmegaPlus); } // - Info at the generation level of multi-strange particle if (!fHistThetaGenCascOmegaPlus) { fHistThetaGenCascOmegaPlus = new TH1F("fHistThetaGenCascOmegaPlus", "#theta of gen. #bar{#Omega}^{+};#theta;Number of Casc.", 200, -10, 190); fListHistCascade->Add(fHistThetaGenCascOmegaPlus); } if (!f2dHistGenPtVsGenYFdblOmegaPlus) { f2dHistGenPtVsGenYFdblOmegaPlus = new TH2F("f2dHistGenPtVsGenYFdblOmegaPlus", "MC P_{t} Vs MC Y of findable Gen #bar{#Omega}^{+}; Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistGenPtVsGenYFdblOmegaPlus); } // - Theta distribution the daughters (control plots) if (!fHistThetaLambdaOmegaPlus) { fHistThetaLambdaOmegaPlus = new TH1F("fHistThetaLambdaOmegaPlus", "#theta of gen. #Lambda (Omega dghter);#theta_{#Lambda};Number of #Lambda", 200, -10, 190); fListHistCascade->Add(fHistThetaLambdaOmegaPlus); } if (!fHistThetaBachOmegaPlus) { fHistThetaBachOmegaPlus = new TH1F("fHistThetaBachOmegaPlus", "#theta of gen. Bach.;#theta_{Bach};Number of Bach.", 200, -10, 190); fListHistCascade->Add(fHistThetaBachOmegaPlus); } if (!fHistThetaMesDghterOmegaPlus) { fHistThetaMesDghterOmegaPlus = new TH1F("fHistThetaMesDghterOmegaPlus", "#theta of gen. Meson #Lambda dghter;#theta_{MesDght};Number of Mes.", 200, -10, 190); fListHistCascade->Add(fHistThetaMesDghterOmegaPlus); } if (!fHistThetaBarDghterOmegaPlus) { fHistThetaBarDghterOmegaPlus = new TH1F("fHistThetaBarDghterOmegaPlus", "#theta of gen. Baryon #Lambda dghter;#theta_{BarDght};Number of Bar.", 200, -10, 190); fListHistCascade->Add(fHistThetaBarDghterOmegaPlus); } // - Pt distribution (control plots) if (!fHistPtBachOmegaPlus) { fHistPtBachOmegaPlus = new TH1F("fHistPtBachOmegaPlus", "p_{t} of gen. Bach.;pt_{Bach};Number of Bach.", 200, 0, 10); fListHistCascade->Add(fHistPtBachOmegaPlus); } if (!fHistPtMesDghterOmegaPlus) { fHistPtMesDghterOmegaPlus = new TH1F("fHistPtMesDghterOmegaPlus", "p_{t} of gen. Meson #Lambda dghter);pt_{MesDght};Number of Mes.", 200, 0, 10); fListHistCascade->Add(fHistPtMesDghterOmegaPlus); } if (!fHistPtBarDghterOmegaPlus) { fHistPtBarDghterOmegaPlus = new TH1F("fHistPtBarDghterOmegaPlus", "p_{t} of gen. Baryon #Lambda dghter);pt_{BarDght};Number of Bar.", 200, 0, 10); fListHistCascade->Add(fHistPtBarDghterOmegaPlus); } //-------------------------------------------------------------------------------- // Part 2 - Any reconstructed cascades + reconstructed cascades associated with MC // - Effective mass histos for cascades candidates. if (! fHistMassXiMinus) { fHistMassXiMinus = new TH1F("fHistMassXiMinus","#Xi^{-} candidates;M( #Lambda , #pi^{-} ) (GeV/c^{2});Counts", 400,1.2,2.0); fListHistCascade->Add(fHistMassXiMinus); } if (! fHistMassXiPlus) { fHistMassXiPlus = new TH1F("fHistMassXiPlus","#bar{#Xi}^{+} candidates;M( #bar{#Lambda}^{0} , #pi^{+} ) (GeV/c^{2});Counts",400,1.2,2.0); fListHistCascade->Add(fHistMassXiPlus); } if (! fHistMassOmegaMinus) { fHistMassOmegaMinus = new TH1F("fHistMassOmegaMinus","#Omega^{-} candidates;M( #Lambda , K^{-} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassOmegaMinus); } if (! fHistMassOmegaPlus) { fHistMassOmegaPlus = new TH1F("fHistMassOmegaPlus","#bar{#Omega}^{+} candidates;M( #bar{#Lambda}^{0} , K^{+} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassOmegaPlus); } // - Effective mass histos with combined PID if (! fHistMassWithCombPIDXiMinus) { fHistMassWithCombPIDXiMinus = new TH1F("fHistMassWithCombPIDXiMinus","#Xi^{-} candidates, with Bach. comb. PID;M( #Lambda , #pi^{-} ) (GeV/c^{2});Counts", 400,1.2,2.0); fListHistCascade->Add(fHistMassWithCombPIDXiMinus); } if (! fHistMassWithCombPIDXiPlus) { fHistMassWithCombPIDXiPlus = new TH1F("fHistMassWithCombPIDXiPlus","#bar{#Xi}^{+} candidates, with Bach. comb. PID;M( #bar{#Lambda}^{0} , #pi^{+} ) (GeV/c^{2});Counts",400,1.2,2.0); fListHistCascade->Add(fHistMassWithCombPIDXiPlus); } if (! fHistMassWithCombPIDOmegaMinus) { fHistMassWithCombPIDOmegaMinus = new TH1F("fHistMassWithCombPIDOmegaMinus","#Omega^{-} candidates, with Bach. comb. PID;M( #Lambda , K^{-} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassWithCombPIDOmegaMinus); } if (! fHistMassWithCombPIDOmegaPlus) { fHistMassWithCombPIDOmegaPlus = new TH1F("fHistMassWithCombPIDOmegaPlus","#bar{#Omega}^{+} candidates, with Bach. comb. PID;M( #bar{#Lambda}^{0} , K^{+} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassWithCombPIDOmegaPlus); } // - PID Probability versus MC Pt(bachelor track) if(! f2dHistPIDprobaKaonVsMCPtBach ){ f2dHistPIDprobaKaonVsMCPtBach = new TH2F( "f2dHistPIDprobaKaonVsMCPtBach" , "Comb. PID proba to be K^{#pm} Vs MC Bach. Pt ; Pt_{MC}(Bach.) (GeV/c); Comb. PID Proba (Bach. = K^{#pm})", 100, 0.0, 5.0, 110, 0.0, 1.10 ); fListHistCascade->Add(f2dHistPIDprobaKaonVsMCPtBach); } if(! f2dHistPIDprobaPionVsMCPtBach ){ f2dHistPIDprobaPionVsMCPtBach = new TH2F( "f2dHistPIDprobaPionVsMCPtBach" , "Comb. PID proba to be #pi^{#pm} Vs MC Bach. Pt ; Pt_{MC}(Bach.) (GeV/c); Comb. PID Proba (Bach. = #pi^{#pm})", 100, 0.0, 5.0, 110, 0.0, 1.10 ); fListHistCascade->Add(f2dHistPIDprobaPionVsMCPtBach); } // - Effective mass histos with perfect MC PID on the bachelor if (! fHistMassWithMcPIDXiMinus) { fHistMassWithMcPIDXiMinus = new TH1F("fHistMassWithMcPIDXiMinus","#Xi^{-} candidates, with Bach. MC PID;M( #Lambda , #pi^{-} ) (GeV/c^{2});Counts", 400,1.2,2.0); fListHistCascade->Add(fHistMassWithMcPIDXiMinus); } if (! fHistMassWithMcPIDXiPlus) { fHistMassWithMcPIDXiPlus = new TH1F("fHistMassWithMcPIDXiPlus","#bar{#Xi}^{+} candidates, with Bach. MC PID;M( #bar{#Lambda}^{0} , #pi^{+} ) (GeV/c^{2});Counts",400,1.2,2.0); fListHistCascade->Add(fHistMassWithMcPIDXiPlus); } if (! fHistMassWithMcPIDOmegaMinus) { fHistMassWithMcPIDOmegaMinus = new TH1F("fHistMassWithMcPIDOmegaMinus","#Omega^{-} candidates, with Bach. MC PID;M( #Lambda , K^{-} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassWithMcPIDOmegaMinus); } if (! fHistMassWithMcPIDOmegaPlus) { fHistMassWithMcPIDOmegaPlus = new TH1F("fHistMassWithMcPIDOmegaPlus","#bar{#Omega}^{+} candidates, with Bach. MC PID;M( #bar{#Lambda}^{0} , K^{+} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistMassWithMcPIDOmegaPlus); } // - Effective mass histos for cascades candidates ASSOCIATED with MC. if (! fHistAsMCMassXiMinus) { fHistAsMCMassXiMinus = new TH1F("fHistAsMCMassXiMinus","#Xi^{-} candidates associated to MC;M( #Lambda , #pi^{-} ) (GeV/c^{2});Counts", 400,1.2,2.0); fListHistCascade->Add(fHistAsMCMassXiMinus); } if (! fHistAsMCMassXiPlus) { fHistAsMCMassXiPlus = new TH1F("fHistAsMCMassXiPlus","#bar{#Xi}^{+} candidates associated to MC;M( #bar{#Lambda}^{0} , #pi^{+} ) (GeV/c^{2});Counts",400,1.2,2.0); fListHistCascade->Add(fHistAsMCMassXiPlus); } if (! fHistAsMCMassOmegaMinus) { fHistAsMCMassOmegaMinus = new TH1F("fHistAsMCMassOmegaMinus","#Omega^{-} candidates associated to MC;M( #Lambda , K^{-} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistAsMCMassOmegaMinus); } if (! fHistAsMCMassOmegaPlus) { fHistAsMCMassOmegaPlus = new TH1F("fHistAsMCMassOmegaPlus","#bar{#Omega}^{+} candidates associated to MC;M( #bar{#Lambda}^{0} , K^{+} ) (GeV/c^{2});Counts", 500,1.5,2.5); fListHistCascade->Add(fHistAsMCMassOmegaPlus); } // - Generated Pt Vs generated Y of the cascade candidates associated with MC // + having the proper maximum proba of combined PID for the bachelor if (!f2dHistAsMCandCombPIDGenPtVsGenYXiMinus) { f2dHistAsMCandCombPIDGenPtVsGenYXiMinus = new TH2F("f2dHistAsMCandCombPIDGenPtVsGenYXiMinus", "MC P_{t} Vs MC Y of #Xi^{-} (associated+Bach.PID); Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCandCombPIDGenPtVsGenYXiMinus); } if (!f2dHistAsMCandCombPIDGenPtVsGenYXiPlus) { f2dHistAsMCandCombPIDGenPtVsGenYXiPlus = new TH2F("f2dHistAsMCandCombPIDGenPtVsGenYXiPlus", "MC P_{t} Vs MC Y of #bar{#Xi}^{+} (associated+Bach.PID); Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCandCombPIDGenPtVsGenYXiPlus); } if (!f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus) { f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus = new TH2F("f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus", "MC P_{t} Vs MC Y of #Omega^{-} (associated+Bach.PID); Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus); } if (!f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus) { f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus = new TH2F("f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus", "MC P_{t} Vs MC Y of #bar{#Omega}^{+} (associated+Bach.PID); Pt_{MC} (GeV/c); Y_{MC}", 200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus); } // - Generated Pt Vs Generated Y, for the cascade candidates associated with MC if (!f2dHistAsMCGenPtVsGenYXiMinus) { f2dHistAsMCGenPtVsGenYXiMinus = new TH2F("f2dHistAsMCGenPtVsGenYXiMinus", "MC P_{t} Vs MC Y of gen. #Xi^{-} (associated);Pt_{MC} (GeV/c); Rapidity, Y_{MC}",200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCGenPtVsGenYXiMinus ); } if (!f2dHistAsMCGenPtVsGenYXiPlus) { f2dHistAsMCGenPtVsGenYXiPlus = new TH2F("f2dHistAsMCGenPtVsGenYXiPlus", "MC P_{t} Vs MC Y of gen. #bar{#Xi}^{+} (associated);Pt_{MC} (GeV/c); Rapidity, Y_{MC}",200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCGenPtVsGenYXiPlus ); } if (!f2dHistAsMCGenPtVsGenYOmegaMinus) { f2dHistAsMCGenPtVsGenYOmegaMinus = new TH2F("f2dHistAsMCGenPtVsGenYOmegaMinus", "MC P_{t} Vs MC Y of gen. #Omega^{-} (associated);Pt_{MC} (GeV/c); Rapidity, Y_{MC}",200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCGenPtVsGenYOmegaMinus ); } if (!f2dHistAsMCGenPtVsGenYOmegaPlus) { f2dHistAsMCGenPtVsGenYOmegaPlus = new TH2F("f2dHistAsMCGenPtVsGenYOmegaPlus", "MC P_{t} Vs MC Y of gen. #bar{#Omega}^{+} (associated);Pt_{MC} (GeV/c); Rapidity, Y_{MC}",200, 0., 10., 220, -1.1, 1.1); fListHistCascade->Add(f2dHistAsMCGenPtVsGenYOmegaPlus ); } // - Generated Eta of the the cascade candidates associated with MC if (!fHistAsMCGenEtaXiMinus) { fHistAsMCGenEtaXiMinus = new TH1F("fHistAsMCGenEtaXiMinus", "#eta of gen. #Xi^{-} (associated);#eta;Number of Casc", 100, -5, 5); fListHistCascade->Add( fHistAsMCGenEtaXiMinus ); } if (!fHistAsMCGenEtaXiPlus) { fHistAsMCGenEtaXiPlus = new TH1F("fHistAsMCGenEtaXiPlus", "#eta of gen. #bar{#Xi}^{+} (associated);#eta;Number of Casc", 100, -5, 5); fListHistCascade->Add( fHistAsMCGenEtaXiPlus ); } if (!fHistAsMCGenEtaOmegaMinus) { fHistAsMCGenEtaOmegaMinus = new TH1F("fHistAsMCGenEtaOmegaMinus", "#eta of gen. #Omega^{-} (associated);#eta;Number of Casc", 100, -5, 5); fListHistCascade->Add( fHistAsMCGenEtaOmegaMinus ); } if (!fHistAsMCGenEtaOmegaPlus) { fHistAsMCGenEtaOmegaPlus = new TH1F("fHistAsMCGenEtaOmegaPlus", "#eta of gen. #bar{#Omega}^{+} (associated);#eta;Number of Casc", 100, -5, 5); fListHistCascade->Add( fHistAsMCGenEtaOmegaPlus ); } // - Resolution in Pt as function of generated Pt if(! f2dHistAsMCResPtXiMinus) { f2dHistAsMCResPtXiMinus = new TH2F( "f2dHistAsMCResPtXiMinus", "Resolution in Pt reconstruction for #Xi^{-}; Pt_{MC} (GeV/c); (Pt_{reco} - Pt_{MC}) / Pt_{MC}", 200, 0., 10., 200, -0.1, 0.1); fListHistCascade->Add(f2dHistAsMCResPtXiMinus); } if(! f2dHistAsMCResPtXiPlus) { f2dHistAsMCResPtXiPlus = new TH2F( "f2dHistAsMCResPtXiPlus", "Resolution in Pt reconstruction for #bar{#Xi}^{+}; Pt_{MC} (GeV/c); (Pt_{reco} - Pt_{MC}) / Pt_{MC}", 200, 0., 10., 200, -0.1, 0.1); fListHistCascade->Add(f2dHistAsMCResPtXiPlus); } if(! f2dHistAsMCResPtOmegaMinus) { f2dHistAsMCResPtOmegaMinus = new TH2F( "f2dHistAsMCResPtOmegaMinus", "Resolution in Pt reconstruction for #Omega^{-}; Pt_{MC} (GeV/c); (Pt_{reco} - Pt_{MC}) / Pt_{MC}", 200, 0., 10., 200, -0.1, 0.1); fListHistCascade->Add(f2dHistAsMCResPtOmegaMinus); } if(! f2dHistAsMCResPtOmegaPlus) { f2dHistAsMCResPtOmegaPlus = new TH2F( "f2dHistAsMCResPtOmegaPlus", "Resolution in Pt reconstruction for #bar{#Omega}^{+}; Pt_{MC} (GeV/c); (Pt_{reco} - Pt_{MC}) / Pt_{MC}", 200, 0., 10., 200, -0.1, 0.1); fListHistCascade->Add(f2dHistAsMCResPtOmegaPlus); } // - Resolution in R(2D) as function of generated R if(! f2dHistAsMCResRXiMinus) { f2dHistAsMCResRXiMinus = new TH2F( "f2dHistAsMCResRXiMinus", "Resolution in transv. position for #Xi^{-}; R_{MC} (cm); (R_{reco} - R_{MC}) / R_{MC}", 450, 0., 45.0, 240, -0.3, 0.3); fListHistCascade->Add(f2dHistAsMCResRXiMinus); } if(! f2dHistAsMCResRXiPlus) { f2dHistAsMCResRXiPlus = new TH2F( "f2dHistAsMCResRXiPlus", "Resolution in transv. position for #bar{#Xi}^{+}; R_{MC} (cm); (R_{reco} - R_{MC}) / R_{MC}", 450, 0., 45.0, 240, -0.3, 0.3); fListHistCascade->Add(f2dHistAsMCResRXiPlus); } if(! f2dHistAsMCResROmegaMinus) { f2dHistAsMCResROmegaMinus = new TH2F( "f2dHistAsMCResROmegaMinus", "Resolution in transv. position for #Omega^{-}; R_{MC} (cm); (R_{reco} - R_{MC}) / R_{MC}", 450, 0., 45.0, 240, -0.3, 0.3); fListHistCascade->Add(f2dHistAsMCResROmegaMinus); } if(! f2dHistAsMCResROmegaPlus) { f2dHistAsMCResROmegaPlus = new TH2F( "f2dHistAsMCResROmegaPlus", "Resolution in transv. position for #bar{#Omega}^{+}; R_{MC} (cm); (R_{reco} - R_{MC}) / R_{MC}", 450, 0., 45.0, 240, -0.3, 0.3); fListHistCascade->Add(f2dHistAsMCResROmegaPlus); } // - Resolution in phi as function of generated Pt if(! f2dHistAsMCResPhiXiMinus) { f2dHistAsMCResPhiXiMinus = new TH2F( "f2dHistAsMCResPhiXiMinus", "Resolution in #phi for #Xi^{-}; Pt_{MC} (GeV/c); #phi(MC) - #phi(reco) (deg)", 200, 0., 10., 60, -30., 30.); fListHistCascade->Add(f2dHistAsMCResPhiXiMinus); } if(! f2dHistAsMCResPhiXiPlus) { f2dHistAsMCResPhiXiPlus = new TH2F( "f2dHistAsMCResPhiXiPlus", "Resolution in #phi for #bar{#Xi}^{+}; Pt_{MC} (GeV/c); #phi(MC) - #phi(reco) (deg)", 200, 0., 10., 60, -30., 30.); fListHistCascade->Add(f2dHistAsMCResPhiXiPlus); } if(! f2dHistAsMCResPhiOmegaMinus) { f2dHistAsMCResPhiOmegaMinus = new TH2F( "f2dHistAsMCResPhiOmegaMinus", "Resolution in #phi for #Omega^{-}; Pt_{MC} (GeV/c); #phi(MC) - #phi(reco) (deg)", 200, 0., 10., 60, -30., 30.); fListHistCascade->Add(f2dHistAsMCResPhiOmegaMinus); } if(! f2dHistAsMCResPhiOmegaPlus) { f2dHistAsMCResPhiOmegaPlus = new TH2F( "f2dHistAsMCResPhiOmegaPlus", "Resolution in #phi for #bar{#Omega}^{+}; Pt_{MC} (GeV/c); #phi(MC) - #phi(reco) (deg)", 200, 0., 10., 60, -30., 30.); fListHistCascade->Add(f2dHistAsMCResPhiOmegaPlus); } // - Correlation in Pt between the cascade and its (anti)proton daughter if(! f2dHistAsMCPtProtonVsPtXiMinus) { f2dHistAsMCPtProtonVsPtXiMinus = new TH2F( "f2dHistAsMCPtProtonVsPtXiMinus", "Correlation Pt(p) Vs Pt(#Xi^{-}), associated to MC; Pt_{MC}(p) (GeV/c); Pt_{MC}(#Xi^{-}) (GeV/c)", 100, 0., 10., 100, 0., 10.); fListHistCascade->Add(f2dHistAsMCPtProtonVsPtXiMinus); } if(! f2dHistAsMCPtAntiProtonVsPtXiPlus) { f2dHistAsMCPtAntiProtonVsPtXiPlus = new TH2F( "f2dHistAsMCPtAntiProtonVsPtXiPlus", "Correlation Pt(#bar{p}) Vs Pt(#bar{#Xi}^{+}), associated to MC; Pt_{MC}(#bar{p}) (GeV/c); Pt_{MC}(#bar{#Xi}^{+}) (GeV/c)", 100, 0., 10., 100, 0., 10.); fListHistCascade->Add(f2dHistAsMCPtAntiProtonVsPtXiPlus); } if(! f2dHistAsMCPtProtonVsPtOmegaMinus) { f2dHistAsMCPtProtonVsPtOmegaMinus = new TH2F( "f2dHistAsMCPtProtonVsPtOmegaMinus", "Correlation Pt(p) Vs Pt(#Omega^{-}), associated to MC; Pt_{MC}(p) (GeV/c); Pt_{MC}(#Omega^{-}) (GeV/c)", 100, 0., 10., 100, 0., 10.); fListHistCascade->Add(f2dHistAsMCPtProtonVsPtOmegaMinus); } if(! f2dHistAsMCPtAntiProtonVsPtOmegaPlus) { f2dHistAsMCPtAntiProtonVsPtOmegaPlus = new TH2F( "f2dHistAsMCPtAntiProtonVsPtOmegaPlus", "Correlation Pt(#bar{p}) Vs Pt(#bar{#Omega}^{+}), associated to MC; Pt_{MC}(#bar{p}) (GeV/c); Pt_{MC}(#bar{#Omega}^{+}) (GeV/c)", 100, 0., 10., 100, 0., 10.); fListHistCascade->Add(f2dHistAsMCPtAntiProtonVsPtOmegaPlus); } // - PID container if(! fCFContCascadePIDAsXiMinus) { const Int_t lNbSteps = 7 ; const Int_t lNbVariables = 4 ; //array for the number of bins in each dimension : Int_t lNbBinsPerVar[4] = {0}; lNbBinsPerVar[0] = 200; lNbBinsPerVar[1] = 75; lNbBinsPerVar[2] = 44; lNbBinsPerVar[3] = 250; fCFContCascadePIDAsXiMinus = new AliCFContainer("fCFContCascadePIDAsXiMinus","Pt_{cascade} Vs M_{#Xi^{-} candidates} Vs Y_{#Xi}", lNbSteps, lNbVariables, lNbBinsPerVar ); //setting the bin limits (valid for v4-18-10-AN) fCFContCascadePIDAsXiMinus->SetBinLimits(0, 0.0 , 10.0 ); // Pt(Cascade) fCFContCascadePIDAsXiMinus->SetBinLimits(1, 1.25 , 1.40 ); // Xi Effective mass fCFContCascadePIDAsXiMinus->SetBinLimits(2, -1.1 , 1.1 ); // Rapidity if(fCollidingSystems) fCFContCascadePIDAsXiMinus->SetBinLimits(3, 0.0, 20000.0 ); // nTrackPrimaryMultiplicity else fCFContCascadePIDAsXiMinus->SetBinLimits(3, 0.0, 250.0 ); // nTrackPrimaryMultiplicity // Setting the step title : one per PID case fCFContCascadePIDAsXiMinus->SetStepTitle(0, "No PID"); fCFContCascadePIDAsXiMinus->SetStepTitle(1, "TPC PID / 4-#sigma cut on Bachelor track"); fCFContCascadePIDAsXiMinus->SetStepTitle(2, "TPC PID / 4-#sigma cut on Bachelor+Baryon tracks"); fCFContCascadePIDAsXiMinus->SetStepTitle(3, "TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks"); fCFContCascadePIDAsXiMinus->SetStepTitle(4, "Comb. PID / Bachelor"); fCFContCascadePIDAsXiMinus->SetStepTitle(5, "Comb. PID / Bachelor+Baryon"); fCFContCascadePIDAsXiMinus->SetStepTitle(6, "Comb. PID / Bachelor+Baryon+Meson"); // Setting the variable title, per axis fCFContCascadePIDAsXiMinus->SetVarTitle(0, "Pt_{cascade} (GeV/c)"); fCFContCascadePIDAsXiMinus->SetVarTitle(1, "M( #Lambda , #pi^{-} ) (GeV/c^{2})"); fCFContCascadePIDAsXiMinus->SetVarTitle(2, "Y_{#Xi}"); fCFContCascadePIDAsXiMinus->SetVarTitle(3, "Primary Track Multiplicity"); fListHistCascade->Add(fCFContCascadePIDAsXiMinus); } if(! fCFContCascadePIDAsXiPlus) { const Int_t lNbSteps = 7 ; const Int_t lNbVariables = 4 ; //array for the number of bins in each dimension : Int_t lNbBinsPerVar[4] = {0}; lNbBinsPerVar[0] = 200; lNbBinsPerVar[1] = 75; lNbBinsPerVar[2] = 44; lNbBinsPerVar[3] = 250; fCFContCascadePIDAsXiPlus = new AliCFContainer("fCFContCascadePIDAsXiPlus","Pt_{cascade} Vs M_{#bar{#Xi}^{+} candidates} Vs Y_{#Xi}", lNbSteps, lNbVariables, lNbBinsPerVar ); //setting the bin limits (valid for v4-18-10-AN) fCFContCascadePIDAsXiPlus->SetBinLimits(0, 0.0 , 10.0 ); // Pt(Cascade) fCFContCascadePIDAsXiPlus->SetBinLimits(1, 1.25 , 1.40 ); // Xi Effective mass fCFContCascadePIDAsXiPlus->SetBinLimits(2, -1.1 , 1.1 ); // Rapidity if(fCollidingSystems) fCFContCascadePIDAsXiPlus->SetBinLimits(3, 0.0, 20000.0 ); // nTrackPrimaryMultiplicity else fCFContCascadePIDAsXiPlus->SetBinLimits(3, 0.0, 250.0 ); // nTrackPrimaryMultiplicity // Setting the step title : one per PID case fCFContCascadePIDAsXiPlus->SetStepTitle(0, "No PID"); fCFContCascadePIDAsXiPlus->SetStepTitle(1, "TPC PID / 4-#sigma cut on Bachelor track"); fCFContCascadePIDAsXiPlus->SetStepTitle(2, "TPC PID / 4-#sigma cut on Bachelor+Baryon tracks"); fCFContCascadePIDAsXiPlus->SetStepTitle(3, "TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks"); fCFContCascadePIDAsXiPlus->SetStepTitle(4, "Comb. PID / Bachelor"); fCFContCascadePIDAsXiPlus->SetStepTitle(5, "Comb. PID / Bachelor+Baryon"); fCFContCascadePIDAsXiPlus->SetStepTitle(6, "Comb. PID / Bachelor+Baryon+Meson"); // Setting the variable title, per axis fCFContCascadePIDAsXiPlus->SetVarTitle(0, "Pt_{cascade} (GeV/c)"); fCFContCascadePIDAsXiPlus->SetVarTitle(1, "M( #Lambda , #pi^{+} ) (GeV/c^{2})"); fCFContCascadePIDAsXiPlus->SetVarTitle(2, "Y_{#Xi}"); fCFContCascadePIDAsXiPlus->SetVarTitle(3, "Primary Track Multiplicity"); fListHistCascade->Add(fCFContCascadePIDAsXiPlus); } if(! fCFContCascadePIDAsOmegaMinus) { const Int_t lNbSteps = 7 ; const Int_t lNbVariables = 4 ; //array for the number of bins in each dimension : Int_t lNbBinsPerVar[4] = {0}; lNbBinsPerVar[0] = 200; lNbBinsPerVar[1] = 60; lNbBinsPerVar[2] = 44; lNbBinsPerVar[3] = 250; fCFContCascadePIDAsOmegaMinus = new AliCFContainer("fCFContCascadePIDAsOmegaMinus","Pt_{cascade} Vs M_{#Omega^{-} candidates} Vs Y_{#Omega}", lNbSteps, lNbVariables, lNbBinsPerVar ); //setting the bin limits (valid for v4-18-10-AN) fCFContCascadePIDAsOmegaMinus->SetBinLimits(0, 0.0 , 10.0 ); // Pt(Cascade) fCFContCascadePIDAsOmegaMinus->SetBinLimits(1, 1.62 , 1.74 ); // Omega Effective mass fCFContCascadePIDAsOmegaMinus->SetBinLimits(2, -1.1 , 1.1 ); // Rapidity if(fCollidingSystems) fCFContCascadePIDAsOmegaMinus->SetBinLimits(3, 0.0, 20000.0 ); // nTrackPrimaryMultiplicity else fCFContCascadePIDAsOmegaMinus->SetBinLimits(3, 0.0, 250.0 ); // nTrackPrimaryMultiplicity // Setting the step title : one per PID case fCFContCascadePIDAsOmegaMinus->SetStepTitle(0, "No PID"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(1, "TPC PID / 4-#sigma cut on Bachelor track"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(2, "TPC PID / 4-#sigma cut on Bachelor+Baryon tracks"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(3, "TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(4, "Comb. PID / Bachelor"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(5, "Comb. PID / Bachelor+Baryon"); fCFContCascadePIDAsOmegaMinus->SetStepTitle(6, "Comb. PID / Bachelor+Baryon+Meson"); // Setting the variable title, per axis fCFContCascadePIDAsOmegaMinus->SetVarTitle(0, "Pt_{cascade} (GeV/c)"); fCFContCascadePIDAsOmegaMinus->SetVarTitle(1, "M( #Lambda , K^{-} ) (GeV/c^{2})"); fCFContCascadePIDAsOmegaMinus->SetVarTitle(2, "Y_{#Omega}"); fCFContCascadePIDAsOmegaMinus->SetVarTitle(3, "Primary Track Multiplicity"); fListHistCascade->Add(fCFContCascadePIDAsOmegaMinus); } if(! fCFContCascadePIDAsOmegaPlus) { const Int_t lNbSteps = 7 ; const Int_t lNbVariables = 4 ; //array for the number of bins in each dimension : Int_t lNbBinsPerVar[4]= {0}; lNbBinsPerVar[0] = 200; lNbBinsPerVar[1] = 60; lNbBinsPerVar[2] = 44; lNbBinsPerVar[3] = 250; fCFContCascadePIDAsOmegaPlus = new AliCFContainer("fCFContCascadePIDAsOmegaPlus","Pt_{cascade} Vs M_{#bar{#Omega}^{+} candidates} Vs Y_{#Omega}", lNbSteps, lNbVariables, lNbBinsPerVar ); //setting the bin limits (valid for v4-18-10-AN) fCFContCascadePIDAsOmegaPlus->SetBinLimits(0, 0.0 , 10.0 ); // Pt(Cascade) fCFContCascadePIDAsOmegaPlus->SetBinLimits(1, 1.62 , 1.74 ); // Omega Effective mass fCFContCascadePIDAsOmegaPlus->SetBinLimits(2, -1.1 , 1.1 ); // Rapidity if(fCollidingSystems) fCFContCascadePIDAsOmegaPlus->SetBinLimits(3, 0.0, 20000.0 ); // nTrackPrimaryMultiplicity else fCFContCascadePIDAsOmegaPlus->SetBinLimits(3, 0.0, 250.0 ); // nTrackPrimaryMultiplicity // Setting the step title : one per PID case fCFContCascadePIDAsOmegaPlus->SetStepTitle(0, "No PID"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(1, "TPC PID / 4-#sigma cut on Bachelor track"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(2, "TPC PID / 4-#sigma cut on Bachelor+Baryon tracks"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(3, "TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(4, "Comb. PID / Bachelor"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(5, "Comb. PID / Bachelor+Baryon"); fCFContCascadePIDAsOmegaPlus->SetStepTitle(6, "Comb. PID / Bachelor+Baryon+Meson"); // Setting the variable title, per axis fCFContCascadePIDAsOmegaPlus->SetVarTitle(0, "Pt_{cascade} (GeV/c)"); fCFContCascadePIDAsOmegaPlus->SetVarTitle(1, "M( #Lambda , K^{+} ) (GeV/c^{2})"); fCFContCascadePIDAsOmegaPlus->SetVarTitle(2, "Y_{#Omega}"); fCFContCascadePIDAsOmegaPlus->SetVarTitle(3, "Primary Track Multiplicity"); fListHistCascade->Add(fCFContCascadePIDAsOmegaPlus); } // Part 3 : Towards the optimisation of topological selections ------- if(! fCFContAsCascadeCuts){ // Container meant to store all the relevant distributions corresponding to the cut variables. // So far, 20 variables have been identified. // The following will be done in quite a brut force way ... // FIXME Improvement expected later (before Pb-Pb data at least) // - Define a user binning to have less bins in each dimension // - boolean for enabling/disbaling this CFContainer const Int_t lNbSteps = 4 ; const Int_t lNbVariables = 20 ; //array for the number of bins in each dimension : Int_t lNbBinsPerVar[20] = {0}; lNbBinsPerVar[0] = 25; lNbBinsPerVar[1] = 25; lNbBinsPerVar[2] = 20; lNbBinsPerVar[3] = 40; lNbBinsPerVar[4] = 30; lNbBinsPerVar[5] = 25; lNbBinsPerVar[6] = 20; lNbBinsPerVar[7] = 40; lNbBinsPerVar[8] = 40; lNbBinsPerVar[9] = 25; lNbBinsPerVar[10] = 25; lNbBinsPerVar[11] = 75; // 2-MeV/c2 bins lNbBinsPerVar[12] = 60; // 2-MeV/c2 bins lNbBinsPerVar[13] = 100; lNbBinsPerVar[14] = 44; // 0.05 in rapidity units lNbBinsPerVar[15] = 44; // 0.05 in rapidity units lNbBinsPerVar[16] = 20; lNbBinsPerVar[17] = 50; lNbBinsPerVar[18] = 100; lNbBinsPerVar[19] = 24; fCFContAsCascadeCuts = new AliCFContainer("fCFContAsCascadeCuts","Cut Container for Asso. Cascades", lNbSteps, lNbVariables, lNbBinsPerVar ); //0 Double_t *lBinLim0 = new Double_t[ lNbBinsPerVar[0]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[0];i++) lBinLim0[i] = (Double_t)0.0 + (4.8 - 0.0 )/(lNbBinsPerVar[0]-1) * (Double_t)i ; lBinLim0[ lNbBinsPerVar[0] ] = 20.0; fCFContAsCascadeCuts -> SetBinLimits(0, lBinLim0 ); // DcaXiDaughters : 0.0 to 5.0 delete [] lBinLim0; //1 Double_t *lBinLim1 = new Double_t[ lNbBinsPerVar[1]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[1];i++) lBinLim1[i] = (Double_t)0.0 + (0.24 - 0.0 )/(lNbBinsPerVar[1]-1) * (Double_t)i ; lBinLim1[ lNbBinsPerVar[1] ] = 100.0; fCFContAsCascadeCuts -> SetBinLimits(1, lBinLim1 ); // DcaBachToPrimVertexXi : 0.0 to 0.25 delete [] lBinLim1; //2 Double_t *lBinLim2 = new Double_t[ lNbBinsPerVar[2]+1 ]; for(Int_t i=1; i< lNbBinsPerVar[2]+1;i++) lBinLim2[i] = (Double_t)0.81 + (1.0 - 0.81 )/(lNbBinsPerVar[2]-1) * (Double_t) (i-1) ; lBinLim2[0] = 0.0; fCFContAsCascadeCuts -> SetBinLimits(2, lBinLim2 ); // XiCosineOfPointingAngle : 0.80 to 1.0 delete [] lBinLim2; //3 Double_t *lBinLim3 = new Double_t[ lNbBinsPerVar[3]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[3];i++) lBinLim3[i] = (Double_t)0.0 + (3.9 - 0.0 )/(lNbBinsPerVar[3]-1) * (Double_t)i ; lBinLim3[ lNbBinsPerVar[3] ] = 110.0; fCFContAsCascadeCuts -> SetBinLimits(3, lBinLim3 ); // XiRadius : 0.0 to 4.0 delete [] lBinLim3; //4 fCFContAsCascadeCuts->SetBinLimits(4, 1.1 , 1.13 ); // InvMassLambdaAsCascDghter //5 Double_t *lBinLim5 = new Double_t[ lNbBinsPerVar[5]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[5];i++) lBinLim5[i] = (Double_t)0.0 + (4.8 - 0.0 )/(lNbBinsPerVar[5]-1) * (Double_t)i ; lBinLim5[ lNbBinsPerVar[5] ] = 20.0; fCFContAsCascadeCuts -> SetBinLimits(5, lBinLim5 ); // DcaV0DaughtersXi : 0.0 to 5.0 delete [] lBinLim5; //6 Double_t *lBinLim6 = new Double_t[ lNbBinsPerVar[6]+1 ]; for(Int_t i=1; i< lNbBinsPerVar[6]+1 ;i++) lBinLim6[i] = (Double_t)0.81 + (1.0 - 0.81 )/(lNbBinsPerVar[6]-1) * (Double_t) (i-1) ; lBinLim6[0] = 0.0; fCFContAsCascadeCuts -> SetBinLimits(6, lBinLim6 ); // V0CosineOfPointingAngleXi : 0.80 to 1.0 delete [] lBinLim6; //7 Double_t *lBinLim7 = new Double_t[ lNbBinsPerVar[7]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[7];i++) lBinLim7[i] = (Double_t)0.0 + (7.8 - 0.0 )/(lNbBinsPerVar[7]-1) * (Double_t)i ; lBinLim7[ lNbBinsPerVar[7] ] = 100.0; fCFContAsCascadeCuts -> SetBinLimits(7, lBinLim7 ); // V0RadiusXi : 0.0 to 8.0 delete [] lBinLim7; //8 Double_t *lBinLim8 = new Double_t[ lNbBinsPerVar[8]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[8];i++) lBinLim8[i] = (Double_t)0.0 + (0.39 - 0.0 )/(lNbBinsPerVar[8]-1) * (Double_t)i ; lBinLim8[ lNbBinsPerVar[8] ] = 100.0; fCFContAsCascadeCuts -> SetBinLimits(8, lBinLim8 ); // DcaV0ToPrimVertexXi : 0.0 to 0.4 delete [] lBinLim8; //9 Double_t *lBinLim9 = new Double_t[ lNbBinsPerVar[9]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[9];i++) lBinLim9[i] = (Double_t)0.0 + (0.24 - 0.0 )/(lNbBinsPerVar[9]-1) * (Double_t)i ; lBinLim9[ lNbBinsPerVar[9] ] = 100.0; fCFContAsCascadeCuts -> SetBinLimits(9, lBinLim9 ); // DcaPosToPrimVertexXi : 0.0 to 0.25 delete [] lBinLim9; //10 Double_t *lBinLim10 = new Double_t[ lNbBinsPerVar[10]+1 ]; for(Int_t i=0; i< lNbBinsPerVar[10];i++) lBinLim10[i] = (Double_t)0.0 + (0.24 - 0.0 )/(lNbBinsPerVar[10]-1) * (Double_t)i ; lBinLim10[ lNbBinsPerVar[10] ] = 100.0; fCFContAsCascadeCuts -> SetBinLimits(10, lBinLim10 ); // DcaPosToPrimVertexXi : 0.0 to 0.25 delete [] lBinLim10; //11 fCFContAsCascadeCuts->SetBinLimits(11, 1.25 , 1.40 ); // InvMassXi fCFContAsCascadeCuts->SetBinLimits(12, 1.62 , 1.74 ); // InvMassOmega fCFContAsCascadeCuts->SetBinLimits(13, 0.0 , 10.0 ); // XiTransvMom fCFContAsCascadeCuts->SetBinLimits(14, -1.1 , 1.1 ); // Y(Xi) fCFContAsCascadeCuts->SetBinLimits(15, -1.1 , 1.1 ); // Y(Omega) fCFContAsCascadeCuts->SetBinLimits(16, -10.0 , 10.0 ); // BestPrimaryVtxPosZ if(fCollidingSystems){ fCFContAsCascadeCuts->SetBinLimits(17, 0.0, 10000.0 ); // nTrackPrimaryMultiplicity fCFContAsCascadeCuts->SetBinLimits(18, 0.0, 10000.0 ); // nITSandTPCtracksAndSPDtracklets } else{ //fCFContAsCascadeCuts->SetBinLimits(17, 0.0, 250.0 ); // nTrackPrimaryMultiplicity Double_t *lBinLim17 = new Double_t[ lNbBinsPerVar[17]+1 ]; lBinLim17[0] = 0; lBinLim17[10] = 10; lBinLim17[20] = 24; lBinLim17[30] = 45; lBinLim17[40] = 95; lBinLim17[50] = 250; lBinLim17[1] = 1; lBinLim17[11] = 11; lBinLim17[21] = 25; lBinLim17[31] = 50; lBinLim17[41] = 100; lBinLim17[2] = 2; lBinLim17[12] = 13; lBinLim17[22] = 27; lBinLim17[32] = 55; lBinLim17[42] = 105; lBinLim17[3] = 3; lBinLim17[13] = 14; lBinLim17[23] = 30; lBinLim17[33] = 60; lBinLim17[43] = 110; lBinLim17[4] = 4; lBinLim17[14] = 15; lBinLim17[24] = 31; lBinLim17[34] = 65; lBinLim17[44] = 115; lBinLim17[5] = 5; lBinLim17[15] = 16; lBinLim17[25] = 32; lBinLim17[35] = 70; lBinLim17[45] = 120; lBinLim17[6] = 6; lBinLim17[16] = 20; lBinLim17[26] = 33; lBinLim17[36] = 75; lBinLim17[46] = 125; lBinLim17[7] = 7; lBinLim17[17] = 21; lBinLim17[27] = 34; lBinLim17[37] = 80; lBinLim17[47] = 130; lBinLim17[8] = 8; lBinLim17[18] = 22; lBinLim17[28] = 35; lBinLim17[38] = 85; lBinLim17[48] = 135; lBinLim17[9] = 9; lBinLim17[19] = 23; lBinLim17[29] = 40; lBinLim17[39] = 90; lBinLim17[49] = 140; fCFContAsCascadeCuts -> SetBinLimits(17, lBinLim17 ); // nTrackPrimaryMultiplicity : 0 to 250 delete [] lBinLim17; fCFContAsCascadeCuts->SetBinLimits(18, 0.0, 200.0 ); // nITSandTPCtracksAndSPDtracklets } fCFContAsCascadeCuts->SetBinLimits(19, 68.0 ,164.0 ); // BachTPCClusters // Regular binning definition (valid for v4-18-10-AN on) /* //setting the bin limits fCFContAsCascadeCuts->SetBinLimits(0, 0.0 , 2.5 ); // DcaXiDaughters fCFContAsCascadeCuts->SetBinLimits(1, 0.0 , 0.25 ); // DcaBachToPrimVertexXi fCFContAsCascadeCuts->SetBinLimits(2, 0.99 , 1.0 ); // XiCosineOfPointingAngle fCFContAsCascadeCuts->SetBinLimits(3, 0.0 , 4.0 ); // XiRadius fCFContAsCascadeCuts->SetBinLimits(4, 1.1 , 1.15 ); // InvMassLambdaAsCascDghter fCFContAsCascadeCuts->SetBinLimits(5, 0.0 , 1.0 ); // DcaV0DaughtersXi fCFContAsCascadeCuts->SetBinLimits(6, 0.98 , 1.0 ); // V0CosineOfPointingAngleXi fCFContAsCascadeCuts->SetBinLimits(7, 0.0 , 20.0 ); // V0RadiusXi fCFContAsCascadeCuts->SetBinLimits(8, 0.0 , 1.0 ); // DcaV0ToPrimVertexXi fCFContAsCascadeCuts->SetBinLimits(9, 0.0 , 0.25 ); // DcaPosToPrimVertexXi fCFContAsCascadeCuts->SetBinLimits(10, 0.0 , 0.25 ); // DcaNegToPrimVertexXi fCFContAsCascadeCuts->SetBinLimits(11, 1.25 , 1.40 ); // InvMassXi fCFContAsCascadeCuts->SetBinLimits(12, 1.62 , 1.74 ); // InvMassOmega fCFContAsCascadeCuts->SetBinLimits(13, 0.0 , 10.0 ); // pt_MC(Xi) fCFContAsCascadeCuts->SetBinLimits(14, -1.1 , 1.1 ); // Y_MC(Xi) fCFContAsCascadeCuts->SetBinLimits(15, -1.1 , 1.1 ); // Y_MC(Omega) fCFContAsCascadeCuts->SetBinLimits(16, -10.0 , 10.0 ); // BestPrimaryVtxPosZ if(fCollidingSystems){ fCFContAsCascadeCuts->SetBinLimits(17, 0.0, 10000.0 ); // nTrackPrimaryMultiplicity fCFContAsCascadeCuts->SetBinLimits(18, 0.0, 10000.0 ); // nITSandTPCtracksAndSPDtracklets } else{ fCFContAsCascadeCuts->SetBinLimits(17, 0.0, 250.0 ); // nTrackPrimaryMultiplicity fCFContAsCascadeCuts->SetBinLimits(18, 0.0, 200.0 ); // nITSandTPCtracksAndSPDtracklets } fCFContAsCascadeCuts->SetBinLimits(19, 25.0 ,165.0 ); // BachTPCClusters */ // Setting the number of steps : one for each cascade species (Xi-, Xi+ and Omega-, Omega+) fCFContAsCascadeCuts->SetStepTitle(0, "#Xi^{-} candidates associated to MC"); fCFContAsCascadeCuts->SetStepTitle(1, "#bar{#Xi}^{+} candidates associated to MC"); fCFContAsCascadeCuts->SetStepTitle(2, "#Omega^{-} candidates associated to MC"); fCFContAsCascadeCuts->SetStepTitle(3, "#bar{#Omega}^{+} candidates associated to MC"); // Setting the variable title, per axis // fCFContAsCascadeCuts->SetVarTitle(40, "Chi2Xi"); fCFContAsCascadeCuts->SetVarTitle(0, "Dca(XiDaughters) (cm)"); fCFContAsCascadeCuts->SetVarTitle(1, "Dca(Bach/PrimVertex) (cm)"); fCFContAsCascadeCuts->SetVarTitle(2, "cos(Xi pointing angle)"); fCFContAsCascadeCuts->SetVarTitle(3, "R_{2d}(Xi decay) (cm)"); fCFContAsCascadeCuts->SetVarTitle(4, "M_{#Lambda}(As Casc Dghter) (GeV/c^{2})"); // fCFContAsCascadeCuts->SetVarTitle(40, "V0Chi2Xi"); fCFContAsCascadeCuts->SetVarTitle(5, "Dca(V0 Daughters Xi) (cm)"); fCFContAsCascadeCuts->SetVarTitle(6, "cos(V0 pointing Angle) in Casc"); fCFContAsCascadeCuts->SetVarTitle(7, "R_{2d}(V0 decay) (cm)"); fCFContAsCascadeCuts->SetVarTitle(8, "Dca(V0/PrimVertex) (cm)"); fCFContAsCascadeCuts->SetVarTitle(9, "Dca(Pos/PrimVertex) (cm)"); fCFContAsCascadeCuts->SetVarTitle(10, "Dca(Neg/PrimVertex) (cm)"); fCFContAsCascadeCuts->SetVarTitle(11, "Inv. Mass(Xi) (GeV/c^{2})"); fCFContAsCascadeCuts->SetVarTitle(12, "Inv. Mass(Omega) (GeV/c^{2})"); fCFContAsCascadeCuts->SetVarTitle(13, "Pt_{MC}(Casc.) (GeV/c)"); //fCFContAsCascadeCuts->SetVarTitle(40, "V0toXiCosineOfPointingAngle"); fCFContAsCascadeCuts->SetVarTitle(14, "Y_{MC}(Xi)"); fCFContAsCascadeCuts->SetVarTitle(15, "Y_{MC}(Omega)"); fCFContAsCascadeCuts->SetVarTitle(16, "Z-position(BestPrimVtx) (cm)"); fCFContAsCascadeCuts->SetVarTitle(17, "Primary Track Multiplicity"); fCFContAsCascadeCuts->SetVarTitle(18, "(ITS+TPC tracks + SPD tracklets) Multiplicity"); fCFContAsCascadeCuts->SetVarTitle(19, "Bach.TPC Clusters"); fListHistCascade->Add(fCFContAsCascadeCuts); } PostData(1, fListHistCascade); }// end CreateOutputObjects //________________________________________________________________________ void AliAnalysisTaskCheckPerformanceCascade::UserExec(Option_t *) { // Main loop // Called for each event AliESDEvent *lESDevent = 0x0; AliAODEvent *lAODevent = 0x0; AliMCEvent *lMCevent = 0x0; AliStack *lMCstack = 0x0; Int_t ncascades = -1; // Connect to the InputEvent // After these lines, we should have an ESD/AOD event + the number of cascades in it. if(fAnalysisType == "ESD"){ lESDevent = dynamic_cast( InputEvent() ); if (!lESDevent) { Printf("ERROR: lESDevent not available \n"); cout << "Name of the file with pb :" << CurrentFileName() << endl; // or AliAnalysisTaskSE::CurrentFileName() return; } } else if(fAnalysisType == "AOD"){ lAODevent = dynamic_cast( InputEvent() ); if (!lAODevent) { Printf("ERROR: lAODevent not available \n"); cout << "Name of the file with pb :" << CurrentFileName() << endl; return; } } lMCevent = MCEvent(); if (!lMCevent) { Printf("ERROR: Could not retrieve MC event \n"); cout << "Name of the file with pb :" << CurrentFileName() << endl; return; } lMCstack = lMCevent->Stack(); if (!lMCstack) { Printf("ERROR: Could not retrieve MC stack \n"); cout << "Name of the file with pb :" << CurrentFileName() << endl; return; } // Temporary way : AOD awareness of the code to be developed FIXME if(fAnalysisType == "AOD") return; //------------------------------------------------- // 0 - Trigger managment + global event selection // NOTE : Check the availability of the proper trigger // Note : Presuppose the presence of AliPhysicsSelectionTask UInt_t maskIsSelected = ((AliInputEventHandler*)(AliAnalysisManager::GetAnalysisManager()->GetInputEventHandler()))->IsEventSelected(); Bool_t isSelected = 0; if( fTriggerMaskType == "kMB") isSelected = (maskIsSelected & AliVEvent::kMB) == AliVEvent::kMB; else if(fTriggerMaskType == "kHighMult") isSelected = (maskIsSelected & AliVEvent::kHighMult) == AliVEvent::kHighMult; else isSelected = 1; // default = select anyway (use case = run without Phys Selection task) if ( ! isSelected ) { PostData(1, fListHistCascade); return; } //else Printf("Event selected ... \n"); //------------------------------------------------- // 1 - Cascade vertexer (ESD) if(fkRerunV0CascVertexers){ // FIXME : relaunch V0 and Cascade vertexers if(fAnalysisType == "ESD" ){ // lESDevent->ResetCascades(); // lESDevent->ResetV0s(); // // AliV0vertexer lV0vtxer; // AliCascadeVertexer lCascVtxer; // // lV0vtxer.SetDefaultCuts(fV0Sels); // lCascVtxer.SetDefaultCuts(fCascSels); // // lV0vtxer.Tracks2V0vertices(lESDevent); // lCascVtxer.V0sTracks2CascadeVertices(lESDevent); } } //------------------------------------------------ // 2 - Preparing the general info about of the event = prim. Vtx + magnetic field (ESD) // if(fAnalysisType == "ESD" ){ // Magnetic field const Double_t lMagneticField = lESDevent->GetMagneticField( ); // Prim vertex const AliESDVertex *lPrimaryTrackingVtx = lESDevent->GetPrimaryVertexTracks(); // get the vtx stored in ESD found with tracks const AliESDVertex *lPrimarySPDVtx = lESDevent->GetPrimaryVertexSPD(); // get the vtx stored in ESD found with SPD tracklets const AliESDVertex *lPrimaryBestVtx = lESDevent->GetPrimaryVertex(); // get the best primary vertex available for the event // As done in AliCascadeVertexer, we keep the one which is the best one available. // between : Tracking vertex > SPD vertex > TPC vertex > default SPD vertex Double_t lBestPrimaryVtxPos[3] = {-100.0, -100.0, -100.0}; lPrimaryBestVtx->GetXYZ( lBestPrimaryVtxPos ); // FIXME : quality cut on the z-position of the prim vertex. if(fkQualityCutZprimVtxPos) { if(TMath::Abs(lBestPrimaryVtxPos[2]) > 10.0 ) { AliWarning("Pb / | Z position of Best Prim Vtx | > 10.0 cm ... return !"); PostData(1, fListHistCascade); return; } } // FIXME : quality selection regarding pile-up rejection if(fkRejectEventPileUp) { if(lESDevent->IsPileupFromSPDInMultBins() ){// minContributors=3, minZdist=0.8, nSigmaZdist=3., nSigmaDiamXY=2., nSigmaDiamZ=5. -> see http://alisoft.cern.ch/viewvc/trunk/STEER/AliESDEvent.h?root=AliRoot&r1=41914&r2=42199&pathrev=42199 AliWarning("Pb / Event tagged as pile-up by SPD... return !"); PostData(1, fListHistCascade); return; } } // FIXME : remove TPC-only primary vertex : retain only events with tracking + SPD vertex if(fkQualityCutNoTPConlyPrimVtx) { if (!lPrimarySPDVtx->GetStatus() && !lPrimaryTrackingVtx->GetStatus() ){ AliWarning("Pb / No SPD prim. vertex nor prim. Tracking vertex ... return !"); PostData(1, fListHistCascade); return; } } // }// if ESD // cout << "Name of the accessed file :" << fInputHandler->GetTree()->GetCurrentFile()->GetName() << endl; // cout << "Tree characteristics ..." << endl; // fInputHandler->GetTree()->Print("toponly"); // fInputHandler->GetTree()->GetBranch("PrimaryVertex")->Print(); // fInputHandler->GetTree()->GetBranch("SPDVertex")->Print(); // --------------------------------------------------------------- // - Initialisation of the part dedicated to cascade vertices if(fAnalysisType == "ESD") ncascades = lESDevent->GetNumberOfCascades(); else if(fAnalysisType == "AOD") ncascades = lAODevent->GetNumberOfCascades(); Int_t nNumberOfMCPrimaries = -1; Int_t nMCPrimariesInEtaBelow0p8 = 0; Int_t nMCPrimariesInEtaBelow1p0 = 0; Int_t nTrackPrimaryMultiplicity = -1; Int_t nSPDTracklets = 0; // AliESDEvent::EstimateMultiplicity will re-initialise the value to 0 Int_t nITSandTPCtracksAndSPDtracklets = 0; // AliESDEvent::EstimateMultiplicity will re-initialise the value to 0 Int_t nTracksITSSApure = 0; // AliESDEvent::EstimateMultiplicity will re-initialise the value to 0 nNumberOfMCPrimaries = lMCstack->GetNprimary(); if(nNumberOfMCPrimaries < 1) return; nTrackPrimaryMultiplicity = fESDtrackCuts->CountAcceptedTracks(lESDevent); //EstimateMultiplicity(Int_t &tracklets, Int_t &trITSTPC, Int_t &trITSSApure, Double_t eta, Bool_t useDCAFlag,Bool_t useV0Flag) lESDevent->EstimateMultiplicity( nSPDTracklets, nITSandTPCtracksAndSPDtracklets, nTracksITSSApure, 1.0, kTRUE, kTRUE); fHistMCTrackMultiplicity->Fill( nNumberOfMCPrimaries ); //_____________________________________________________________________________ // Part 1 - Loop over the MC primaries for (Int_t iCurrentLabelStack = 0; iCurrentLabelStack < nNumberOfMCPrimaries; iCurrentLabelStack++) {// This is the begining of the loop on primaries TParticle* lCurrentParticle = 0x0; lCurrentParticle = lMCstack->Particle( iCurrentLabelStack ); if(!lCurrentParticle){ Printf("MC Primary loop %d - MC TParticle pointer to current stack particle = 0x0 ! Skip ...\n", iCurrentLabelStack ); continue; } Double_t lEtaCurrentParticle = TMath::Abs( lCurrentParticle->Eta() ); if( lEtaCurrentParticle < 1.0 ){ nMCPrimariesInEtaBelow1p0++; if( lEtaCurrentParticle < 0.8 ) nMCPrimariesInEtaBelow0p8++; } } f2dHistRecoPrimTrckMultVsMCMult->Fill( nTrackPrimaryMultiplicity, nMCPrimariesInEtaBelow0p8 ); f2dHistRecoEstimateMultVsMCMult->Fill( nITSandTPCtracksAndSPDtracklets, nMCPrimariesInEtaBelow1p0 ); // For proton /* for (Int_t iCurrentLabelStack = 0; iCurrentLabelStack < nNumberOfMCPrimaries; iCurrentLabelStack++) {// This is the begining of the loop on primaries, for protons TParticle* lCurrentParticle = lMCstack->Particle( iCurrentLabelStack ); if(!lCurrentParticle){ Printf("Proton loop %d - MC TParticle pointer to current stack particle = 0x0 ! Skip ...\n", iCurrentLabelStack ); continue; } if( lCurrentParticle->GetPdgCode() == 2212 ) fHistEtaGenProton->Fill( lCurrentParticle->Eta() ); if( lCurrentParticle->GetPdgCode() == -2212 ) fHistEtaGenAntiProton->Fill( lCurrentParticle->Eta() ); }// end loop over primary proton */ //_____________________________________________________________________________ // Part 2 - Loop over the different types of GENERATED cascades (Xi-+, Omega-+) // - Initialisation of useful local variables Int_t lPdgCodeCasc = 0; Int_t lPdgCodeBach = 0; Int_t lPdgCodeLambda = 0; Int_t lPdgCodeDghtMesV0 = 0; Int_t lPdgCodeDghtBarV0 = 0; TH1F *lHistEtaGenCasc = 0; TH2F *l2dHistGenPtVsGenYGen = 0; TH1F *lHistThetaGenCasc = 0; TH2F *l2dHistGenPtVsGenYFdbl = 0; TH1F *lHistThetaLambda = 0; TH1F *lHistThetaBach = 0; TH1F *lHistThetaBarDghter = 0; TH1F *lHistThetaMesDghter = 0; TH1F *lHistPtBach = 0; TH1F *lHistPtBarDghter = 0; TH1F *lHistPtMesDghter = 0; for(Int_t iCascType = 1; iCascType < 5; iCascType++) { switch (iCascType) { case 1: // Xi- lPdgCodeCasc = 3312; //Xi- lPdgCodeBach = -211; //Pi- lPdgCodeLambda = 3122; //Lambda0 lPdgCodeDghtMesV0 = -211; //Pi- lPdgCodeDghtBarV0 = 2212; //Proton // any Xi- lHistEtaGenCasc = fHistEtaGenCascXiMinus; l2dHistGenPtVsGenYGen = f2dHistGenPtVsGenYGenXiMinus; // cascades generated within acceptance (cut in pt + theta) lHistThetaGenCasc = fHistThetaGenCascXiMinus; l2dHistGenPtVsGenYFdbl = f2dHistGenPtVsGenYFdblXiMinus; lHistThetaLambda = fHistThetaLambdaXiMinus; lHistThetaBach = fHistThetaBachXiMinus; lHistThetaBarDghter = fHistThetaBarDghterXiMinus; lHistThetaMesDghter = fHistThetaMesDghterXiMinus; lHistPtBach = fHistPtBachXiMinus; lHistPtBarDghter = fHistPtBarDghterXiMinus; lHistPtMesDghter = fHistPtMesDghterXiMinus; break; case 2: // Xi+ lPdgCodeCasc = -3312; //Xi+ lPdgCodeBach = 211; //Pi+ lPdgCodeLambda = -3122; //AntiLambda0 lPdgCodeDghtMesV0 = 211; //Pi+ lPdgCodeDghtBarV0 = -2212; //AntiProton // any Xi+ lHistEtaGenCasc = fHistEtaGenCascXiPlus; l2dHistGenPtVsGenYGen = f2dHistGenPtVsGenYGenXiPlus; // cascades generated within acceptance (cut in pt + theta) lHistThetaGenCasc = fHistThetaGenCascXiPlus; l2dHistGenPtVsGenYFdbl = f2dHistGenPtVsGenYFdblXiPlus; lHistThetaLambda = fHistThetaLambdaXiPlus; lHistThetaBach = fHistThetaBachXiPlus; lHistThetaBarDghter = fHistThetaBarDghterXiPlus; lHistThetaMesDghter = fHistThetaMesDghterXiPlus; lHistPtBach = fHistPtBachXiPlus; lHistPtBarDghter = fHistPtBarDghterXiPlus; lHistPtMesDghter = fHistPtMesDghterXiPlus; break; case 3: // Omega- lPdgCodeCasc = 3334; //Omega- lPdgCodeBach = -321; //K- lPdgCodeLambda = 3122; //Lambda0 lPdgCodeDghtMesV0 = -211; //Pi- lPdgCodeDghtBarV0 = 2212; //Proton // any Omega- lHistEtaGenCasc = fHistEtaGenCascOmegaMinus; l2dHistGenPtVsGenYGen = f2dHistGenPtVsGenYGenOmegaMinus; // cascades generated within acceptance (cut in pt + theta) lHistThetaGenCasc = fHistThetaGenCascOmegaMinus; l2dHistGenPtVsGenYFdbl = f2dHistGenPtVsGenYFdblOmegaMinus; lHistThetaLambda = fHistThetaLambdaOmegaMinus; lHistThetaBach = fHistThetaBachOmegaMinus; lHistThetaBarDghter = fHistThetaBarDghterOmegaMinus; lHistThetaMesDghter = fHistThetaMesDghterOmegaMinus; lHistPtBach = fHistPtBachOmegaMinus; lHistPtBarDghter = fHistPtBarDghterOmegaMinus; lHistPtMesDghter = fHistPtMesDghterOmegaMinus; break; case 4: // Omega+ lPdgCodeCasc = -3334; //Omega+ lPdgCodeBach = 321; //K+ lPdgCodeLambda = -3122; //AntiLambda0 lPdgCodeDghtMesV0 = 211; //Pi+ lPdgCodeDghtBarV0 = -2212; //AntiProton // any Omega+ lHistEtaGenCasc = fHistEtaGenCascOmegaPlus; l2dHistGenPtVsGenYGen = f2dHistGenPtVsGenYGenOmegaPlus; // cascades generated within acceptance (cut in pt + theta) lHistThetaGenCasc = fHistThetaGenCascOmegaPlus; l2dHistGenPtVsGenYFdbl = f2dHistGenPtVsGenYFdblOmegaPlus; lHistThetaLambda = fHistThetaLambdaOmegaPlus; lHistThetaBach = fHistThetaBachOmegaPlus; lHistThetaBarDghter = fHistThetaBarDghterOmegaPlus; lHistThetaMesDghter = fHistThetaMesDghterOmegaPlus; lHistPtBach = fHistPtBachOmegaPlus; lHistPtBarDghter = fHistPtBarDghterOmegaPlus; lHistPtMesDghter = fHistPtMesDghterOmegaPlus; break; }// end switch cascade for (Int_t iCurrentLabelStack = 0; iCurrentLabelStack < nNumberOfMCPrimaries; iCurrentLabelStack++) {// This is the begining of the loop on primaries TParticle* lCurrentParticle = 0x0; lCurrentParticle = lMCstack->Particle( iCurrentLabelStack ); if(!lCurrentParticle){ Printf("Cascade loop %d - MC TParticle pointer to current stack particle = 0x0 ! Skip ...\n", iCurrentLabelStack ); continue; } if( lCurrentParticle->GetPdgCode() == lPdgCodeCasc ){ // Here ! //cout << "Xi- within loop " << iCurrentLabelStack << "/ " << nNumberOfMCPrimaries << endl; // - Xi level ... _____________________________________________________________ TParticle* xiMC = 0x0; xiMC = lCurrentParticle; if(!xiMC){ Printf("MC TParticle pointer to Cascade = 0x0 ! Skip ..."); continue; } // Fill the first histos : = any generated Xi, not necessarily within the acceptance Double_t lRapXiMC = 0.5*TMath::Log((xiMC->Energy() + xiMC->Pz()) / (xiMC->Energy() - xiMC->Pz() +1.e-13)); lHistEtaGenCasc ->Fill( xiMC->Eta() ); l2dHistGenPtVsGenYGen ->Fill( xiMC->Pt(), lRapXiMC ); // Check the emission of particle stays within the acceptance of the detector (cut in theta) if( xiMC->Theta() < TMath::Pi()/4.0 || xiMC->Theta() > 3.0*TMath::Pi()/4.0 ) continue; if( xiMC->GetNDaughters() != 2) continue; if( xiMC->GetDaughter(0) < 0 ) continue; if( xiMC->GetDaughter(1) < 0 ) continue; TParticle* lDght0ofXi = lMCstack->Particle( xiMC->GetDaughter(0) ); TParticle* lDght1ofXi = lMCstack->Particle( xiMC->GetDaughter(1) ); TParticle* lLambda = 0; TParticle* lBach = 0; // Xi - Case 1 if( lDght0ofXi->GetPdgCode() == lPdgCodeLambda && // Here ! lDght1ofXi->GetPdgCode() == lPdgCodeBach ){ // Here ! lLambda = lDght0ofXi; lBach = lDght1ofXi; }// end if dghter 0 = Lambda and dghter 1 = Pi- // Xi - Case 2 else if( lDght0ofXi->GetPdgCode() == lPdgCodeBach && // Here ! lDght1ofXi->GetPdgCode() == lPdgCodeLambda ){ // Here ! lBach = lDght0ofXi; lLambda = lDght1ofXi; }// end if dghter 0 = Pi- and dghter 1 = Lambda // V0 otherwise - Case 3 else continue; // Check the emission of particle stays within the acceptance of the detector (cut in pt + theta) if( lLambda->Theta() < TMath::Pi()/4.0 || lLambda->Theta() > 3.0*TMath::Pi()/4.0 ) continue; if( lBach->Theta() < TMath::Pi()/4.0 || lBach->Theta() > 3.0*TMath::Pi()/4.0 ) continue; if( lBach->Pt() < 0.150 ) continue; //FIXME : maybe tuned for Xi but not for K- from Omega ... // - V0 level ... _____________________________________________________________ TParticle* lDghtBarV0 = 0; TParticle* lDghtMesV0 = 0; if( lLambda->GetNDaughters() != 2 ) continue; if( lLambda->GetDaughter(0) < 0 ) continue; if( lLambda->GetDaughter(1) < 0 ) continue; TParticle* lDght0ofLambda = lMCstack->Particle( lLambda->GetDaughter(0) ); TParticle* lDght1ofLambda = lMCstack->Particle( lLambda->GetDaughter(1) ); // V0 - Case 1 if( lDght0ofLambda->GetPdgCode() == lPdgCodeDghtBarV0 && // Here ! lDght1ofLambda->GetPdgCode() == lPdgCodeDghtMesV0 ){ // Here ! lDghtBarV0 = lDght0ofLambda; lDghtMesV0 = lDght1ofLambda; }// end if dghter 0 = Proton and dghter 1 = Pi- // V0 - Case 2 else if( lDght0ofLambda->GetPdgCode() == lPdgCodeDghtMesV0 && // Here ! lDght1ofLambda->GetPdgCode() == lPdgCodeDghtBarV0 ){ // Here ! lDghtMesV0 = lDght0ofLambda; lDghtBarV0 = lDght1ofLambda; }// end if dghter 0 = Pi- and dghter 1 = proton // V0 otherwise - Case 3 else continue; // Check the emission of particle stays within the acceptance of the detector if( lDghtBarV0->Theta() < TMath::Pi()/4.0 || lDghtBarV0->Theta() > 3.0*TMath::Pi()/4.0 ) continue; if( lDghtMesV0->Theta() < TMath::Pi()/4.0 || lDghtMesV0->Theta() > 3.0*TMath::Pi()/4.0 ) continue; if( lDghtBarV0->Pt() < 0.250 ) continue; if( lDghtMesV0->Pt() < 0.150 ) continue; // - Just to know which file is currently open : locate the file containing Xi //cout << "Name of the file containing generated Xi :" << fInputHandler->GetTree()->GetCurrentFile()->GetName() // << endl; Double_t lRadToDeg = 180.0/TMath::Pi(); // - Filling histos ... _________________________________________________________________ lHistThetaGenCasc ->Fill( lRadToDeg * xiMC->Theta() ); l2dHistGenPtVsGenYFdbl ->Fill( xiMC->Pt(), lRapXiMC ); // - Fill theta histos for Lambda and Bach lHistThetaLambda ->Fill( lRadToDeg * lLambda->Theta() ); lHistThetaBach ->Fill( lRadToDeg * lBach->Theta() ); // - Fill theta histos for V0 daughters lHistThetaBarDghter ->Fill( lRadToDeg * lDghtBarV0->Theta() ); lHistThetaMesDghter ->Fill( lRadToDeg * lDghtMesV0->Theta() ); // - Fill pt histos. lHistPtBach ->Fill( lBach->Pt() ); lHistPtBarDghter ->Fill( lDghtBarV0->Pt() ); lHistPtMesDghter ->Fill( lDghtMesV0->Pt() ); }// end if current particle = Xi- }// This is the end of the loop on primaries // - Re-initialisation of the local TH1F pointers lHistEtaGenCasc = 0x0; l2dHistGenPtVsGenYGen = 0x0; lHistThetaGenCasc = 0x0; l2dHistGenPtVsGenYFdbl = 0x0; lHistThetaLambda = 0x0; lHistThetaBach = 0x0; lHistThetaBarDghter = 0x0; lHistThetaMesDghter = 0x0; lHistPtBach = 0x0; lHistPtBarDghter = 0x0; lHistPtMesDghter = 0x0; } // end of loop over the different types of cascades (Xi-+, Omega-+) //__________________________________________________________________________ // Part 3 - Loop over the reconstructed candidates for (Int_t iXi = 0; iXi < ncascades; iXi++) {// This is the begining of the Cascade loop AliESDcascade *xiESD = lESDevent->GetCascade(iXi); if (!xiESD) continue; // - Step II.1 : Connection to daughter tracks of the current cascade //------------- UInt_t lIdxPosXi = (UInt_t) TMath::Abs( xiESD->GetPindex() ); UInt_t lIdxNegXi = (UInt_t) TMath::Abs( xiESD->GetNindex() ); UInt_t lBachIdx = (UInt_t) TMath::Abs( xiESD->GetBindex() ); // abs value not needed ; the index should always be positive (!= label ...) // FIXME : rejection of a double use of a daughter track (nothing but just a crosscheck of what is done in the cascade vertexer) if(lBachIdx == lIdxNegXi) { AliWarning("Pb / Idx(Bach. track) = Idx(Neg. track) ... continue!"); continue; } if(lBachIdx == lIdxPosXi) { AliWarning("Pb / Idx(Bach. track) = Idx(Pos. track) ... continue!"); continue; } AliESDtrack *pTrackXi = lESDevent->GetTrack( lIdxPosXi ); AliESDtrack *nTrackXi = lESDevent->GetTrack( lIdxNegXi ); AliESDtrack *bachTrackXi = lESDevent->GetTrack( lBachIdx ); if (!pTrackXi || !nTrackXi || !bachTrackXi ) { Printf("ERROR: Could not retrieve one of the 3 daughter tracks of the cascade ..."); continue; } Int_t lPosTPCClusters = pTrackXi->GetTPCNcls(); Int_t lNegTPCClusters = nTrackXi->GetTPCNcls(); Int_t lBachTPCClusters = bachTrackXi->GetTPCNcls(); // FIXME : rejection of a poor quality tracks if(fkQualityCutTPCrefit){ // 1 - Poor quality related to TPCrefit ULong_t pStatus = pTrackXi->GetStatus(); ULong_t nStatus = nTrackXi->GetStatus(); ULong_t bachStatus = bachTrackXi->GetStatus(); if ((pStatus&AliESDtrack::kTPCrefit) == 0) { AliWarning("Pb / V0 Pos. track has no TPCrefit ... continue!"); continue; } if ((nStatus&AliESDtrack::kTPCrefit) == 0) { AliWarning("Pb / V0 Neg. track has no TPCrefit ... continue!"); continue; } if ((bachStatus&AliESDtrack::kTPCrefit) == 0) { AliWarning("Pb / Bach. track has no TPCrefit ... continue!"); continue; } } if(fkQualityCut80TPCcls){ // 2 - Poor quality related to TPC clusters if(lPosTPCClusters < 80) { AliWarning("Pb / V0 Pos. track has less than 80 TPC clusters ... continue!"); continue; } if(lNegTPCClusters < 80) { AliWarning("Pb / V0 Neg. track has less than 80 TPC clusters ... continue!"); continue; } if(lBachTPCClusters < 80) { AliWarning("Pb / Bach. track has less than 80 TPC clusters ... continue!"); continue; } } // - Step II.2 : Info over reconstructed cascades //------------- Double_t lInvMassXiMinus = 0.; Double_t lInvMassXiPlus = 0.; Double_t lInvMassOmegaMinus = 0.; Double_t lInvMassOmegaPlus = 0.; Double_t lV0quality = 0.; if( bachTrackXi->Charge() < 0 ) { lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , 3312); // Calculate the effective mass of the Xi- candidate. // pdg code 3312 = Xi- lInvMassXiMinus = xiESD->GetEffMassXi(); lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , 3334); // Calculate the effective mass of the Xi- candidate. // pdg code 3334 = Omega- lInvMassOmegaMinus = xiESD->GetEffMassXi(); lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , 3312); // Back to default hyp. } if( bachTrackXi->Charge() > 0 ){ lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , -3312); // Calculate the effective mass of the Xi+ candidate. // pdg code -3312 = Xi+ lInvMassXiPlus = xiESD->GetEffMassXi(); lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , -3334); // Calculate the effective mass of the Xi+ candidate. // pdg code -3334 = Omega+ lInvMassOmegaPlus = xiESD->GetEffMassXi(); lV0quality = 0.; xiESD->ChangeMassHypothesis(lV0quality , -3312); // Back to "default" hyp. } Double_t lChargeXi = xiESD->Charge(); if( lChargeXi < 0 ) fHistMassXiMinus ->Fill( lInvMassXiMinus ); if( lChargeXi > 0 ) fHistMassXiPlus ->Fill( lInvMassXiPlus ); if( lChargeXi < 0 ) fHistMassOmegaMinus ->Fill( lInvMassOmegaMinus ); if( lChargeXi > 0 ) fHistMassOmegaPlus ->Fill( lInvMassOmegaPlus ); // - Step II.3 : PID info //------------- // 3.1 - PID Information Bool_t lIsPosInXiProton = kFALSE; Bool_t lIsPosInXiPion = kFALSE; Bool_t lIsPosInOmegaProton = kFALSE; Bool_t lIsPosInOmegaPion = kFALSE; Bool_t lIsNegInXiProton = kFALSE; Bool_t lIsNegInXiPion = kFALSE; Bool_t lIsNegInOmegaProton = kFALSE; Bool_t lIsNegInOmegaPion = kFALSE; Bool_t lIsBachelorKaon = kFALSE; Bool_t lIsBachelorPion = kFALSE; Bool_t lIsBachelorKaonForTPC = kFALSE; // For ESD only ...//FIXME : wait for availability in AOD Bool_t lIsBachelorPionForTPC = kFALSE; // For ESD only ... Bool_t lIsNegPionForTPC = kFALSE; // For ESD only ... Bool_t lIsPosPionForTPC = kFALSE; // For ESD only ... Bool_t lIsNegProtonForTPC = kFALSE; // For ESD only ... Bool_t lIsPosProtonForTPC = kFALSE; // For ESD only ... // 3.1.A - Combined PID // Reasonable guess for the priors for the cascade track sample (e-, mu, pi, K, p) Double_t lPriorsGuessXi[10] = {0, 0, 2, 0, 1, 0,0,0,0,0}; Double_t lPriorsGuessOmega[10] = {0, 0, 1, 1, 1, 0,0,0,0,0}; // Combined VO-positive-daughter PID AliPID pPidXi; pPidXi.SetPriors( lPriorsGuessXi , kTRUE); // kTRUE = for charged particle PID AliPID pPidOmega; pPidOmega.SetPriors( lPriorsGuessOmega , kTRUE); // kTRUE = for charged particle PID if( pTrackXi->IsOn(AliESDtrack::kESDpid) ){ // Combined PID exists Double_t r[10] = {0.}; pTrackXi->GetESDpid(r); pPidXi.SetProbabilities(r); pPidOmega.SetProbabilities(r); // Check if the V0 positive track is a proton (case for Xi-) Double_t pproton = pPidXi.GetProbability(AliPID::kProton); if (pproton > pPidXi.GetProbability(AliPID::kElectron) && pproton > pPidXi.GetProbability(AliPID::kMuon) && pproton > pPidXi.GetProbability(AliPID::kPion) && pproton > pPidXi.GetProbability(AliPID::kKaon) ) lIsPosInXiProton = kTRUE; // Check if the V0 positive track is a pi+ (case for Xi+) Double_t ppion = pPidXi.GetProbability(AliPID::kPion); if (ppion > pPidXi.GetProbability(AliPID::kElectron) && ppion > pPidXi.GetProbability(AliPID::kMuon) && ppion > pPidXi.GetProbability(AliPID::kKaon) && ppion > pPidXi.GetProbability(AliPID::kProton) ) lIsPosInXiPion = kTRUE; // Check if the V0 positive track is a proton (case for Omega-) pproton = 0.; pproton = pPidOmega.GetProbability(AliPID::kProton); if (pproton > pPidOmega.GetProbability(AliPID::kElectron) && pproton > pPidOmega.GetProbability(AliPID::kMuon) && pproton > pPidOmega.GetProbability(AliPID::kPion) && pproton > pPidOmega.GetProbability(AliPID::kKaon) ) lIsPosInOmegaProton = kTRUE; // Check if the V0 positive track is a pi+ (case for Omega+) ppion = 0.; ppion = pPidOmega.GetProbability(AliPID::kPion); if (ppion > pPidOmega.GetProbability(AliPID::kElectron) && ppion > pPidOmega.GetProbability(AliPID::kMuon) && ppion > pPidOmega.GetProbability(AliPID::kKaon) && ppion > pPidOmega.GetProbability(AliPID::kProton) ) lIsPosInOmegaPion = kTRUE; }// end if V0 positive track with existing combined PID // Combined VO-negative-daughter PID AliPID nPidXi; nPidXi.SetPriors( lPriorsGuessXi , kTRUE); // kTRUE = for charged particle PID AliPID nPidOmega; nPidOmega.SetPriors( lPriorsGuessOmega , kTRUE); // kTRUE = for charged particle PID if( nTrackXi->IsOn(AliESDtrack::kESDpid) ){ // Combined PID exists Double_t r[10] = {0.}; nTrackXi->GetESDpid(r); nPidXi.SetProbabilities(r); nPidOmega.SetProbabilities(r); // Check if the V0 negative track is a pi- (case for Xi-) Double_t ppion = nPidXi.GetProbability(AliPID::kPion); if (ppion > nPidXi.GetProbability(AliPID::kElectron) && ppion > nPidXi.GetProbability(AliPID::kMuon) && ppion > nPidXi.GetProbability(AliPID::kKaon) && ppion > nPidXi.GetProbability(AliPID::kProton) ) lIsNegInXiPion = kTRUE; // Check if the V0 negative track is an anti-proton (case for Xi+) Double_t pproton = nPidXi.GetProbability(AliPID::kProton); if (pproton > nPidXi.GetProbability(AliPID::kElectron) && pproton > nPidXi.GetProbability(AliPID::kMuon) && pproton > nPidXi.GetProbability(AliPID::kPion) && pproton > nPidXi.GetProbability(AliPID::kKaon) ) lIsNegInXiProton = kTRUE; // Check if the V0 negative track is a pi- (case for Omega-) ppion = 0.; ppion = nPidOmega.GetProbability(AliPID::kPion); if (ppion > nPidOmega.GetProbability(AliPID::kElectron) && ppion > nPidOmega.GetProbability(AliPID::kMuon) && ppion > nPidOmega.GetProbability(AliPID::kKaon) && ppion > nPidOmega.GetProbability(AliPID::kProton) ) lIsNegInOmegaPion = kTRUE; // Check if the V0 negative track is an anti-proton (case for Omega+) pproton = 0.; pproton = nPidOmega.GetProbability(AliPID::kProton); if (pproton > nPidOmega.GetProbability(AliPID::kElectron) && pproton > nPidOmega.GetProbability(AliPID::kMuon) && pproton > nPidOmega.GetProbability(AliPID::kPion) && pproton > nPidOmega.GetProbability(AliPID::kKaon) ) lIsNegInOmegaProton = kTRUE; }// end if V0 negative track with existing combined PID // Combined bachelor PID AliPID bachPidXi; bachPidXi.SetPriors( lPriorsGuessXi , kTRUE); // kTRUE = for charged particle PID AliPID bachPidOmega; bachPidOmega.SetPriors( lPriorsGuessOmega , kTRUE); // kTRUE = for charged particle PID Double_t ppionBach = 0.0, pkaonBach = 0.0; if( bachTrackXi->IsOn(AliESDtrack::kESDpid) ){ // Combined PID exists Double_t r[10] = {0.}; bachTrackXi->GetESDpid(r); bachPidXi.SetProbabilities(r); bachPidOmega.SetProbabilities(r); // Check if the bachelor track is a pion ppionBach = bachPidXi.GetProbability(AliPID::kPion); if (ppionBach > bachPidXi.GetProbability(AliPID::kElectron) && ppionBach > bachPidXi.GetProbability(AliPID::kMuon) && ppionBach > bachPidXi.GetProbability(AliPID::kKaon) && ppionBach > bachPidXi.GetProbability(AliPID::kProton) ) lIsBachelorPion = kTRUE; // Check if the bachelor track is a kaon pkaonBach = bachPidOmega.GetProbability(AliPID::kKaon); if (pkaonBach > bachPidOmega.GetProbability(AliPID::kElectron) && pkaonBach > bachPidOmega.GetProbability(AliPID::kMuon) && pkaonBach > bachPidOmega.GetProbability(AliPID::kPion) && pkaonBach > bachPidOmega.GetProbability(AliPID::kProton) ) lIsBachelorKaon = kTRUE; }// end if bachelor track with existing combined PID // 3.1.B - TPC PID : 4-sigma bands on Bethe-Bloch curve // Bachelor if (TMath::Abs(fESDpid->NumberOfSigmasTPC( bachTrackXi,AliPID::kKaon)) < 4) lIsBachelorKaonForTPC = kTRUE; if (TMath::Abs(fESDpid->NumberOfSigmasTPC( bachTrackXi,AliPID::kPion)) < 4) lIsBachelorPionForTPC = kTRUE; // Negative V0 daughter if (TMath::Abs(fESDpid->NumberOfSigmasTPC( nTrackXi,AliPID::kPion )) < 4) lIsNegPionForTPC = kTRUE; if (TMath::Abs(fESDpid->NumberOfSigmasTPC( nTrackXi,AliPID::kProton )) < 4) lIsNegProtonForTPC = kTRUE; // Positive V0 daughter if (TMath::Abs(fESDpid->NumberOfSigmasTPC( pTrackXi,AliPID::kPion )) < 4) lIsPosPionForTPC = kTRUE; if (TMath::Abs(fESDpid->NumberOfSigmasTPC( pTrackXi,AliPID::kProton )) < 4) lIsPosProtonForTPC = kTRUE; /* const AliExternalTrackParam *pInnerWallTrackXi = pTrackXi ->GetInnerParam(); // Do not use GetTPCInnerWall const AliExternalTrackParam *nInnerWallTrackXi = nTrackXi ->GetInnerParam(); const AliExternalTrackParam *bachInnerWallTrackXi = bachTrackXi ->GetInnerParam(); if(pInnerWallTrackXi && nInnerWallTrackXi && bachInnerWallTrackXi ){ Double_t pMomInnerWall = pInnerWallTrackXi ->GetP(); Double_t nMomInnerWall = nInnerWallTrackXi ->GetP(); Double_t bachMomInnerWall = bachInnerWallTrackXi->GetP(); // Bachelor if (TMath::Abs(fESDpid->NumberOfSigmasTPC( bachTrackXi,AliPID::kPion)) < 3) lIsBachelorPionForTPC = kTRUE; if (bachMomInnerWall < 0.350 && TMath::Abs(fESDpid->NumberOfSigmasTPC( bachTrackXi,AliPID::kKaon)) < 5) lIsBachelorKaonForTPC = kTRUE; if (bachMomInnerWall > 0.350 && TMath::Abs(fESDpid->NumberOfSigmasTPC( bachTrackXi,AliPID::kKaon)) < 3) lIsBachelorKaonForTPC = kTRUE; // Negative V0 daughter if (TMath::Abs(fESDpid->NumberOfSigmasTPC( nTrackXi,AliPID::kPion )) < 3 ) lIsNegPionForTPC = kTRUE; if (nMomInnerWall < 0.6 && TMath::Abs(fESDpid->NumberOfSigmasTPC( nTrackXi,AliPID::kProton ) ) < 5 ) lIsNegProtonForTPC = kTRUE; if (nMomInnerWall > 0.6 && TMath::Abs(fESDpid->NumberOfSigmasTPC( nTrackXi,AliPID::kProton ) ) < 3 ) lIsNegProtonForTPC = kTRUE; // Positive V0 daughter if (TMath::Abs(fESDpid->NumberOfSigmasTPC( pTrackXi,AliPID::kPion )) < 3 ) lIsPosPionForTPC = kTRUE; if (pMomInnerWall < 0.6 && TMath::Abs(fESDpid->NumberOfSigmasTPC( pTrackXi,AliPID::kProton )) < 5) lIsPosProtonForTPC = kTRUE; if (pMomInnerWall > 0.6 && TMath::Abs(fESDpid->NumberOfSigmasTPC( pTrackXi,AliPID::kProton )) < 3) lIsPosProtonForTPC = kTRUE; } */ // Combined PID TH1s if( lChargeXi < 0 && lIsBachelorPion ) fHistMassWithCombPIDXiMinus ->Fill( lInvMassXiMinus ); if( lChargeXi > 0 && lIsBachelorPion ) fHistMassWithCombPIDXiPlus ->Fill( lInvMassXiPlus ); if( lChargeXi < 0 && lIsBachelorKaon ) fHistMassWithCombPIDOmegaMinus ->Fill( lInvMassOmegaMinus ); if( lChargeXi > 0 && lIsBachelorKaon ) fHistMassWithCombPIDOmegaPlus ->Fill( lInvMassOmegaPlus ); // 3.2 - PID proba Vs Pt(Bach) Int_t lblBachForPID = (Int_t) TMath::Abs( bachTrackXi->GetLabel() ); TParticle* mcBachForPID = lMCstack->Particle( lblBachForPID ); Double_t lmcPtBach = mcBachForPID->Pt(); if(lIsBachelorPion) f2dHistPIDprobaPionVsMCPtBach->Fill( lmcPtBach, ppionBach ); if(lIsBachelorKaon) f2dHistPIDprobaKaonVsMCPtBach->Fill( lmcPtBach, pkaonBach ); // 3.3 - MC perfect PID Bool_t lIsBachelorMCPiMinus = kFALSE; Bool_t lIsBachelorMCPiPlus = kFALSE; Bool_t lIsBachelorMCKMinus = kFALSE; Bool_t lIsBachelorMCKPlus = kFALSE; if( mcBachForPID->GetPdgCode() == -211) lIsBachelorMCPiMinus = kTRUE; if( mcBachForPID->GetPdgCode() == 211) lIsBachelorMCPiPlus = kTRUE; if( mcBachForPID->GetPdgCode() == -321) lIsBachelorMCKMinus = kTRUE; if( mcBachForPID->GetPdgCode() == 321) lIsBachelorMCKPlus = kTRUE; if( lChargeXi < 0 && lIsBachelorMCPiMinus ) fHistMassWithMcPIDXiMinus ->Fill( lInvMassXiMinus ); if( lChargeXi > 0 && lIsBachelorMCPiPlus ) fHistMassWithMcPIDXiPlus ->Fill( lInvMassXiPlus ); if( lChargeXi < 0 && lIsBachelorMCKMinus ) fHistMassWithMcPIDOmegaMinus ->Fill( lInvMassOmegaMinus ); if( lChargeXi > 0 && lIsBachelorMCKPlus ) fHistMassWithMcPIDOmegaPlus ->Fill( lInvMassOmegaPlus ); // - Step II.4 : MC association (care : lots of "continue;" below this line) //------------- Bool_t lAssoXiMinus = kFALSE; Bool_t lAssoXiPlus = kFALSE; Bool_t lAssoOmegaMinus = kFALSE; Bool_t lAssoOmegaPlus = kFALSE; if(fDebug > 5) cout << "MC EventNumber : " << lMCevent->Header()->GetEvent() << " / MC event Number in Run : " << lMCevent->Header()->GetEventNrInRun() << endl; // - Step 4.1 : level of the V0 daughters Int_t lblPosV0Dghter = (Int_t) TMath::Abs( pTrackXi->GetLabel() ); // Abs value = needed ! question of quality track association ... Int_t lblNegV0Dghter = (Int_t) TMath::Abs( nTrackXi->GetLabel() ); TParticle* mcPosV0Dghter = lMCstack->Particle( lblPosV0Dghter ); TParticle* mcNegV0Dghter = lMCstack->Particle( lblNegV0Dghter ); // - Step 4.2 : level of the Xi daughters Int_t lblMotherPosV0Dghter = mcPosV0Dghter->GetFirstMother() ; Int_t lblMotherNegV0Dghter = mcNegV0Dghter->GetFirstMother(); if( lblMotherPosV0Dghter != lblMotherNegV0Dghter) continue; // same mother if( lblMotherPosV0Dghter < 0 ) continue; // mother != primary (!= -1) if( lblMotherNegV0Dghter < 0 ) continue; // mothers = Lambda candidate ... a priori TParticle* mcMotherPosV0Dghter = lMCstack->Particle( lblMotherPosV0Dghter ); TParticle* mcMotherNegV0Dghter = lMCstack->Particle( lblMotherNegV0Dghter ); Int_t lblBach = (Int_t) TMath::Abs( bachTrackXi->GetLabel() ); TParticle* mcBach = lMCstack->Particle( lblBach ); // - Step 4.3 : level of Xi candidate Int_t lblGdMotherPosV0Dghter = mcMotherPosV0Dghter->GetFirstMother() ; Int_t lblGdMotherNegV0Dghter = mcMotherNegV0Dghter->GetFirstMother() ; if( lblGdMotherPosV0Dghter != lblGdMotherNegV0Dghter ) continue; if( lblGdMotherPosV0Dghter < 0 ) continue; // primary lambda ... if( lblGdMotherNegV0Dghter < 0 ) continue; // primary lambda ... // Gd mothers = Xi candidate ... a priori TParticle* mcGdMotherPosV0Dghter = lMCstack->Particle( lblGdMotherPosV0Dghter ); TParticle* mcGdMotherNegV0Dghter = lMCstack->Particle( lblGdMotherNegV0Dghter ); Int_t lblMotherBach = (Int_t) TMath::Abs( mcBach->GetFirstMother() ); if( lblMotherBach != lblGdMotherPosV0Dghter ) continue; //same mother for bach and V0 daughters TParticle* mcMotherBach = lMCstack->Particle( lblMotherBach ); // - Step 4.4 : Manage boolean for association if( mcMotherBach ->GetPdgCode() == 3312 && mcGdMotherPosV0Dghter ->GetPdgCode() == 3312 && mcGdMotherNegV0Dghter ->GetPdgCode() == 3312) lAssoXiMinus = kTRUE; else if( mcMotherBach ->GetPdgCode() == -3312 && mcGdMotherPosV0Dghter ->GetPdgCode() == -3312 && mcGdMotherNegV0Dghter ->GetPdgCode() == -3312) lAssoXiPlus = kTRUE; else if( mcMotherBach ->GetPdgCode() == 3334 && mcGdMotherPosV0Dghter ->GetPdgCode() == 3334 && mcGdMotherNegV0Dghter ->GetPdgCode() == 3334) lAssoOmegaMinus = kTRUE; else if( mcMotherBach ->GetPdgCode() == -3334 && mcGdMotherPosV0Dghter ->GetPdgCode() == -3334 && mcGdMotherNegV0Dghter ->GetPdgCode() == -3334) lAssoOmegaPlus = kTRUE; if(!lAssoXiMinus && !lAssoXiPlus && !lAssoOmegaMinus && !lAssoOmegaPlus) continue; // no association, skip the rest of the code // If a proper association exists ... if(fDebug > 4){ cout << "XiMinus = " << lAssoXiMinus << endl; cout << "XiPlus = " << lAssoXiPlus << endl; cout << "OmegaMinus = " << lAssoOmegaMinus << endl; cout << "OmegaPlus = " << lAssoOmegaPlus << endl << "----" << endl; } if(fDebug > 5){ cout << endl; cout << "- V0 daughters - " << endl; cout << " + V0 Pos. / Label : " << lblPosV0Dghter << " - Pdg Code : " << mcPosV0Dghter->GetTitle() << endl; cout << " - V0 Neg. / Label : " << lblNegV0Dghter << " - Pdg Code : " << mcNegV0Dghter->GetTitle() << endl; cout << "- Xi daughters - " << endl; cout << " + V0 Pos. mother / Label : " << lblMotherPosV0Dghter << " - Pdg Code : " << mcMotherPosV0Dghter->GetTitle() << endl; cout << " - V0 Neg. mother / Label : " << lblMotherNegV0Dghter << " - Pdg Code : " << mcMotherNegV0Dghter->GetTitle() << endl; cout << " -- Bach. / Label :" << lblBach << " - Pdg Code : " << mcBach->GetTitle() << endl; cout << "- Xi candidate -" << endl; cout << " + V0 Pos. Gd Mother / Label : " << lblGdMotherPosV0Dghter << " - Pdg Code : " << mcGdMotherPosV0Dghter->GetTitle() << endl; cout << " - V0 Neg. Gd Mother / Label : " << lblGdMotherNegV0Dghter << " - Pdg Code : "<< mcGdMotherNegV0Dghter->GetTitle() << endl; cout << " -- Mother Bach. / Label : " << lblMotherBach << " - Pdg Code : " << mcMotherBach->GetTitle() << endl; cout << endl; } // - Step 5 : Plots around the cascade candidates associated with MC //------------- Double_t lmcPt = mcMotherBach->Pt(); Double_t lmcRapCasc = 0.5*TMath::Log( (mcMotherBach->Energy() + mcMotherBach->Pz()) / (mcMotherBach->Energy() - mcMotherBach->Pz() +1.e-13) ); Double_t lmcPtBaryon = (mcNegV0Dghter->GetPdgCode() == -2212 ) ? mcNegV0Dghter->Pt() : mcPosV0Dghter->Pt(); // spot the baryon daughter : pbar or p Double_t lmcEta = mcMotherBach->Eta(); Double_t lmcTransvRadius = mcBach->R(); // to get the decay point of Xi, = the production vertex of Bachelor ... TVector3 lmcTVect3Mom( mcMotherBach->Px(), mcMotherBach->Py(), mcMotherBach->Pz() ); Double_t lrecoPt = xiESD->Pt(); Double_t lrecoTransvRadius = TMath::Sqrt( xiESD->Xv() * xiESD->Xv() + xiESD->Yv() * xiESD->Yv() ); TVector3 lrecoTVect3Mom( xiESD->Px(), xiESD->Py(), xiESD->Pz() ); Double_t lDeltaPhiMcReco = lmcTVect3Mom.DeltaPhi( lrecoTVect3Mom ) * 180.0/TMath::Pi(); // - Histos for the cascade candidates associated with MC if( lChargeXi < 0 && lAssoXiMinus){ fHistAsMCMassXiMinus ->Fill( lInvMassXiMinus ); if(lIsBachelorPion) f2dHistAsMCandCombPIDGenPtVsGenYXiMinus->Fill( lmcPt, lmcRapCasc ); f2dHistAsMCGenPtVsGenYXiMinus ->Fill( lmcPt, lmcRapCasc); fHistAsMCGenEtaXiMinus ->Fill( lmcEta ); f2dHistAsMCResPtXiMinus ->Fill( lmcPt, (lrecoPt - lmcPt)/ lmcPt ); f2dHistAsMCResRXiMinus ->Fill( lmcTransvRadius, (lrecoTransvRadius - lmcTransvRadius)/ lmcTransvRadius ); f2dHistAsMCResPhiXiMinus ->Fill( lmcPt, lDeltaPhiMcReco ); f2dHistAsMCPtProtonVsPtXiMinus->Fill( lmcPtBaryon, lmcPt ); } else if( lChargeXi > 0 && lAssoXiPlus){ fHistAsMCMassXiPlus ->Fill( lInvMassXiPlus ); if(lIsBachelorPion) f2dHistAsMCandCombPIDGenPtVsGenYXiPlus->Fill( lmcPt, lmcRapCasc ); f2dHistAsMCGenPtVsGenYXiPlus ->Fill( lmcPt, lmcRapCasc); fHistAsMCGenEtaXiPlus ->Fill( lmcEta ); f2dHistAsMCResPtXiPlus ->Fill( lmcPt, (lrecoPt - lmcPt)/ lmcPt ); f2dHistAsMCResRXiPlus ->Fill( lmcTransvRadius, (lrecoTransvRadius - lmcTransvRadius)/ lmcTransvRadius ); f2dHistAsMCResPhiXiPlus ->Fill( lmcPt, lDeltaPhiMcReco ); f2dHistAsMCPtAntiProtonVsPtXiPlus ->Fill( lmcPtBaryon, lmcPt ); } else if( lChargeXi < 0 && lAssoOmegaMinus){ fHistAsMCMassOmegaMinus ->Fill( lInvMassOmegaMinus ); if(lIsBachelorKaon) f2dHistAsMCandCombPIDGenPtVsGenYOmegaMinus->Fill( lmcPt, lmcRapCasc ); f2dHistAsMCGenPtVsGenYOmegaMinus ->Fill( lmcPt, lmcRapCasc ); fHistAsMCGenEtaOmegaMinus ->Fill( lmcEta ); f2dHistAsMCResPtOmegaMinus ->Fill( lmcPt, (lrecoPt - lmcPt)/ lmcPt ); f2dHistAsMCResROmegaMinus ->Fill( lmcTransvRadius, (lrecoTransvRadius - lmcTransvRadius)/ lmcTransvRadius ); f2dHistAsMCResPhiOmegaMinus ->Fill( lmcPt, lDeltaPhiMcReco ); f2dHistAsMCPtProtonVsPtOmegaMinus->Fill( lmcPtBaryon, lmcPt ); } else if( lChargeXi > 0 && lAssoOmegaPlus){ fHistAsMCMassOmegaPlus ->Fill( lInvMassOmegaPlus ); if(lIsBachelorKaon) f2dHistAsMCandCombPIDGenPtVsGenYOmegaPlus->Fill( lmcPt, lmcRapCasc ); f2dHistAsMCGenPtVsGenYOmegaPlus ->Fill( lmcPt, lmcRapCasc ); fHistAsMCGenEtaOmegaPlus ->Fill( lmcEta ); f2dHistAsMCResPtOmegaPlus ->Fill( lmcPt, (lrecoPt - lmcPt)/ lmcPt ); f2dHistAsMCResROmegaPlus ->Fill( lmcTransvRadius, (lrecoTransvRadius - lmcTransvRadius)/ lmcTransvRadius ); f2dHistAsMCResPhiOmegaPlus ->Fill( lmcPt, lDeltaPhiMcReco ); f2dHistAsMCPtAntiProtonVsPtOmegaPlus ->Fill( lmcPtBaryon, lmcPt ); } // - Step 6 : Containers = Cascade cuts + PID //------------- // Double_t lChi2Xi = -1. ; Double_t lDcaXiDaughters = -1. ; Double_t lDcaBachToPrimVertexXi = -1. ; Double_t lXiCosineOfPointingAngle = -1. ; Double_t lPosXi[3] = { -1000.0, -1000.0, -1000.0 }; Double_t lXiRadius = -1000. ; Double_t lInvMassLambdaAsCascDghter = 0.; Double_t lDcaV0DaughtersXi = -1.; // Double_t lV0Chi2Xi = -1. ; Double_t lV0CosineOfPointingAngleXi = -1.; Double_t lPosV0Xi[3] = { -1000. , -1000., -1000. }; // Position of VO coming from cascade Double_t lV0RadiusXi = -1000.; Double_t lDcaV0ToPrimVertexXi = -1.; Double_t lDcaPosToPrimVertexXi = -1.; Double_t lDcaNegToPrimVertexXi = -1.; //Int_t nTrackWithTPCrefitMultiplicity = 0; // 6.2 - Definition of the needed variables //lChi2Xi = xiESD->GetChi2Xi(); lDcaXiDaughters = xiESD->GetDcaXiDaughters(); lDcaBachToPrimVertexXi = TMath::Abs( bachTrackXi->GetD( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lMagneticField ) ); // NOTE : AliExternalTrackParam::GetD returns an algebraic value lXiCosineOfPointingAngle = xiESD->GetCascadeCosineOfPointingAngle( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lBestPrimaryVtxPos[2] ); // Take care : the best available vertex should be used (like in AliCascadeVertexer) xiESD->GetXYZcascade( lPosXi[0], lPosXi[1], lPosXi[2] ); lXiRadius = TMath::Sqrt( lPosXi[0]*lPosXi[0] + lPosXi[1]*lPosXi[1] ); lInvMassLambdaAsCascDghter = xiESD->GetEffMass(); // This value shouldn't change, whatever the working hyp. is : Xi-, Xi+, Omega-, Omega+ lDcaV0DaughtersXi = xiESD->GetDcaV0Daughters(); // lV0Chi2Xi = xiESD->GetChi2V0(); lV0CosineOfPointingAngleXi = xiESD->GetV0CosineOfPointingAngle( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lBestPrimaryVtxPos[2] ); xiESD->GetXYZ( lPosV0Xi[0], lPosV0Xi[1], lPosV0Xi[2] ); lV0RadiusXi = TMath::Sqrt( lPosV0Xi[0]*lPosV0Xi[0] + lPosV0Xi[1]*lPosV0Xi[1] ); lDcaV0ToPrimVertexXi = xiESD->GetD( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lBestPrimaryVtxPos[2] ); lDcaPosToPrimVertexXi = TMath::Abs( pTrackXi ->GetD( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lMagneticField ) ); lDcaNegToPrimVertexXi = TMath::Abs( nTrackXi ->GetD( lBestPrimaryVtxPos[0], lBestPrimaryVtxPos[1], lMagneticField ) ); //nTrackWithTPCrefitMultiplicity = DoESDTrackWithTPCrefitMultiplicity(lESDevent); // FIXME : variable which is not used anymore at the moment ... // -> keep it while the task is still under development. // 6.3 - Filling the AliCFContainer (optimisation of topological selections + systematics) Double_t lContainerCutVars[20] = {0.0}; lContainerCutVars[0] = lDcaXiDaughters; lContainerCutVars[1] = lDcaBachToPrimVertexXi; lContainerCutVars[2] = lXiCosineOfPointingAngle; lContainerCutVars[3] = lXiRadius; lContainerCutVars[4] = lInvMassLambdaAsCascDghter; lContainerCutVars[5] = lDcaV0DaughtersXi; lContainerCutVars[6] = lV0CosineOfPointingAngleXi; lContainerCutVars[7] = lV0RadiusXi; lContainerCutVars[8] = lDcaV0ToPrimVertexXi; lContainerCutVars[9] = lDcaPosToPrimVertexXi; lContainerCutVars[10] = lDcaNegToPrimVertexXi; lContainerCutVars[13] = lmcPt; lContainerCutVars[16] = lBestPrimaryVtxPos[2]; lContainerCutVars[17] = nTrackPrimaryMultiplicity; // FIXME : nTrackPrimaryMultiplicity not checked for AOD ... lContainerCutVars[18] = nITSandTPCtracksAndSPDtracklets; // FIXME : nITSandTPCtracksAndSPDtracklets is not available for AOD ... lContainerCutVars[19] = lBachTPCClusters; // FIXME : BachTPCClusters is not available for AOD ... // All cases should be covered below if( lChargeXi < 0 && lAssoXiMinus ) { lContainerCutVars[11] = lInvMassXiMinus; lContainerCutVars[12] = 1.63; lContainerCutVars[14] = lmcRapCasc; lContainerCutVars[15] = -1.; if( lIsBachelorPionForTPC && lIsPosProtonForTPC && lIsNegPionForTPC ) fCFContAsCascadeCuts->Fill(lContainerCutVars,0); // for Xi- } if( lChargeXi > 0 && lAssoXiPlus ){ lContainerCutVars[11] = lInvMassXiPlus; lContainerCutVars[12] = 1.26; lContainerCutVars[14] = lmcRapCasc; lContainerCutVars[15] = -1.; if( lIsBachelorPionForTPC && lIsNegProtonForTPC && lIsPosPionForTPC ) fCFContAsCascadeCuts->Fill(lContainerCutVars,1); // for Xi+ } if( lChargeXi < 0 && lAssoOmegaMinus ) { lContainerCutVars[11] = 1.63; lContainerCutVars[12] = lInvMassOmegaMinus; lContainerCutVars[14] = -1.; lContainerCutVars[15] = lmcRapCasc; if( lIsBachelorKaonForTPC && lIsPosProtonForTPC && lIsNegPionForTPC && (TMath::Abs( lInvMassXiMinus-1.3217 ) > 0.008) ) fCFContAsCascadeCuts->Fill(lContainerCutVars,2); // for Omega- } if( lChargeXi > 0 && lAssoOmegaPlus ){ lContainerCutVars[11] = 1.26; lContainerCutVars[12] = lInvMassOmegaPlus; lContainerCutVars[14] = -1.; lContainerCutVars[15] = lmcRapCasc; if( lIsBachelorKaonForTPC && lIsNegProtonForTPC && lIsPosPionForTPC && (TMath::Abs( lInvMassXiPlus-1.3217 ) > 0.008) ) fCFContAsCascadeCuts->Fill(lContainerCutVars,3); // for Omega+ } // 6.4 - Filling the AliCFContainers related to PID Double_t lContainerPIDVars[4] = {0.0}; // Xi Minus if( lChargeXi < 0 && lAssoXiMinus ) { lContainerPIDVars[0] = lmcPt ; lContainerPIDVars[1] = lInvMassXiMinus ; lContainerPIDVars[2] = lmcRapCasc ; lContainerPIDVars[3] = nTrackPrimaryMultiplicity ; // FIXME : nTrackPrimaryMultiplicity is not checked for AOD ... // No PID fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 0); // No PID // TPC PID if( lIsBachelorPionForTPC ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 1); // TPC PID / 4-#sigma cut on Bachelor track if( lIsBachelorPionForTPC && lIsPosProtonForTPC ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 2); // TPC PID / 4-#sigma cut on Bachelor+Baryon tracks if( lIsBachelorPionForTPC && lIsPosProtonForTPC && lIsNegPionForTPC ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 3); // TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks // Combined PID if( lIsBachelorPion ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 4); // Comb. PID / Bachelor if( lIsBachelorPion && lIsPosInXiProton ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 5); // Comb. PID / Bachelor+Baryon if(lIsBachelorPion && lIsPosInXiProton && lIsNegInXiPion ) fCFContCascadePIDAsXiMinus->Fill(lContainerPIDVars, 6); // Comb. PID / Bachelor+Baryon+Meson } lContainerPIDVars[0] = 0.; lContainerPIDVars[1] = 0.; lContainerPIDVars[2] = 0.; lContainerPIDVars[3] = 0.; // Xi Plus if( lChargeXi > 0 && lAssoXiPlus ) { lContainerPIDVars[0] = lmcPt ; lContainerPIDVars[1] = lInvMassXiPlus ; lContainerPIDVars[2] = lmcRapCasc ; lContainerPIDVars[3] = nTrackPrimaryMultiplicity ; // FIXME : nTrackPrimaryMultiplicity is not checked for AOD ... // No PID fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 0); // No PID // TPC PID if( lIsBachelorPionForTPC ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 1); // TPC PID / 4-#sigma cut on Bachelor track if( lIsBachelorPionForTPC && lIsNegProtonForTPC ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 2); // TPC PID / 4-#sigma cut on Bachelor+Baryon tracks if( lIsBachelorPionForTPC && lIsNegProtonForTPC && lIsPosPionForTPC ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 3); // TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks // Combined PID if( lIsBachelorPion ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 4); // Comb. PID / Bachelor if( lIsBachelorPion && lIsNegInXiProton ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 5); // Comb. PID / Bachelor+Baryon if(lIsBachelorPion && lIsNegInXiProton && lIsPosInXiPion ) fCFContCascadePIDAsXiPlus->Fill(lContainerPIDVars, 6); // Comb. PID / Bachelor+Baryon+Meson } lContainerPIDVars[0] = 0.; lContainerPIDVars[1] = 0.; lContainerPIDVars[2] = 0.; lContainerPIDVars[3] = 0.; // Omega Minus if( lChargeXi < 0 && lAssoOmegaMinus ) { lContainerPIDVars[0] = lmcPt ; lContainerPIDVars[1] = lInvMassOmegaMinus ; lContainerPIDVars[2] = lmcRapCasc ; lContainerPIDVars[3] = nTrackPrimaryMultiplicity ; // FIXME : nTrackPrimaryMultiplicity is not checked for AOD ... // No PID fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 0); // No PID // TPC PID if( lIsBachelorKaonForTPC ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 1); // TPC PID / 4-#sigma cut on Bachelor track if( lIsBachelorKaonForTPC && lIsPosProtonForTPC ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 2); // TPC PID / 4-#sigma cut on Bachelor+Baryon tracks if( lIsBachelorKaonForTPC && lIsPosProtonForTPC && lIsNegPionForTPC ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 3); // TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks // Combined PID if( lIsBachelorKaon ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 4); // Comb. PID / Bachelor if( lIsBachelorKaon && lIsPosInOmegaProton ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 5); // Comb. PID / Bachelor+Baryon if(lIsBachelorKaon && lIsPosInOmegaProton && lIsNegInOmegaPion ) fCFContCascadePIDAsOmegaMinus->Fill(lContainerPIDVars, 6); // Comb. PID / Bachelor+Baryon+Meson } lContainerPIDVars[0] = 0.; lContainerPIDVars[1] = 0.; lContainerPIDVars[2] = 0.; lContainerPIDVars[3] = 0.; // Omega Plus if( lChargeXi > 0 && lAssoOmegaPlus) { lContainerPIDVars[0] = lmcPt ; lContainerPIDVars[1] = lInvMassOmegaPlus ; lContainerPIDVars[2] = lmcRapCasc ; lContainerPIDVars[3] = nTrackPrimaryMultiplicity ; // FIXME : nTrackPrimaryMultiplicity is not checked for AOD ... // No PID fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 0); // No PID // TPC PID if( lIsBachelorKaonForTPC ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 1); // TPC PID / 4-#sigma cut on Bachelor track if( lIsBachelorKaonForTPC && lIsNegProtonForTPC ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 2); // TPC PID / 4-#sigma cut on Bachelor+Baryon tracks if( lIsBachelorKaonForTPC && lIsNegProtonForTPC && lIsPosPionForTPC ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 3); // TPC PID / 4-#sigma cut on Bachelor+Baryon+Meson tracks // Combined PID if( lIsBachelorKaon ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 4); // Comb. PID / Bachelor if( lIsBachelorKaon && lIsNegInOmegaProton ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 5); // Comb. PID / Bachelor+Baryon if(lIsBachelorKaon && lIsNegInOmegaProton && lIsPosInOmegaPion ) fCFContCascadePIDAsOmegaPlus->Fill(lContainerPIDVars, 6); // Comb. PID / Bachelor+Baryon+Meson } }// End of loop over reconstructed cascades // Post output data. PostData(1, fListHistCascade); } Int_t AliAnalysisTaskCheckPerformanceCascade::DoESDTrackWithTPCrefitMultiplicity(const AliESDEvent *lESDevent) { // Checking the number of tracks with TPCrefit for each event // Needed for a rough assessment of the event multiplicity Int_t nTrackWithTPCrefitMultiplicity = 0; for(Int_t iTrackIdx = 0; iTrackIdx < (InputEvent())->GetNumberOfTracks(); iTrackIdx++){ AliESDtrack *esdTrack = 0x0; esdTrack = lESDevent->GetTrack( iTrackIdx ); if (!esdTrack) { AliWarning("Pb / Could not retrieve one track within the track loop for TPCrefit check ..."); continue; } ULong_t lTrackStatus = esdTrack->GetStatus(); if ((lTrackStatus&AliESDtrack::kTPCrefit) == 0) continue; else nTrackWithTPCrefitMultiplicity++; // FIXME : // The goal here is to get a better assessment of the event multiplicity. // (InputEvent())->GetNumberOfTracks() takes into account ITS std alone tracks + global tracks // This may introduce a bias. Hence the number of TPC refit tracks. // Note : the event multiplicity = analysis on its own... See Jacek's or Jan Fiete's analysis on dN/d(pt) and dN/d(eta) }// end loop over all event tracks return nTrackWithTPCrefitMultiplicity; } //________________________________________________________________________ void AliAnalysisTaskCheckPerformanceCascade::Terminate(Option_t *) { // Draw result to the screen // Called once at the end of the query TList *cRetrievedList = 0x0; cRetrievedList = (TList*)GetOutputData(1); if(!cRetrievedList){ Printf("ERROR - AliAnalysisTaskCheckPerformanceCascade : ouput data container list not available\n"); return; } fHistMCTrackMultiplicity = dynamic_cast ( cRetrievedList->FindObject("fHistMCTrackMultiplicity") ); if (!fHistMCTrackMultiplicity) { Printf("ERROR - AliAnalysisTaskCheckPerformanceCascade : fHistMCTrackMultiplicity not available"); return; } TCanvas *canCheckPerformanceCascade = new TCanvas("AliAnalysisTaskCheckPerformanceCascade","Multiplicity",10,10,510,510); canCheckPerformanceCascade->cd(1)->SetLogy(); fHistMCTrackMultiplicity->SetMarkerStyle(22); fHistMCTrackMultiplicity->DrawCopy("E"); }