/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.69 2003/01/14 10:50:19 alibrary Cleanup of STEER coding conventions Revision 1.68 2002/12/11 09:16:16 morsch Use GetJets to fill header. Revision 1.67 2002/12/09 15:24:09 morsch Same trigger routine can use Pycell or Pyclus. Revision 1.66 2002/12/09 08:22:56 morsch UA1 jet finder (Pycell) for software triggering added. Revision 1.65 2002/11/19 08:57:10 morsch Configuration of pt-kick added. Revision 1.64 2002/11/15 00:43:06 morsch Changes for kPyJets - initial and final state g-radiation + pt-kick default - trigger based on parton clusters (using pyclus) - trigger jets are stored in header. Revision 1.63 2002/10/14 14:55:35 hristov Merging the VirtualMC branch to the main development branch (HEAD) Revision 1.52.4.4 2002/10/10 16:40:08 hristov Updating VirtualMC to v3-09-02 Revision 1.62 2002/09/24 10:00:01 morsch CheckTrigger() corrected. Revision 1.61 2002/07/30 09:52:38 morsch Call SetGammaPhiRange() and SetGammaEtaRange() in the constructor. Revision 1.60 2002/07/19 14:49:03 morsch Typo corrected. Revision 1.59 2002/07/19 14:35:36 morsch Count total number of trials. Print mean Q, x1, x2. Revision 1.58 2002/07/17 10:04:09 morsch SetYHard method added. Revision 1.57 2002/05/22 13:22:53 morsch Process kPyMbNonDiffr added. Revision 1.56 2002/04/26 10:30:01 morsch Option kPyBeautyPbMNR added. (N. Carrer). Revision 1.55 2002/04/17 10:23:56 morsch Coding Rule violations corrected. Revision 1.54 2002/03/28 11:49:10 morsch Pass status code in SetTrack. Revision 1.53 2002/03/25 14:51:13 morsch New stack-fill and count options introduced (N. Carrer). Revision 1.51 2002/03/06 08:46:57 morsch - Loop until np-1 - delete dyn. alloc. arrays (N. Carrer) Revision 1.50 2002/03/03 13:48:50 morsch Option kPyCharmPbMNR added. Produce charm pairs in agreement with MNR NLO calculations (Nicola Carrer). Revision 1.49 2002/02/08 16:50:50 morsch Add name and title in constructor. Revision 1.48 2001/12/20 11:44:28 morsch Add kinematic bias for direct gamma production. Revision 1.47 2001/12/19 14:45:00 morsch Store number of trials in header. Revision 1.46 2001/12/19 10:36:19 morsch Add possibility if jet kinematic biasing. Revision 1.45 2001/11/28 08:06:52 morsch Use fMaxLifeTime parameter. Revision 1.44 2001/11/27 13:13:07 morsch Maximum lifetime for long-lived particles to be put on the stack is parameter. It can be set via SetMaximumLifetime(..). Revision 1.43 2001/10/21 18:35:56 hristov Several pointers were set to zero in the default constructors to avoid memory management problems Revision 1.42 2001/10/15 08:21:55 morsch Vertex truncation settings moved to AliGenMC. Revision 1.41 2001/10/08 08:45:42 morsch Possibility of vertex cut added. Revision 1.40 2001/09/25 11:30:23 morsch Pass event vertex to header. Revision 1.39 2001/07/27 17:09:36 morsch Use local SetTrack, KeepTrack and SetHighWaterMark methods to delegate either to local stack or to stack owned by AliRun. (Piotr Skowronski, A.M.) Revision 1.38 2001/07/13 10:58:54 morsch - Some coded moved to AliGenMC - Improved handling of secondary vertices. Revision 1.37 2001/06/28 11:17:28 morsch SetEventListRange setter added. Events in specified range are listed for debugging. (Yuri Kharlov) Revision 1.36 2001/03/30 07:05:49 morsch Final print-out in finish run. Write parton system for jet-production (preliminary solution). Revision 1.35 2001/03/09 13:03:40 morsch Process_t and Struc_Func_t moved to AliPythia.h Revision 1.34 2001/02/14 15:50:40 hristov The last particle in event marked using SetHighWaterMark Revision 1.33 2001/01/30 09:23:12 hristov Streamers removed (R.Brun) Revision 1.32 2001/01/26 19:55:51 hristov Major upgrade of AliRoot code Revision 1.31 2001/01/17 10:54:31 hristov Better protection against FPE Revision 1.30 2000/12/18 08:55:35 morsch Make AliPythia dependent generartors work with new scheme of random number generation Revision 1.29 2000/12/04 11:22:03 morsch Init of sRandom as in 1.15 Revision 1.28 2000/12/02 11:41:39 morsch Use SetRandom() to initialize random number generator in constructor. Revision 1.27 2000/11/30 20:29:02 morsch Initialise static variable sRandom in constructor: sRandom = fRandom; Revision 1.26 2000/11/30 07:12:50 alibrary Introducing new Rndm and QA classes Revision 1.25 2000/10/18 19:11:27 hristov Division by zero fixed Revision 1.24 2000/09/18 10:41:35 morsch Add possibility to use nuclear structure functions from PDF library V8. Revision 1.23 2000/09/14 14:05:40 morsch dito Revision 1.22 2000/09/14 14:02:22 morsch - Correct conversion from mm to cm when passing particle vertex to MC. - Correct handling of fForceDecay == all. Revision 1.21 2000/09/12 14:14:55 morsch Call fDecayer->ForceDecay() at the beginning of Generate(). Revision 1.20 2000/09/06 14:29:33 morsch Use AliPythia for event generation an AliDecayPythia for decays. Correct handling of "nodecay" option Revision 1.19 2000/07/11 18:24:56 fca Coding convention corrections + few minor bug fixes Revision 1.18 2000/06/30 12:40:34 morsch Pythia takes care of vertex smearing. Correct conversion from Pythia units (mm) to Geant units (cm). Revision 1.17 2000/06/09 20:34:07 morsch All coding rule violations except RS3 corrected Revision 1.16 2000/05/15 15:04:20 morsch The full event is written for fNtrack = -1 Coding rule violations corrected. Revision 1.15 2000/04/26 10:14:24 morsch Particles array has one entry more than pythia particle list. Upper bound of particle loop changed to np-1 (R. Guernane, AM) Revision 1.14 2000/04/05 08:36:13 morsch Check status code of particles in Pythia event to avoid double counting as partonic state and final state particle. Revision 1.13 1999/11/09 07:38:48 fca Changes for compatibility with version 2.23 of ROOT Revision 1.12 1999/11/03 17:43:20 fca New version from G.Martinez & A.Morsch Revision 1.11 1999/09/29 09:24:14 fca Introduction of the Copyright and cvs Log */ // // Generator using the TPythia interface (via AliPythia) // to generate pp collisions. // Using SetNuclei() also nuclear modifications to the structure functions // can be taken into account. This makes, of course, only sense for the // generation of the products of hard processes (heavy flavor, jets ...) // // andreas.morsch@cern.ch // #include #include #include #include #include #include "AliConst.h" #include "AliDecayerPythia.h" #include "AliGenPythia.h" #include "AliGenPythiaEventHeader.h" #include "AliPythia.h" #include "AliRun.h" ClassImp(AliGenPythia) AliGenPythia::AliGenPythia() :AliGenMC() { // Default Constructor fParticles = 0; fPythia = 0; fDecayer = new AliDecayerPythia(); SetEventListRange(); SetJetPhiRange(); SetJetEtaRange(); SetJetEtRange(); SetGammaPhiRange(); SetGammaEtaRange(); SetPtKick(); } AliGenPythia::AliGenPythia(Int_t npart) :AliGenMC(npart) { // default charm production at 5. 5 TeV // semimuonic decay // structure function GRVHO // fName = "Pythia"; fTitle= "Particle Generator using PYTHIA"; fXsection = 0.; fNucA1=0; fNucA2=0; SetProcess(); SetStrucFunc(); SetForceDecay(); SetPtHard(); SetYHard(); SetEnergyCMS(); fDecayer = new AliDecayerPythia(); // Set random number generator sRandom=fRandom; fFlavorSelect = 0; // Produced particles fParticles = new TClonesArray("TParticle",1000); fEventVertex.Set(3); SetEventListRange(); SetJetPhiRange(); SetJetEtaRange(); SetJetEtRange(); SetGammaPhiRange(); SetGammaEtaRange(); SetJetReconstructionMode(); SetPtKick(); // Options determining what to keep in the stack (Heavy flavour generation) fStackFillOpt = kFlavorSelection; // Keep particle with selected flavor fFeedDownOpt = kTRUE; // allow feed down from higher family // Fragmentation on/off fFragmentation = kTRUE; // Default counting mode fCountMode = kCountAll; } AliGenPythia::AliGenPythia(const AliGenPythia & Pythia) { // copy constructor Pythia.Copy(*this); } AliGenPythia::~AliGenPythia() { // Destructor } void AliGenPythia::SetEventListRange(Int_t eventFirst, Int_t eventLast) { // Set a range of event numbers, for which a table // of generated particle will be printed fDebugEventFirst = eventFirst; fDebugEventLast = eventLast; if (fDebugEventLast==-1) fDebugEventLast=fDebugEventFirst; } void AliGenPythia::Init() { // Initialisation SetMC(AliPythia::Instance()); fPythia=(AliPythia*) fgMCEvGen; // fParentWeight=1./Float_t(fNpart); // // Forward Paramters to the AliPythia object fDecayer->SetForceDecay(fForceDecay); fDecayer->Init(); fPythia->SetCKIN(3,fPtHardMin); fPythia->SetCKIN(4,fPtHardMax); fPythia->SetCKIN(7,fYHardMin); fPythia->SetCKIN(8,fYHardMax); if (fNucA1 > 0 && fNucA2 > 0) fPythia->SetNuclei(fNucA1, fNucA2); // Fragmentation? if (fFragmentation) { fPythia->SetMSTP(111,1); } else { fPythia->SetMSTP(111,0); } // initial state radiation fPythia->SetMSTP(61,fGinit); // final state radiation fPythia->SetMSTP(71,fGfinal); // pt - kick if (fPtKick > 0.) { fPythia->SetMSTP(91,1); fPythia->SetPARP(91,fPtKick); } else { fPythia->SetMSTP(91,0); } // fPythia->SetMSTJ(1,2); // fPythia->ProcInit(fProcess,fEnergyCMS,fStrucFunc); // Parent and Children Selection switch (fProcess) { case kPyCharm: case kPyCharmUnforced: case kPyCharmPbMNR: fParentSelect[0] = 411; fParentSelect[1] = 421; fParentSelect[2] = 431; fParentSelect[3] = 4122; fFlavorSelect = 4; break; case kPyD0PbMNR: fParentSelect[0] = 421; fFlavorSelect = 4; break; case kPyBeauty: case kPyBeautyPbMNR: fParentSelect[0]= 511; fParentSelect[1]= 521; fParentSelect[2]= 531; fParentSelect[3]= 5122; fParentSelect[4]= 5132; fParentSelect[5]= 5232; fParentSelect[6]= 5332; fFlavorSelect = 5; break; case kPyBeautyUnforced: fParentSelect[0] = 511; fParentSelect[1] = 521; fParentSelect[2] = 531; fParentSelect[3] = 5122; fParentSelect[4] = 5132; fParentSelect[5] = 5232; fParentSelect[6] = 5332; fFlavorSelect = 5; break; case kPyJpsiChi: case kPyJpsi: fParentSelect[0] = 443; break; case kPyMb: case kPyMbNonDiffr: case kPyJets: case kPyDirectGamma: break; } // // This counts the total number of calls to Pyevnt() per run. fTrialsRun = 0; fQ = 0.; fX1 = 0.; fX2 = 0.; fNev = 0 ; // AliGenMC::Init(); } void AliGenPythia::Generate() { // Generate one event fDecayer->ForceDecay(); Float_t polar[3] = {0,0,0}; Float_t origin[3] = {0,0,0}; Float_t p[3]; // converts from mm/c to s const Float_t kconv=0.001/2.999792458e8; // Int_t nt=0; Int_t jev=0; Int_t j, kf; fTrials=0; // Set collision vertex position if(fVertexSmear==kPerEvent) { fPythia->SetMSTP(151,1); for (j=0;j<3;j++) { fPythia->SetPARP(151+j, fOsigma[j]*10.); } } else if (fVertexSmear==kPerTrack) { fPythia->SetMSTP(151,0); } // event loop while(1) { fPythia->Pyevnt(); if (gAlice->GetEvNumber()>=fDebugEventFirst && gAlice->GetEvNumber()<=fDebugEventLast) fPythia->Pylist(1); fTrials++; fPythia->ImportParticles(fParticles,"All"); // // // Int_t i; Int_t np = fParticles->GetEntriesFast(); if (np == 0 ) continue; // Get event vertex and discard the event if the Z coord. is too big TParticle *iparticle = (TParticle *) fParticles->At(0); Float_t distz = iparticle->Vz()/10.; if(TMath::Abs(distz)>fCutVertexZ*fOsigma[2]) continue; // fEventVertex[0] = iparticle->Vx()/10.+fOrigin.At(0); fEventVertex[1] = iparticle->Vy()/10.+fOrigin.At(1); fEventVertex[2] = iparticle->Vz()/10.+fOrigin.At(2); // Int_t* pParent = new Int_t[np]; Int_t* pSelected = new Int_t[np]; Int_t* trackIt = new Int_t[np]; for (i=0; i< np; i++) { pParent[i] = -1; pSelected[i] = 0; trackIt[i] = 0; } Int_t nc = 0; // Total n. of selected particles Int_t nParents = 0; // Selected parents Int_t nTkbles = 0; // Trackable particles if (fProcess != kPyMb && fProcess != kPyJets && fProcess != kPyDirectGamma && fProcess != kPyMbNonDiffr) { for (i = 0; iAt(i); Int_t ks = iparticle->GetStatusCode(); kf = CheckPDGCode(iparticle->GetPdgCode()); // No initial state partons if (ks==21) continue; // // Heavy Flavor Selection // // quark ? kf = TMath::Abs(kf); Int_t kfl = kf; // meson ? if (kfl > 10) kfl/=100; // baryon if (kfl > 10) kfl/=10; if (kfl > 10) kfl/=10; Int_t ipa = iparticle->GetFirstMother()-1; Int_t kfMo = 0; if (ipa > -1) { TParticle * mother = (TParticle *) fParticles->At(ipa); kfMo = TMath::Abs(mother->GetPdgCode()); } // What to keep in Stack? Bool_t flavorOK = kFALSE; Bool_t selectOK = kFALSE; if (fFeedDownOpt) { if (kfl >= fFlavorSelect) flavorOK = kTRUE; } else { if (kfl > fFlavorSelect) { nc = -1; break; } if (kfl == fFlavorSelect) flavorOK = kTRUE; } switch (fStackFillOpt) { case kFlavorSelection: selectOK = kTRUE; break; case kParentSelection: if (ParentSelected(kf) || kf <= 10) selectOK = kTRUE; break; } if (flavorOK && selectOK) { // // Heavy flavor hadron or quark // // Kinematic seletion on final state heavy flavor mesons if (ParentSelected(kf) && !KinematicSelection(iparticle, 0)) { continue; } pSelected[i] = 1; if (ParentSelected(kf)) ++nParents; // Update parent count // printf("\n particle (HF) %d %d %d", i, pSelected[i], kf); } else { // Kinematic seletion on decay products if (fCutOnChild && ParentSelected(kfMo) && ChildSelected(kf) && !KinematicSelection(iparticle, 1)) { continue; } // // Decay products // Select if mother was selected and is not tracked if (pSelected[ipa] && !trackIt[ipa] && // mother will be tracked ? kfMo != 5 && // mother is b-quark, don't store fragments kfMo != 4 && // mother is c-quark, don't store fragments kf != 92) // don't store string { // // Semi-stable or de-selected: diselect decay products: // // if (pSelected[i] == -1 || fDecayer->GetLifetime(kf) > fMaxLifeTime) { Int_t ipF = iparticle->GetFirstDaughter(); Int_t ipL = iparticle->GetLastDaughter(); if (ipF > 0) for (j = ipF-1; j < ipL; j++) pSelected[j] = -1; } // printf("\n particle (decay) %d %d %d", i, pSelected[i], kf); pSelected[i] = (pSelected[i] == -1) ? 0 : 1; } } if (pSelected[i] == -1) pSelected[i] = 0; if (!pSelected[i]) continue; // Count quarks only if you did not include fragmentation if (fFragmentation && kf <= 10) continue; nc++; // Decision on tracking trackIt[i] = 0; // // Track final state particle if (ks == 1) trackIt[i] = 1; // Track semi-stable particles if ((ks ==1) || (fDecayer->GetLifetime(kf) > fMaxLifeTime)) trackIt[i] = 1; // Track particles selected by process if undecayed. if (fForceDecay == kNoDecay) { if (ParentSelected(kf)) trackIt[i] = 1; } else { if (ParentSelected(kf)) trackIt[i] = 0; } if (trackIt[i] == 1) ++nTkbles; // Update trackable counter // // } // particle selection loop if (nc > 0) { for (i = 0; iAt(i); kf = CheckPDGCode(iparticle->GetPdgCode()); Int_t ks = iparticle->GetStatusCode(); p[0] = iparticle->Px(); p[1] = iparticle->Py(); p[2] = iparticle->Pz(); origin[0] = fOrigin[0]+iparticle->Vx()/10.; origin[1] = fOrigin[1]+iparticle->Vy()/10.; origin[2] = fOrigin[2]+iparticle->Vz()/10.; Float_t tof = kconv*iparticle->T(); Int_t ipa = iparticle->GetFirstMother()-1; Int_t iparent = (ipa > -1) ? pParent[ipa] : -1; SetTrack(fTrackIt*trackIt[i] , iparent, kf, p, origin, polar, tof, kPPrimary, nt, 1., ks); pParent[i] = nt; KeepTrack(nt); } // SetTrack loop } } else { nc = GenerateMB(); } // mb ? if (pParent) delete[] pParent; if (pSelected) delete[] pSelected; if (trackIt) delete[] trackIt; if (nc > 0) { switch (fCountMode) { case kCountAll: // printf(" Count all \n"); jev += nc; break; case kCountParents: // printf(" Count parents \n"); jev += nParents; break; case kCountTrackables: // printf(" Count trackable \n"); jev += nTkbles; break; } if (jev >= fNpart || fNpart == -1) { fKineBias=Float_t(fNpart)/Float_t(fTrials); printf("\n Trials: %i %i %i\n",fTrials, fNpart, jev); fQ += fPythia->GetVINT(51); fX1 += fPythia->GetVINT(41); fX2 += fPythia->GetVINT(42); fTrialsRun += fTrials; fNev++; MakeHeader(); break; } } } // event loop SetHighWaterMark(nt); // adjust weight due to kinematic selection AdjustWeights(); // get cross-section fXsection=fPythia->GetPARI(1); } Int_t AliGenPythia::GenerateMB() { // // Min Bias selection and other global selections // Int_t i, kf, nt, iparent; Int_t nc = 0; Float_t p[3]; Float_t polar[3] = {0,0,0}; Float_t origin[3] = {0,0,0}; // converts from mm/c to s const Float_t kconv=0.001/2.999792458e8; Int_t np = fParticles->GetEntriesFast(); Int_t* pParent = new Int_t[np]; for (i=0; i< np; i++) pParent[i] = -1; if (fProcess == kPyJets || fProcess == kPyDirectGamma) { TParticle* jet1 = (TParticle *) fParticles->At(6); TParticle* jet2 = (TParticle *) fParticles->At(7); if (!CheckTrigger(jet1, jet2)) return 0; } for (i = 0; iAt(i); kf = CheckPDGCode(iparticle->GetPdgCode()); Int_t ks = iparticle->GetStatusCode(); Int_t km = iparticle->GetFirstMother(); if ((ks == 1 && kf!=0 && KinematicSelection(iparticle, 0)) || (ks != 1) || (fProcess == kPyJets && ks == 21 && km == 0 && i>1)) { nc++; if (ks == 1) trackIt = 1; Int_t ipa = iparticle->GetFirstMother()-1; iparent = (ipa > -1) ? pParent[ipa] : -1; // // store track information p[0] = iparticle->Px(); p[1] = iparticle->Py(); p[2] = iparticle->Pz(); origin[0] = fOrigin[0]+iparticle->Vx()/10.; origin[1] = fOrigin[1]+iparticle->Vy()/10.; origin[2] = fOrigin[2]+iparticle->Vz()/10.; Float_t tof=kconv*iparticle->T(); SetTrack(fTrackIt*trackIt, iparent, kf, p, origin, polar, tof, kPPrimary, nt, 1., ks); KeepTrack(nt); pParent[i] = nt; } // select particle } // particle loop if (pParent) delete[] pParent; printf("\n I've put %i particles on the stack \n",nc); return nc; } void AliGenPythia::FinishRun() { // Print x-section summary fPythia->Pystat(1); fQ /= fNev; fX1 /= fNev; fX2 /= fNev; printf("\nTotal number of Pyevnt() calls %d\n", fTrialsRun); printf("\nMean Q, x1, x2: %f %f %f\n", fQ, fX1, fX2); } void AliGenPythia::AdjustWeights() { // Adjust the weights after generation of all events // TParticle *part; Int_t ntrack=gAlice->GetNtrack(); for (Int_t i=0; iParticle(i); part->SetWeight(part->GetWeight()*fKineBias); } } void AliGenPythia::SetNuclei(Int_t a1, Int_t a2) { // Treat protons as inside nuclei with mass numbers a1 and a2 fNucA1 = a1; fNucA2 = a2; } void AliGenPythia::MakeHeader() { // Builds the event header, to be called after each event AliGenEventHeader* header = new AliGenPythiaEventHeader("Pythia"); // // Event type ((AliGenPythiaEventHeader*) header)->SetProcessType(fPythia->GetMSTI(1)); // // Number of trials ((AliGenPythiaEventHeader*) header)->SetTrials(fTrials); // // Event Vertex header->SetPrimaryVertex(fEventVertex); // // Jets that have triggered if (fProcess == kPyJets) { Int_t ntrig, njet; Float_t jets[4][10]; GetJets(njet, ntrig, jets); for (Int_t i = 0; i < ntrig; i++) { ((AliGenPythiaEventHeader*) header)->AddJet(jets[0][i], jets[1][i], jets[2][i], jets[3][i]); } } gAlice->SetGenEventHeader(header); } Bool_t AliGenPythia::CheckTrigger(TParticle* jet1, TParticle* jet2) { // Check the kinematic trigger condition // Double_t eta[2]; eta[0] = jet1->Eta(); eta[1] = jet2->Eta(); Double_t phi[2]; phi[0] = jet1->Phi(); phi[1] = jet2->Phi(); Int_t pdg[2]; pdg[0] = jet1->GetPdgCode(); pdg[1] = jet2->GetPdgCode(); Bool_t triggered = kFALSE; if (fProcess == kPyJets) { Int_t njets = 0; Int_t ntrig = 0; Float_t jets[4][10]; // // Use Pythia clustering on parton level to determine jet axis // GetJets(njets, ntrig, jets); if (ntrig) triggered = kTRUE; // } else { Int_t ij = 0; Int_t ig = 1; if (pdg[0] == kGamma) { ij = 1; ig = 0; } //Check eta range first... if ((eta[ij] < fEtaMaxJet && eta[ij] > fEtaMinJet) && (eta[ig] < fEtaMaxGamma && eta[ig] > fEtaMinGamma)) { //Eta is okay, now check phi range if ((phi[ij] < fPhiMaxJet && phi[ij] > fPhiMinJet) && (phi[ig] < fPhiMaxGamma && phi[ig] > fPhiMinGamma)) { triggered = kTRUE; } } } return triggered; } AliGenPythia& AliGenPythia::operator=(const AliGenPythia& rhs) { // Assignment operator return *this; } void AliGenPythia::LoadEvent() { // // Load event into Pythia Common Block // Int_t npart = (Int_t) (gAlice->TreeK())->GetEntries(); (fPythia->GetPyjets())->N = npart; for (Int_t part = 0; part < npart; part++) { TParticle *MPart = gAlice->Particle(part); Int_t kf = MPart->GetPdgCode(); Int_t ks = MPart->GetStatusCode(); Float_t px = MPart->Px(); Float_t py = MPart->Py(); Float_t pz = MPart->Pz(); Float_t e = MPart->Energy(); Float_t p = TMath::Sqrt(px * px + py * py + pz * pz); Float_t m = TMath::Sqrt(e * e - p * p); (fPythia->GetPyjets())->P[0][part] = px; (fPythia->GetPyjets())->P[1][part] = py; (fPythia->GetPyjets())->P[2][part] = pz; (fPythia->GetPyjets())->P[3][part] = e; (fPythia->GetPyjets())->P[4][part] = m; (fPythia->GetPyjets())->K[1][part] = kf; (fPythia->GetPyjets())->K[0][part] = ks; } } void AliGenPythia::RecJetsUA1(Float_t eCellMin, Float_t eCellSeed, Float_t eMin, Float_t rMax, Int_t& njets, Float_t jets [4][50]) { // // Calls the Pythia jet finding algorithm to find jets in the current event // // // Configure detector (EMCAL like) // fPythia->SetPARU(51,2.); fPythia->SetMSTU(51,Int_t(96 * 2./0.7)); fPythia->SetMSTU(52,3 * 144); // // Configure Jet Finder // fPythia->SetPARU(58, eCellMin); fPythia->SetPARU(52, eCellSeed); fPythia->SetPARU(53, eMin); fPythia->SetPARU(54, rMax); fPythia->SetMSTU(54, 2); // // Save jets Int_t n = fPythia->GetN(); // // Run Jet Finder fPythia->Pycell(njets); Int_t i; for (i = 0; i < njets; i++) { Float_t px = (fPythia->GetPyjets())->P[0][n+i]; Float_t py = (fPythia->GetPyjets())->P[1][n+i]; Float_t pz = (fPythia->GetPyjets())->P[2][n+i]; Float_t e = (fPythia->GetPyjets())->P[3][n+i]; jets[0][i] = px; jets[1][i] = py; jets[2][i] = pz; jets[3][i] = e; } } void AliGenPythia::GetJets(Int_t& nJets, Int_t& nJetsTrig, Float_t jets[4][10]) { // // Calls the Pythia clustering algorithm to find jets in the current event // Int_t n = fPythia->GetN(); nJets = 0; nJetsTrig = 0; if (fJetReconstruction == kCluster) { // // Configure cluster algorithm // fPythia->SetPARU(43, 2.); fPythia->SetMSTU(41, 1); // // Call cluster algorithm // fPythia->Pyclus(nJets); // // Loading jets from common block // } else { // // Configure detector (EMCAL like) // fPythia->SetPARU(51,2.); fPythia->SetMSTU(51,Int_t(96 * 2./0.7)); fPythia->SetMSTU(52,3 * 144); // // Configure Jet Finder // fPythia->SetPARU(58, 0.0); fPythia->SetPARU(52, 4.0); fPythia->SetPARU(53, 10.0); fPythia->SetPARU(54, 1.0); fPythia->SetMSTU(54, 2); // // Run Jet Finder fPythia->Pycell(nJets); } Int_t i; for (i = 0; i < nJets; i++) { Float_t px = (fPythia->GetPyjets())->P[0][n+i]; Float_t py = (fPythia->GetPyjets())->P[1][n+i]; Float_t pz = (fPythia->GetPyjets())->P[2][n+i]; Float_t e = (fPythia->GetPyjets())->P[3][n+i]; Float_t pt = TMath::Sqrt(px * px + py * py); Float_t phi = TMath::ATan2(py,px); Float_t theta = TMath::ATan2(pt,pz); Float_t et = e * TMath::Sin(theta); Float_t eta = -TMath::Log(TMath::Tan(theta / 2.)); if ( eta > fEtaMinJet && eta < fEtaMaxJet && phi > fPhiMinJet && eta < fPhiMaxJet && et > fEtMinJet && et < fEtMaxJet ) { jets[0][nJetsTrig] = px; jets[1][nJetsTrig] = py; jets[2][nJetsTrig] = pz; jets[3][nJetsTrig] = e; nJetsTrig++; } else { // printf("\n........-Jet #%d: %10.3f %10.3f %10.3f %10.3f \n", i, pt, et, eta, phi * kRaddeg); } } } #ifdef never void AliGenPythia::Streamer(TBuffer &R__b) { // Stream an object of class AliGenPythia. if (R__b.IsReading()) { Version_t R__v = R__b.ReadVersion(); if (R__v) { } AliGenerator::Streamer(R__b); R__b >> (Int_t&)fProcess; R__b >> (Int_t&)fStrucFunc; R__b >> (Int_t&)fForceDecay; R__b >> fEnergyCMS; R__b >> fKineBias; R__b >> fTrials; fParentSelect.Streamer(R__b); fChildSelect.Streamer(R__b); R__b >> fXsection; // (AliPythia::Instance())->Streamer(R__b); R__b >> fPtHardMin; R__b >> fPtHardMax; // if (fDecayer) fDecayer->Streamer(R__b); } else { R__b.WriteVersion(AliGenPythia::IsA()); AliGenerator::Streamer(R__b); R__b << (Int_t)fProcess; R__b << (Int_t)fStrucFunc; R__b << (Int_t)fForceDecay; R__b << fEnergyCMS; R__b << fKineBias; R__b << fTrials; fParentSelect.Streamer(R__b); fChildSelect.Streamer(R__b); R__b << fXsection; // R__b << fPythia; R__b << fPtHardMin; R__b << fPtHardMax; // fDecayer->Streamer(R__b); } } #endif