//----------------------------------------------------------------- // AliAnalysisTaskV0ForRAA class // This task is for analysing Lambda and K0s pt spectra in PbPb and // pp as well as with MC. The flag for pp and MC must be set // accordingly, default is PbPb data. // It works with ESD files only. //----------------------------------------------------------------- #ifndef ALIANALYSISTASKV0FORRAA_H #define ALIANALYSISTASKV0FORRAA_H class TH1F; class TH2F; class Tlist; class AliESDv0; class AliESDtrack; class AliESDtrackCuts; class AliESDpid; class AliESDEvent; class AliMCEvent; class AliPIDResponse; #ifndef ALIANALYSISTASKSE_H #include "AliAnalysisTaskSE.h" #endif class AliAnalysisTaskV0ForRAA : public AliAnalysisTaskSE { public: AliAnalysisTaskV0ForRAA(const char *name="AliAnalysisTaskV0ForRAA"); virtual ~AliAnalysisTaskV0ForRAA(); virtual void UserCreateOutputObjects(); virtual void UserExec(Option_t *option); virtual void Terminate(Option_t *); //-- MC truth/reco --// void SetMCMode(Bool_t mcmode) {fMCMode = mcmode; if(fMCMode) Printf("AliAnalysisTaskV0ForRAA::running mc mode: histos of MC reco");} void SetMCTruthMode(Bool_t mcmode) {fMCTruthMode = mcmode; if(fMCTruthMode) Printf("AliAnalysisTaskV0ForRAA::running mc mode: histos of MC truth");} void SelectInjected(Bool_t injected) {fSelectInjected = injected; if(fSelectInjected) Printf("AliAnalysisTaskV0ForRAA::only injected MC particles");} //-- Centrality --// // use centrality - if yes, which one void SetUseCentrality(Int_t cent) {fUseCentrality = cent; Printf("AliAnalysisTaskV0ForRAA::centrality selected for detector %i (0=off, 1=VZERO, 2=SPD)",cent);} // set range void SetUseCentralityRange(Int_t range) {fUseCentralityRange = range;if(fUseCentrality) Printf("AliAnalysisTaskV0::centrality range %i",fUseCentralityRange);} // centrality bin to be used void SetUseCentralityBin(Int_t bin) {fUseCentralityBin = bin; if(fUseCentrality) Printf("AliAnalysisTaskV0ForRAA::centrality selected for bin %i",fUseCentralityBin); } //-- event cuts --// void SetPrimVertexZCut(Double_t vtxcut,Bool_t status) {fVertexZCut = vtxcut;fVtxStatus = status; Printf("AliAnalysisTaskV0ForRAA::SetPrimVertexZCut %3.2f",vtxcut);} void SetAnapp(Bool_t anapp) {fAnapp = anapp ;if(fAnapp) Printf("AliAnalysisTaskV0ForRAA::analysing pp!!!");} void SelectWithSDD(Bool_t sdd) {fSelSDD =sdd; if(sdd) Printf("AliAnalysisTaskV0ForRAA:: only events with SDD selected!");} //-- track cuts --// void SetESDTrackCuts(AliESDtrackCuts *esdcuts) {fESDTrackCuts = esdcuts;Printf("AliAnalysisTaskV0ForRAA::AliESDtrackCuts for V0s set");} void SetESDTrackCutsCharged(AliESDtrackCuts *esdcuts) {fESDTrackCutsCharged = esdcuts;Printf("AliAnalysisTaskV0ForRAA::AliESDtrackCuts for charged particles set");} void SetUseOnthefly(Bool_t useonthefly) {fOntheFly = useonthefly; if(!fOntheFly) Printf("AliAnalysisTaskV0ForRAA::offline V0s");} void SetUsePID(Bool_t usepid,Double_t nsigma=100.0,Double_t pcut=100.0) {fUsePID = usepid;fNSigma = nsigma;fPPIDcut = pcut; if(fUsePID) Printf("AliAnalysisTaskV0ForRAA::PID! of %4.2f for p: %4.2f",fNSigma,pcut);} void SetCutMoreNclsThanRows(Bool_t cut) {fMoreNclsThanRows=cut; if(cut) Printf("AliAnalysisTaskV0ForRAA::cut on more ncls than crossed rows");} void SetCutMoreNclsThanFindable(Bool_t cut) {fMoreNclsThanFindable=cut; if(cut) Printf("AliAnalysisTaskV0ForRAA::cut on more ncls than ncls findable");} void SetMaxChi2PerITSCluster(Double_t chi2) {fChi2PerClusterITS = chi2; Printf("AliAnalysisTaskV0ForRAA::max chi2 per ITS cluster %3.2f",chi2);} void SetRapidityCutMother(Bool_t cut,Double_t val=5.0) {fRapCutV0 = cut; fRap = val; if(cut) Printf("AliAnalysisTaskV0ForRAA::cut on mother rapidity %2.2f",val);} void SetMinPt(Double_t minPt=0.0) {fMinPt = minPt; if(minPt>0.0) Printf("AliAnalysisTaskV0ForRAA::cut on min pt %2.2f",minPt);} /* void SetPtShift(const Double_t shiftVal) { //user defined shift in charge/pt if(shiftVal) { fShift=kTRUE; fDeltaInvP = shiftVal; Printf("AliAnalysisTaskV0::WARNING!!!!!!!!!!!!!! pt shift introduced!");} } */ void SetDCAV0ToVertexK0(Double_t dcaTovertex) {fDCAToVertexK0 = dcaTovertex; Printf("AliAnalysisTaskV0ForRAA::dca to vertex K0s %2.3f",dcaTovertex);} void SetDCAV0ToVertexL(Double_t dcaTovertex) {fDCAToVertexL = dcaTovertex; Printf("AliAnalysisTaskV0ForRAA::dca to vertex L/AL %2.3f",dcaTovertex);} void SetDCADaughtersL(Double_t dcaDaughters) {fDCADaughtersL = dcaDaughters; Printf("AliAnalysisTaskV0:ForRAA:dca daughters L %2.3f",dcaDaughters);} void SetDCADaughtersAL(Double_t dcaDaughters) {fDCADaughtersAL = dcaDaughters; Printf("AliAnalysisTaskV0ForRAA::dca daughters AL %2.3f",dcaDaughters);} void SetDCADaughtersK0(Double_t dcaDaughters) {fDCADaughtersK0 = dcaDaughters; Printf("AliAnalysisTaskV0ForRAA::dca daughters K0s %2.3f",dcaDaughters);} void SetDCADaughtersLargeToVertex(Double_t dcaDaughtersVtx) {fDCADaughtersToVtxLarge = dcaDaughtersVtx; Printf("AliAnalysisTaskV0ForRAA::dca daughters to vertex large %2.3f",dcaDaughtersVtx);} void SetDCADaughtersSmallToVertex(Double_t dcaDaughtersVtx) {fDCADaughtersToVtxSmall = dcaDaughtersVtx; Printf("AliAnalysisTaskV0ForRAA::dca daughters to vertex small %2.3f",dcaDaughtersVtx);} void SetDecayRadiusXYMinMax(Double_t decMin,Double_t decMax){fDecayRadXYMin = decMin;fDecayRadXYMax = decMax; Printf("AliAnalysisTaskV0ForRAA::min xy decay radius %2.3f max %2.3f",decMin,decMax);} void SetCosOfPointingAngleL(Double_t pointAng,Double_t ptMaxCut=100.0) {fCosPointAngL=pointAng;fCPAPtCutL = ptMaxCut;Printf("AliAnalysisTaskV0ForRAA::SetCosOfPointingAngleL %1.5f and pt max %2.2f",pointAng,ptMaxCut);} void SetCosOfPointingAngleK(Double_t pointAng,Double_t ptMaxCut=100.0) {fCosPointAngK=pointAng;fCPAPtCutK0 = ptMaxCut; Printf("AliAnalysisTaskV0ForRAA::SetCosOfPointingAngleK %1.5f and pt max %2.2f",pointAng,ptMaxCut);} void SetOpeningAngleCut(Double_t opang, Double_t maxpt) {fOpengAngleDaughters=opang; fOpAngPtCut=maxpt,Printf("AliAnalysisTaskV0::cut on opening angle %1.3f up to pt= %2.2f",opang,maxpt);} void SetMaxDecayLength(Double_t decLength) {fDecayLengthMax = decLength; Printf("AliAnalysisTaskV0ForRAA::SetMaxDecayLength %2.3f",decLength);} void SetMinDecayLength(Double_t decLength) {fDecayLengthMin = decLength; Printf("AliAnalysisTaskV0ForRAA::SetMinDecayLength %2.3f",decLength);} void SetDCAXK0(Double_t dcaXK) {fDCAXK = dcaXK; Printf("AliAnalysisTaskV0ForRAA::SetDCAXK0 %2.3f",dcaXK);} void SetDCAYK0(Double_t dcaYK) {fDCAYK = dcaYK; Printf("AliAnalysisTaskV0ForRAA::SetDCAYK0 %2.3f",dcaYK);} void SetDCAXLambda(Double_t dcaXL) {fDCAXL = dcaXL; Printf("AliAnalysisTaskV0ForRAA::SetDCAXLambda %2.3f",dcaXL);} void SetDCAYLambda(Double_t dcaYL) {fDCAXL = dcaYL; Printf("AliAnalysisTaskV0ForRAA::SetDCAYLambda %2.3f",dcaYL);} void SetDCAZ(Double_t dcaZ) {fDCAZ = dcaZ; Printf("AliAnalysisTaskV0ForRAA::SetDCAZ %2.3f",dcaZ);} void SetChi2CutKf(Double_t chi2) {fChiCutKf = chi2; Printf("AliAnalysisTaskV0ForRAA::SetChi2CutKf %3.2f",chi2);} void SetArmenterosCutAlpha(Double_t alfaMin) {fAlfaCut=alfaMin;Printf("AliAnalysisTaskV0ForRAA::SetArmenterosCut a=%1.3f",alfaMin);} void SetArmenterosCutQt(Double_t qtmax,Bool_t k0s,Bool_t la){fQtCut = qtmax; fArmCutK0=k0s;fArmCutL=la;Printf("AliAnalysisTaskV0ForRAA::SetArmenterosCut qt=%1.3f K0s? %i La? %i",qtmax,k0s,la);} void SetCtauCut(Double_t ctK0s, Double_t ctL,Double_t ptK0=100.0,Double_t ptL=100.0) {fCtauK0s = ctK0s*2.6842; fCtauL = ctL*7.89;fCtauPtCutK0=ptK0; fCtauPtCutL=ptL; Printf("AliAnalysisTaskV0ForRAA::SetCtauCut ctK=%2.2f, ctL = %2.2f for ptK= %5.2f ptL=%5.2f",ctK0s,ctL,ptK0,ptL);} void SetDoEtaOfMCDaughtersCut(Bool_t doCut,Double_t eta=5.0){fEtaCutMCDaughters =doCut; fEtaCutMCDaughtersVal=eta; Printf("AliAnalysisTaskV0ForRAA::eta cut on V0 (MC truth ? %i) daughters %1.3f !",doCut,eta);} private: //----------------------------functions --------------------------------------------// void Process(); // process event void V0RecoLoop(Int_t id0,Int_t id1,Int_t isSecd,Int_t what,Double_t ptV0MC,Int_t pdgMother,Double_t ptXiMother); // loop over reconstructed V0 (data or MC) void V0MCTruthLoop(); // loop over MC truth V0s Int_t CalculateCentralityBin(); // get the centrality bin from multiplicity Bool_t GetMCTruthPartner(AliESDtrack *pos,AliESDtrack *neg,Int_t id0,Int_t id1); // find MC truth partner for reconstructed track //----------------------------- objects ----------------------------------------------// //event AliESDEvent *fESD; //ESD event object AliMCEvent *fMCev; //MC event object //PID and track cuts AliPIDResponse *fESDpid; // pid object AliESDtrackCuts *fESDTrackCuts; //esd track cuts for daughters AliESDtrackCuts *fESDTrackCutsCharged;//esd track cuts for all charged particles TList *fOutputContainer; // output data container //----------------------------histograms --------------------------------------------// //-------------------event histos -------------------// TH1F *fHistITSLayerHits; // pp 2.76 TeV analysis: check hist on div. ITS layer TH1F *fHistOneHitWithSDD; // pp 2.76 TeV analysis: check hist on at least one ITS layer TH1F *fHistNEvents; // count number of events for each event cut TH2F *fHistPrimVtxZESDVSNContributors; // count contributors to ESD vertex TH2F *fHistPrimVtxZESDTPCVSNContributors; // count contributors to TPC vertex TH2F *fHistPrimVtxZESDSPDVSNContributors; // count contributors to SPD vertex TH2F *fHistPrimVtxZESDVSNContributorsMC; // count contributors to ESD vertex MC TH2F *fHistPrimVtxZESDTPCVSNContributorsMC; // count contributors to TPC vertex MC TH2F *fHistPrimVtxZESDSPDVSNContributorsMC; // count contributors to SPD vertex MC TH1F *fHistPrimVtxZESD; // primary ESD vertex position z after cuts and processing TH1F *fHistPrimVtxZESDTPC; // primary TPC vertex position z after cuts and processing TH1F *fHistPrimVtxZESDSPD; // primary SPD vertex position z after cuts and processing TH1F *fHistESDVertexZ; // primary TPC vertex position z before cuts TH1F *fHistMCVertexZ; // primary MC vertex position z TH1F *fHistMuliplicity; // number of particles from centrality selection TH1F *fHistMuliplicityRaw; // number of particles from centrality selection before processing TH1F *fHistMultiplicityPrimary; // number of charged particles TH1F *fHistNPrim; // number of contributors to the prim vertex //------------------------ single V0 histos --------------------------// TH1F *fHistPiPiPDGCode; // PDG code of K0 mothers TH1F *fHistPiPPDGCode; // PDG code of Lambda mothers TH1F *fHistPiAPPDGCode; // PDG code of Lambda mothers TH2F *fHistPiPCosPointAngXiVsPt; // cosine of pointing angle of xis vs pt TH2F *fHistPiAPCosPointAngXiVsPt; // cosine of pointing angle of xis vs pt //--------------------- V0 histos ------------------------------------// TH2F *fHistV0RadiusZ[2]; // V0 decay radius z TH2F *fHistV0RadiusZVSPt[2]; // V0 decay radius z vs pt TH2F *fHistV0RadiusXY[2]; // V0 decay radius x vs y TH2F *fHistV0RadiusXYVSY[2]; // V0 decay radius xy vs rapidity TH2F *fHistArmenteros[2]; // armenteros //-- K0 --// TH1F *fHistPiPiMass[2]; // pi+pi- InvMass spectrum TH2F *fHistPiPiPtVSY[2]; // pi+pi- InvMass spectrum vs rapidity TH2F *fHistPiPiMassVSPt[2]; // pi+pi- InvMass spectrum vs pt TH2F *fHistPiPiMassVSPtMCTruth[2]; // pi+pi- InvMass spectrum vs pt MC truth // TH2F *fHistPiPiMassVSAlpha[2]; // pi+pi- InvMass spectrum vs armenteros alpha TH2F *fHistPiPiRadiusXY[2]; // pi+pi- opening angle vs mass TH2F *fHistPiPiCosPointAng[2]; // pi+pi- cosine of pointing angle vs pt or dca to vertex TH2F *fHistPiPiDCADaughterPosToPrimVtxVSMass[2];// dca of pos. K0s daughter to prim vtx vs mass TH2F *fHistPiPiDecayLengthVsPt[2]; // pi+pi- decay lenght vs pt TH2F *fHistPiPiDecayLengthVsMass[2]; // pi+pi- decay lenght vs pt //TH2F *fHistPiPiMassVSPtK0L[2]; // K0L InvMass vs pt distribution TH2F *fHistPiPiDCADaughters[2]; // pi+pi- dca between daughters TH2F *fHistPiPiPtDaughters[2]; // pi+pi- daughters pt pos vs pt neg TH2F *fHistPiPiDCAVSMass[2]; // pi+pi- dca to prim vtx vs mass TH1F *fHistPiPiMonitorCuts[2]; // pi+pi- cut monitor //-- lambda --// TH1F *fHistPiPMass[2]; // p+pi- InvMass spectrum TH2F *fHistPiPPtVSY[2]; // p+pi- InvMass spectrum vs rapidity TH2F *fHistPiPMassVSPt[2]; // p+pi- InvMass spectrum vs pt TH2F *fHistPiPMassVSPtMCTruth[2]; // p+pi- InvMass spectrum vs pt MC truth TH2F *fHistPiPRadiusXY[2]; // p+pi- opening angle vs mass TH2F *fHistPiPCosPointAng[2]; // p+pi- cosine of pointing angle vs pt or dca to vertex TH2F *fHistPiPDCADaughterPosToPrimVtxVSMass[2];// dca of pos. Lambda daughter to prim vtx vs mass TH2F *fHistPiPDecayLengthVsPt[2]; // p+pi- decay lenght vs pt TH2F *fHistPiPDecayLengthVsMass[2]; // p+pi- decay lenght vs pt TH2F *fHistPiPDCADaughters[2]; // p+pi- dca between daughters TH2F *fHistPiPPtDaughters[2]; // p+pi- daughters pt pos vs pt neg TH2F *fHistPiPDCAVSMass[2]; // p+pi- dca to prim vtx vs mass TH1F *fHistPiPMonitorCuts[2]; // p+pi- cut monitor TH2F *fHistPiPMassVSPtSecSigma[2]; // InvMass distribution vs pt of secondary lambdas from sigma truth(0) reco(1) TH2F *fHistPiPMassVSPtSecXi[2]; // InvMass distribution vs pt of secondary lambdas from xi MC truth(0) reco(1) TH2F *fHistPiPMassVSYSecXi[2]; // InvMass distribution vs rapidity of secondary lambdas from xi MC truth(0) reco(1) TH2F *fHistPiPXi0PtVSLambdaPt[2] ; // pt of xi0 vs pt lambda truth(0) reco(1) TH2F *fHistPiPXiMinusPtVSLambdaPt[2]; // pt of ximinus vs pt lambda truth(0) reco(1) //-- antilambda --// TH1F *fHistPiAPMass[2]; // pi+p- InvMass spectrum TH2F *fHistPiAPPtVSY[2]; // pi+p- InvMass spectrum vs rapidity TH2F *fHistPiAPMassVSPt[2]; // pi+p- InvMass spectrum vs pt TH2F *fHistPiAPMassVSPtMCTruth[2]; // pi+p- InvMass spectrum vs pt MC Truth TH2F *fHistPiAPRadiusXY[2]; // pi+p- opening angle vs mass TH2F *fHistPiAPCosPointAng[2]; // pi+p- cosine of pointing angle vs pt or dca to vertex TH2F *fHistPiAPDCADaughterPosToPrimVtxVSMass[2];// dca of pos. Lambda daughter to prim vtx vs mass TH2F *fHistPiAPDecayLengthVsPt[2]; // pi+p- decay lenght vs pt TH2F *fHistPiAPDecayLengthVsMass[2]; // pi+p- decay lenght vs pt TH2F *fHistPiAPDCADaughters[2]; // pi+p- dca between daughters TH2F *fHistPiAPPtDaughters[2]; // pi+p- daughters pt pos vs pt neg TH2F *fHistPiAPDCAVSMass[2]; // pi+p- dca to prim vtx vs mass TH1F *fHistPiAPMonitorCuts[2]; // pi+p- cut monitor TH2F *fHistPiAPMassVSPtSecSigma[2]; // InvMass distribution vs pt of secondary alambdas from sigma truth(0) reco(1) TH2F *fHistPiAPMassVSPtSecXi[2]; // InvMass distribution vs pt of secondary alambdas from xi MC truth(0) reco(1) TH2F *fHistPiAPMassVSYSecXi[2]; // InvMass distribution vs rapidity of secondary alambdas from xi MC truth(0) reco(1) TH2F *fHistPiAPXi0PtVSLambdaPt[2] ; // pt of xi0 vs pt alambda truth(0) reco(1) TH2F *fHistPiAPXiMinusPtVSLambdaPt[2]; // pt of ximinus vs pt alambda truth(0) reco(1) //-- others --// //dEdx TH2F *fHistDedxSecProt[2]; // dedx from proton cadidates vs pt TH2F *fHistDedxSecAProt[2]; // dedx from antiproton candidates vs pt TH2F *fHistDedxSecPiMinus[2]; // dedx from pi minus candidates vs pt TH2F *fHistDedxSecPiPlus[2]; // dedx from pi plus candidates vs pt //clusters TH1F *fHistNclsITSPosK0[2]; // number of clusters from ITS of positive K0s daughters TH1F *fHistNclsITSNegK0[2]; // number of clusters from ITS of negative K0s daughters TH1F *fHistNclsTPCPosK0[2]; // number of clusters from TPC of positive K0s daughters TH1F *fHistNclsTPCNegK0[2]; // number of clusters from TPC of negative K0s daughters TH1F *fHistChi2PerNclsITSPosK0[2]; // chi^2 per number of clusters ITS of positive K0s daughters TH1F *fHistChi2PerNclsITSNegK0[2]; // chi^2 per number of clusters ITS of negative K0s daughters TH1F *fHistNclsITSPosL[2]; // number of clusters from ITS of positive lambda daughters TH1F *fHistNclsITSNegL[2]; // number of clusters from ITS of negative lambda daughters TH1F *fHistNclsTPCPosL[2]; // number of clusters from TPC of positive lambda daughters TH1F *fHistNclsTPCNegL[2]; // number of clusters from TPC of negative lambda daughters TH1F *fHistChi2PerNclsITSPosL[2]; // chi^2 per number of clusters ITS of positive lambda daughters TH1F *fHistChi2PerNclsITSNegL[2]; // chi^2 per number of clusters ITS of negative lambda daughters TH2F *fHistNclsITSPos[2]; // number of clusters from ITS of positive daughters vs pt dautghter TH2F *fHistNclsITSNeg[2]; // number of clusters from ITS of negative daughters vs pt dautghter TH2F *fHistNclsTPCPos[2]; // number of clusters from TPC of positive daughters vs number of finabale clutsters TH2F *fHistNclsTPCNeg[2]; // number of clusters from TPC of negative daughters vs number of finabale clutsters TH2F *fHistChi2PerNclsITSPos[2]; // chi^2 per number of clusters ITS of positive daughters vs pt of daughter TH2F *fHistChi2PerNclsITSNeg[2]; // chi^2 per number of clusters ITS of negative daughters vs pt of daughter TH2F *fHistNclsITS[2]; // number of clusters ITS pos vs neg daughters TH2F *fHistNclsTPC[2]; // number of clusters TPC neg daughters vs number of crossed rows TH2F *fHistNCRowsTPCPos[2]; // number of crossed rows TPC pos. vs pt of daughter TH2F *fHistNCRowsTPCNeg[2]; // number of crossed rows TPC neg. vs pt of daughter TH2F *fHistPiPiEtaDMC[2]; // eta of daughters vs pt K0s MC truth raw(0) after cuts(1) TH2F *fHistPiPEtaDMC[2]; // eta of daughters vs pt lambda MC truth raw(0) after cuts(1) TH2F *fHistPiPiEtaDReco[2]; // eta of daughters ESD track vs eta AliESDv0 or vs pt K0s raw(0) after cuts(1) TH2F *fHistPiPEtaDReco[2]; // eta of daughters ESD track vs eta AliESDv0 or vs pt (a)lambda raw(0) after cuts(1) /* //user shift TH1F *fHistUserPtShift;//monitor user defined charge/pt shift */ //---------------------------------- Variables--------------------------------------------// //--cut options --// //MC only Bool_t fMCMode; // run over MC general yes/no Bool_t fMCTruthMode; // MC truth selection yes/no Bool_t fSelectInjected; // for MC with injected signals, select only injected // Calculate centrality Int_t fUseCentrality; // use centrality (0=off(default),1=VZERO,2=SPD) Int_t fUseCentralityBin; // centrality bin to be used Int_t fUseCentralityRange; // use centrality (0=off(default),1=VZERO,2=SPD) //pp analysis Bool_t fAnapp; // flag for pp analysis Bool_t fSelSDD; // select pp events with SDD (for pp 2.76TeV LHC11a) //onthefly Bool_t fOntheFly; // true if onfly finder shall be used //vertex Double_t fVertexZCut; // z vertex cut value Bool_t fVtxStatus; // vertex cut on/off //PID Bool_t fUsePID; // use pid yes/no Double_t fNSigma; // set nsigma value Double_t fPPIDcut; // set max momentum for pid cut usage Bool_t fMoreNclsThanRows; // cut on ncls>ncrossed rows yes/no Bool_t fMoreNclsThanFindable; // cut on ncls>nfindable cls yes/no Double_t fChi2PerClusterITS; // cut on chi2 per ITS cluster //rapidity Bool_t fRapCutV0; // use rapidity cut for V0 yes/no Double_t fRap; // user defined value for rapidity cut //eta and pt Double_t fEtaCutMCDaughters; // eta cut for MC daughters on/off Double_t fEtaCutMCDaughtersVal; // eta cut value for MC daughters Double_t fMinPt; // pt min cut value //armenteros Double_t fAlfaCut; // set alpha armenteros cut value Double_t fQtCut; // set qt armenteros cut value Bool_t fArmCutK0; // set armenteros cut on/off for K0s Bool_t fArmCutL; // set armenteros cut on/off for Lambda //others Double_t fDCAToVertexK0; // dca of V0 to vertex cut value K0s Double_t fDCAToVertexL; // dca of V0 to vertex cut value L/AL Double_t fDCAXK; // dca in x of K0s to vertex cut value Double_t fDCAYK; // dca in y of K0s to vertex cut value Double_t fDCAXL; // dca in x of Lambda to vertex cut value Double_t fDCAYL; // dca in y of Lambda to vertex cut value Double_t fDCAZ; // dca in z of V0 to vertex cut value Double_t fDCADaughtersL; // dca between Lambda daughters cut value Double_t fDCADaughtersAL; // dca between ALambda daughters cut value Double_t fDCADaughtersK0; // dca between K0s daughters cut value Double_t fDCADaughtersToVtxLarge;// dca large between V0 daughters and vertex cut value Double_t fDCADaughtersToVtxSmall;// dca small between V0 daughters and vertex cut value Double_t fDecayRadXYMin; // minmal decay radius in x-y cut value Double_t fDecayRadXYMax; // maximal decay radius in x-y cut value Double_t fCosPointAngL; // cosine of pointing angle cut value for Lambda and ALambda Double_t fCosPointAngK; // cosine of pointing angle cut value for K0s Double_t fCPAPtCutK0; // pt max for cosine of pointing angle cut K0s Double_t fCPAPtCutL; // pt max for cosine of pointing angle cut Lambda Double_t fOpengAngleDaughters; // cut on opening angle between V0 daughters Double_t fOpAngPtCut; // max pt for using the opening angle between V0 daughters cut Double_t fDecayLengthMax; // maximal decay length in x-y-z cut value Double_t fDecayLengthMin; // minimal decay length in x-y-z cut value //ctau Double_t fCtauK0s; // multiple of ctau cut value for K0s Double_t fCtauL; // multiple of ctau cut value for Lambda Double_t fCtauPtCutK0; // pt max for ctau cut usage for K0s Double_t fCtauPtCutL; // pt max for ctau cut usage for Lambda //KF particle chi cut Double_t fChiCutKf; //cut value of chi2 of AliKFParticle /* // option for user defined charge/pt shift Bool_t fShift;// shift yes/no Double_t fDeltaInvP;//define shift value */ AliAnalysisTaskV0ForRAA(const AliAnalysisTaskV0ForRAA&); AliAnalysisTaskV0ForRAA&operator=(const AliAnalysisTaskV0ForRAA&); ClassDef(AliAnalysisTaskV0ForRAA, 0); }; #endif