#ifndef ALIGENPYTHIA_H #define ALIGENPYTHIA_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ // // Generator using the TPythia interface (via AliPythia) // to generate pp collisions. // Using SetNuclei() also nuclear modifications to the structure functions // can be taken into account. This makes, of course, only sense for the // generation of the products of hard processes (heavy flavor, jets ...) // // andreas.morsch@cern.ch // #include "AliGenMC.h" #include "AliPythia.h" class AliPythia; class TParticle; class AliGenPythiaEventHeader; class AliGenEventHeader; class AliStack; class AliRunLoader; class TObjArray; class AliGenPythia : public AliGenMC { public: typedef enum {kFlavorSelection, kParentSelection, kHeavyFlavor} StackFillOpt_t; typedef enum {kCountAll, kCountParents, kCountTrackables} CountMode_t; typedef enum {kCluster, kCell} JetRecMode_t; AliGenPythia(); AliGenPythia(Int_t npart); virtual ~AliGenPythia(); virtual void Generate(); virtual void Init(); // Range of events to be printed virtual void SetEventListRange(Int_t eventFirst=-1, Int_t eventLast=-1); // Select process type virtual void SetProcess(Process_t proc = kPyCharm) {fProcess = proc;} virtual void SetTune(Int_t itune) {fItune = itune;} // Select structure function virtual void SetStrucFunc(StrucFunc_t func = kCTEQ5L) {fStrucFunc = func;} // Select pt of hard scattering virtual void SetPtHard(Float_t ptmin = 0, Float_t ptmax = 1.e10) {fPtHardMin = ptmin; fPtHardMax = ptmax; } // y of hard scattering virtual void SetYHard(Float_t ymin = -1.e10, Float_t ymax = 1.e10) {fYHardMin = ymin; fYHardMax = ymax; } // Set initial and final state gluon radiation virtual void SetGluonRadiation(Int_t iIn, Int_t iFin) {fGinit = iIn; fGfinal = iFin;} // Intrinsic kT virtual void SetPtKick(Float_t kt = 1.) {fPtKick = kt;} // Use the Pythia 6.3 new multiple interations scenario virtual void UseNewMultipleInteractionsScenario() {fNewMIS = kTRUE;} // Switch off heavy flavors virtual void SwitchHFOff() {fHFoff = kTRUE;} // Set centre of mass energy virtual void SetEnergyCMS(Float_t energy = 5500) {fEnergyCMS = energy;} // Treat protons as inside nuclei with mass numbers a1 and a2 virtual void SetNuclei(Int_t a1, Int_t a2, Int_t pdfset = 0); virtual void SetNuclearPDF(Int_t pdf) {fNucPdf = pdf;} // // Trigger options // // Energy range for jet trigger virtual void SetJetEtRange(Float_t etmin = 0., Float_t etmax = 1.e4) {fEtMinJet = etmin; fEtMaxJet = etmax;} // Eta range for jet trigger virtual void SetJetEtaRange(Float_t etamin = -20., Float_t etamax = 20.) {fEtaMinJet = etamin; fEtaMaxJet = etamax;} // Phi range for jet trigger virtual void SetJetPhiRange(Float_t phimin = 0., Float_t phimax = 360.) {fPhiMinJet = TMath::Pi()*phimin/180.; fPhiMaxJet = TMath::Pi()*phimax/180.;} // Jet reconstruction mode; default is cone algorithm virtual void SetJetReconstructionMode(Int_t mode = kCell) {fJetReconstruction = mode;} // Eta range for gamma trigger virtual void SetGammaEtaRange(Float_t etamin = -20., Float_t etamax = 20.) {fEtaMinGamma = etamin; fEtaMaxGamma = etamax;} // Phi range for gamma trigger virtual void SetGammaPhiRange(Float_t phimin = 0., Float_t phimax = 360.) {fPhiMinGamma = TMath::Pi()*phimin/180.; fPhiMaxGamma = TMath::Pi()*phimax/180.;} // Select jets with fragmentation photon or pi0 going to PHOS or EMCAL virtual void SetFragPhotonInCalo(Bool_t b) {fFragPhotonInCalo = b;} virtual void SetHadronInCalo (Bool_t b) {fHadronInCalo = b;} virtual void SetPi0InCalo (Bool_t b) {fPi0InCalo = b;} virtual void SetPhotonInCalo(Bool_t b) {fPhotonInCalo = b;} virtual void SetCheckPHOS (Bool_t b) {fCheckPHOS = b;} virtual void SetCheckEMCAL(Bool_t b) {fCheckEMCAL = b;} virtual void SetFragPhotonInEMCAL(Bool_t b) {fCheckEMCAL = b; fFragPhotonInCalo = b;} virtual void SetFragPhotonInPHOS(Bool_t b) {fCheckPHOS = b; fFragPhotonInCalo = b;} virtual void SetHadronInEMCAL(Bool_t b) {fCheckEMCAL = b; fHadronInCalo = b;} virtual void SetHadronInPHOS(Bool_t b) {fCheckPHOS = b; fHadronInCalo = b;} virtual void SetPi0InEMCAL(Bool_t b) {fCheckEMCAL = b; fPi0InCalo = b;} virtual void SetPi0InPHOS(Bool_t b) {fCheckPHOS = b; fPi0InCalo = b;} virtual void SetPhotonInEMCAL(Bool_t b) {fCheckEMCAL = b; fPhotonInCalo = b;} virtual void SetElectronInEMCAL(Bool_t b) {fEleInEMCAL = b;} virtual void SetPhotonInPHOS(Bool_t b) {fCheckPHOS = b; fPhotonInCalo = b;} // Trigger on a minimum multiplicity virtual void SetTriggerChargedMultiplicity(Int_t multiplicity, Float_t etamax = 0, Float_t ptmin = -1.) {fTriggerMultiplicity = multiplicity; fTriggerMultiplicityEta = etamax; fTriggerMultiplicityPtMin = ptmin;} // Calorimeters acceptance // Set Phi in degrees, and Eta coverage, should not be negative virtual void SetEMCALAcceptance(Float_t phimin, Float_t phimax, Float_t deta) {fEMCALMinPhi = phimin ; fEMCALMaxPhi = phimax ; fEMCALEta = deta ; } virtual void SetPHOSAcceptance (Float_t phimin, Float_t phimax, Float_t deta) {fPHOSMinPhi = phimin ; fPHOSMaxPhi = phimax ; fPHOSEta = deta ; } virtual void SetPhotonInPHOSeta(Bool_t b) {fCheckPHOSeta = b; fPhotonInCalo = b;} virtual void SetTriggerParticleMinPt(Float_t pt) {fTriggerParticleMinPt = pt;} virtual void SetPhotonMinPt(Float_t pt) {fPhotonMinPt = pt;} virtual void SetElectronMinPt(Float_t pt) {fElectronMinPt = pt;} // Trigger and rotate event void RotatePhi(Int_t iphcand, Bool_t& okdd); // Trigger on a single particle virtual void SetTriggerParticle(Int_t particle = 0, Float_t etamax = 0.9, Float_t ptmin = -1, Float_t ptmax = 1000) {fTriggerParticle = particle; fTriggerEta = etamax; fTriggerMinPt = ptmin; fTriggerMaxPt = ptmax;} // // Heavy flavor options // // Set option for feed down from higher family virtual void SetFeedDownHigherFamily(Bool_t opt) { fFeedDownOpt = opt; } // Set option for selecting particles kept in stack according to flavor // or to parent selection virtual void SetStackFillOpt(StackFillOpt_t opt) { fStackFillOpt = opt; } // Set fragmentation option virtual void SetFragmentation(Bool_t opt) { fFragmentation = opt; } // Set counting mode virtual void SetCountMode(CountMode_t mode) { fCountMode = mode; } // // Quenching // // Set quenching mode 0 = no, 1 = AM, 2 = IL, 3 = NA, 4 = ACS virtual void SetQuench(Int_t flag = 0) {fQuench = flag;} // Set transport coefficient. void SetQhat(Float_t qhat) {fQhat = qhat;} //Set initial medium length. void SetLength(Float_t length) {fLength = length;} //set parameters for pyquen afterburner virtual void SetPyquenPar(Float_t t0=1., Float_t tau0=0.1, Int_t nf=0,Int_t iengl=0, Int_t iangl=3) {fpyquenT = t0; fpyquenTau = tau0; fpyquenNf=nf;fpyquenEloss=iengl;fpyquenAngle=iangl;} virtual void SetHadronisation(Int_t flag = 1) {fHadronisation = flag;} virtual void SetPatchOmegaDalitz(Int_t flag = 1) {fPatchOmegaDalitz = flag;} virtual void SetReadFromFile(const Text_t *filname) {fkFileName = filname; fReadFromFile = 1;} // // Pile-up // // Get interaction rate for pileup studies virtual void SetInteractionRate(Float_t rate,Float_t timewindow = 90.e-6); virtual Float_t GetInteractionRate() const {return fInteractionRate;} // get cross section of process virtual Float_t GetXsection() const {return fXsection;} // get triggered jets void GetJets(Int_t& njets, Int_t& ntrig, Float_t jets[4][10]); void RecJetsUA1(Int_t& njets, Float_t jets[4][50]); void SetPycellParameters(Float_t etamax = 2., Int_t neta = 274, Int_t nphi = 432, Float_t thresh = 0., Float_t etseed = 4., Float_t minet = 10., Float_t r = 1.); void LoadEvent(AliStack* stack, Int_t flag = 0, Int_t reHadr = 0); void LoadEvent(const TObjArray* stack, Int_t flag = 0, Int_t reHadr = 0); // Getters virtual Process_t GetProcess() const {return fProcess;} virtual StrucFunc_t GetStrucFunc() const {return fStrucFunc;} virtual void GetPtHard(Float_t& ptmin, Float_t& ptmax) const {ptmin = fPtHardMin; ptmax = fPtHardMax;} virtual void GetNuclei(Int_t& a1, Int_t& a2) const {a1 = fAProjectile; a2 = fATarget;} virtual void GetJetEtRange(Float_t& etamin, Float_t& etamax) const {etamin = fEtaMinJet; etamax = fEtaMaxJet;} virtual void GetJetPhiRange(Float_t& phimin, Float_t& phimax) const {phimin = fPhiMinJet*180./TMath::Pi(); phimax = fPhiMaxJet*180/TMath::Pi();} virtual void GetGammaEtaRange(Float_t& etamin, Float_t& etamax) const {etamin = fEtaMinGamma; etamax = fEtaMaxGamma;} virtual void GetGammaPhiRange(Float_t& phimin, Float_t& phimax) const {phimin = fPhiMinGamma*180./TMath::Pi(); phimax = fPhiMaxGamma*180./TMath::Pi();} // Bool_t IsInEMCAL(Float_t phi, Float_t eta) const; Bool_t IsInPHOS(Float_t phi, Float_t eta) const; Bool_t IsFromHeavyFlavor(Int_t ipart); // virtual void FinishRun(); Bool_t CheckTrigger(const TParticle* jet1, const TParticle* jet2); //Used in some processes to selected child properties Bool_t CheckKinematicsOnChild(); void GetSubEventTime(); void SetTuneForDiff(Bool_t a=kTRUE) {fkTuneForDiff=a;} AliDecayer * GetDecayer(){return fDecayer;} protected: // adjust the weight from kinematic cuts void AdjustWeights() const; Int_t GenerateMB(); void MakeHeader(); void GeneratePileup(); Process_t fProcess; //Process type Int_t fItune; // Pythia tune > 6.4 StrucFunc_t fStrucFunc; //Structure Function Float_t fKineBias; //!Bias from kinematic selection Int_t fTrials; //!Number of trials for current event Int_t fTrialsRun; //!Number of trials for run Float_t fQ; //Mean Q Float_t fX1; //Mean x1 Float_t fX2; //Mean x2 Float_t fEventTime; //Time of the subevent Float_t fInteractionRate; //Interaction rate (set by user) Float_t fTimeWindow; //Time window for pileup events (set by user) Int_t fCurSubEvent; //Index of the current sub-event TArrayF *fEventsTime; //Subevents time for pileup Int_t fNev; //Number of events Int_t fFlavorSelect; //Heavy Flavor Selection Float_t fXsection; //Cross-section AliPythia *fPythia; //!Pythia Float_t fPtHardMin; //lower pT-hard cut Float_t fPtHardMax; //higher pT-hard cut Float_t fYHardMin; //lower y-hard cut Float_t fYHardMax; //higher y-hard cut Int_t fGinit; //initial state gluon radiation Int_t fGfinal; //final state gluon radiation Int_t fHadronisation; //hadronisation Bool_t fPatchOmegaDalitz; //flag for omega dalitz decay patch Int_t fNpartons; //Number of partons before hadronisation Int_t fReadFromFile; //read partons from file Int_t fQuench; //Flag for quenching Float_t fQhat; //Transport coefficient (GeV^2/fm) Float_t fLength; //Medium length (fm) Float_t fpyquenT; //Pyquen initial temperature Float_t fpyquenTau; //Pyquen initial proper time Int_t fpyquenNf; //Pyquen number of flavours into the game Int_t fpyquenEloss; //Pyquen type of energy loss Int_t fpyquenAngle; //Pyquen radiation angle for gluons Float_t fImpact; //Impact parameter for quenching simulation (q-pythia) Float_t fPtKick; //Transverse momentum kick Bool_t fFullEvent; //!Write Full event if true AliDecayer *fDecayer; //!Pointer to the decayer instance Int_t fDebugEventFirst; //!First event to debug Int_t fDebugEventLast; //!Last event to debug Float_t fEtMinJet; //Minimum et of triggered Jet Float_t fEtMaxJet; //Maximum et of triggered Jet Float_t fEtaMinJet; //Minimum eta of triggered Jet Float_t fEtaMaxJet; //Maximum eta of triggered Jet Float_t fPhiMinJet; //Minimum phi of triggered Jet Float_t fPhiMaxJet; //Maximum phi of triggered Jet Int_t fJetReconstruction; //Jet Reconstruction mode Float_t fEtaMinGamma; // Minimum eta of triggered gamma Float_t fEtaMaxGamma; // Maximum eta of triggered gamma Float_t fPhiMinGamma; // Minimum phi of triggered gamma Float_t fPhiMaxGamma; // Maximum phi of triggered gamma Float_t fPycellEtaMax; // Max. eta for Pycell Int_t fPycellNEta; // Number of eta bins for Pycell Int_t fPycellNPhi; // Number of phi bins for Pycell Float_t fPycellThreshold; // Pycell threshold Float_t fPycellEtSeed; // Pycell seed Float_t fPycellMinEtJet; // Pycell min. jet et Float_t fPycellMaxRadius; // Pycell cone radius StackFillOpt_t fStackFillOpt; // Stack filling with all particles with // that flavour or only with selected // parents and their decays Bool_t fFeedDownOpt; // Option to set feed down from higher // quark families (e.g. b->c) Bool_t fFragmentation; // Option to activate fragmentation by Pythia Bool_t fSetNuclei; // Flag indicating that SetNuclei has been called Bool_t fNewMIS; // Flag for the new multipple interactions scenario Bool_t fHFoff; // Flag for switching heafy flavor production off Int_t fNucPdf; // Nuclear pdf 0: EKS98 1: EPS08 Int_t fTriggerParticle; // Trigger on this particle ... Float_t fTriggerEta; // .. within |eta| < fTriggerEta Float_t fTriggerMinPt; // .. within pt > fTriggerMinPt Float_t fTriggerMaxPt; // .. within pt < fTriggerMaxPt Int_t fTriggerMultiplicity; // Trigger on events with a minimum charged multiplicity Float_t fTriggerMultiplicityEta; // in a given eta range Float_t fTriggerMultiplicityPtMin; // above this pT CountMode_t fCountMode; // Options for counting when the event will be finished. // fCountMode = kCountAll --> All particles that end up in the // stack are counted // fCountMode = kCountParents --> Only selected parents are counted // fCountMode = kCountTrackabless --> Only particles flagged for tracking // are counted // // AliGenPythiaEventHeader* fHeader; //! Event header AliRunLoader* fRL; //! Run Loader const Text_t* fkFileName; //! Name of file to read from Bool_t fFragPhotonInCalo; // Option to ask for Fragmentation Photon in calorimeters acceptance Bool_t fHadronInCalo; // Option to ask for hadron (not pi0) in calorimeters acceptance Bool_t fPi0InCalo; // Option to ask for Pi0 in calorimeters acceptance Bool_t fPhotonInCalo; // Option to ask for Decay Photon in calorimeter acceptance Bool_t fEleInEMCAL; // Option to ask for Electron in EMCAL acceptance Bool_t fCheckEMCAL; // Option to ask for FragPhoton or Pi0 in calorimeters EMCAL acceptance Bool_t fCheckPHOS; // Option to ask for FragPhoton or Pi0 in calorimeters PHOS acceptance Bool_t fCheckPHOSeta; // Option to ask for PHOS eta acceptance Float_t fTriggerParticleMinPt; // Minimum momentum of Fragmentation Photon or Pi0 or other hadron Float_t fPhotonMinPt; // Minimum momentum of Photon Float_t fElectronMinPt; // Minimum momentum of Electron //Calorimeters eta-phi acceptance Float_t fPHOSMinPhi; // Minimum phi PHOS, degrees Float_t fPHOSMaxPhi; // Maximum phi PHOS, degrees Float_t fPHOSEta; // Minimum eta PHOS, coverage delta eta Float_t fEMCALMinPhi; // Minimum phi EMCAL, degrees Float_t fEMCALMaxPhi; // Maximum phi EMCAL, degrees Float_t fEMCALEta; // Maximum eta EMCAL, coverage delta eta Bool_t fkTuneForDiff; // Pythia tune Int_t fProcDiff; private: AliGenPythia(const AliGenPythia &Pythia); AliGenPythia & operator=(const AliGenPythia & rhs); Bool_t CheckDiffraction(); Bool_t GetWeightsDiffraction(Double_t M, Double_t &Mmin, Double_t &Mmax, Double_t &wSD, Double_t &wDD, Double_t &wND); ClassDef(AliGenPythia, 13) // AliGenerator interface to Pythia }; #endif