/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.26 2000/10/03 21:44:08 morsch Use AliSegmentation and AliHit abstract base classes. Revision 1.25 2000/10/02 21:28:12 fca Removal of useless dependecies via forward declarations Revision 1.24 2000/10/02 15:43:17 jbarbosa Fixed forward declarations. Fixed honeycomb density. Fixed cerenkov storing. New electronics. Revision 1.23 2000/09/13 10:42:14 hristov Minor corrections for HP, DEC and Sun; strings.h included Revision 1.22 2000/09/12 18:11:13 fca zero hits area before using Revision 1.21 2000/07/21 10:21:07 morsch fNrawch = 0; and fNrechits = 0; in the default constructor. Revision 1.20 2000/07/10 15:28:39 fca Correction of the inheritance scheme Revision 1.19 2000/06/30 16:29:51 dibari Added kDebugLevel variable to control output size on demand Revision 1.18 2000/06/12 15:15:46 jbarbosa Cleaned up version. Revision 1.17 2000/06/09 14:58:37 jbarbosa New digitisation per particle type Revision 1.16 2000/04/19 12:55:43 morsch Newly structured and updated version (JB, AM) */ //////////////////////////////////////////////// // Manager and hits classes for set:RICH // //////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliRICH.h" #include "AliSegmentation.h" #include "AliRICHHit.h" #include "AliRICHCerenkov.h" #include "AliRICHPadHit.h" #include "AliRICHDigit.h" #include "AliRICHTransientDigit.h" #include "AliRICHRawCluster.h" #include "AliRICHRecHit.h" #include "AliRICHHitMapA1.h" #include "AliRICHClusterFinder.h" #include "AliRun.h" #include "AliMC.h" #include "AliMagF.h" #include "AliConst.h" #include "AliPDG.h" #include "AliPoints.h" #include "AliCallf77.h" #include "TGeant3.h" // Static variables for the pad-hit iterator routines static Int_t sMaxIterPad=0; static Int_t sCurIterPad=0; static TClonesArray *fClusters2; static TClonesArray *fHits2; static TTree *TrH1; ClassImp(AliRICH) //___________________________________________ AliRICH::AliRICH() { // Default constructor for RICH manager class fIshunt = 0; fHits = 0; fPadHits = 0; fNPadHits = 0; fNcerenkovs = 0; fDchambers = 0; fCerenkovs = 0; for (Int_t i=0; i<7; i++) { fNdch[i] = 0; fNrawch[i] = 0; fNrechits[i] = 0; } } //___________________________________________ AliRICH::AliRICH(const char *name, const char *title) : AliDetector(name,title) { //Begin_Html /* */ //End_Html fHits = new TClonesArray("AliRICHHit",1000 ); gAlice->AddHitList(fHits); fPadHits = new TClonesArray("AliRICHPadHit",100000); fCerenkovs = new TClonesArray("AliRICHCerenkov",1000); gAlice->AddHitList(fCerenkovs); //gAlice->AddHitList(fHits); fNPadHits = 0; fNcerenkovs = 0; fIshunt = 0; //fNdch = new Int_t[kNCH]; fDchambers = new TObjArray(kNCH); fRecHits = new TObjArray(kNCH); Int_t i; for (i=0; iGetGeometry()->GetNode("alice"); new TBRIK("S_RICH","S_RICH","void",71.09999,11.5,73.15); top->cd(); Float_t pos1[3]={0,471.8999,165.2599}; //Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2], new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90); node = new TNode("RICH1","RICH1","S_RICH",pos1[0],pos1[1],pos1[2],"rot993"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos2[3]={171,470,0}; //Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2], new TRotMatrix("rot994","rot994",90,-20,90,70,0,0); node = new TNode("RICH2","RICH2","S_RICH",pos2[0],pos2[1],pos2[2],"rot994"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos3[3]={0,500,0}; //Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2], new TRotMatrix("rot995","rot995",90,0,90,90,0,0); node = new TNode("RICH3","RICH3","S_RICH",pos3[0],pos3[1],pos3[2],"rot995"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos4[3]={-171,470,0}; //Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], new TRotMatrix("rot996","rot996",90,20,90,110,0,0); node = new TNode("RICH4","RICH4","S_RICH",pos4[0],pos4[1],pos4[2],"rot996"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos5[3]={161.3999,443.3999,-165.3}; //Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2], new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70); node = new TNode("RICH5","RICH5","S_RICH",pos5[0],pos5[1],pos5[2],"rot997"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos6[3]={0., 471.9, -165.3,}; //Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2], new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90); node = new TNode("RICH6","RICH6","S_RICH",pos6[0],pos6[1],pos6[2],"rot998"); node->SetLineColor(kColorRICH); fNodes->Add(node); top->cd(); Float_t pos7[3]={-161.399,443.3999,-165.3}; //Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2], new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110); node = new TNode("RICH7","RICH7","S_RICH",pos7[0],pos7[1],pos7[2],"rot999"); node->SetLineColor(kColorRICH); fNodes->Add(node); } //___________________________________________ void AliRICH::CreateGeometry() { // // Create the geometry for RICH version 1 // // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); AliSegmentation* segmentation; AliRICHGeometry* geometry; AliRICHChamber* iChamber; iChamber = &(pRICH->Chamber(0)); segmentation=iChamber->GetSegmentationModel(0); geometry=iChamber->GetGeometryModel(); Float_t distance; distance = geometry->GetFreonThickness()/2 + geometry->GetQuartzThickness() + geometry->GetGapThickness(); geometry->SetRadiatorToPads(distance); Int_t *idtmed = fIdtmed->GetArray()-999; Int_t i; Float_t zs; Int_t idrotm[1099]; Float_t par[3]; // --- Define the RICH detector // External aluminium box par[0] = 71.1; par[1] = 11.5; //Original Settings par[2] = 73.15; /*par[0] = 73.15; par[1] = 11.5; par[2] = 71.1;*/ gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3); // Sensitive part of the whole RICH par[0] = 64.8; par[1] = 11.5; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = 11.5; par[2] = 64.8;*/ gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); // Honeycomb par[0] = 63.1; par[1] = .188; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = .188; par[2] = 63.1;*/ gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3); // Aluminium sheet par[0] = 63.1; par[1] = .025; //Original Settings par[2] = 66.55; /*par[0] = 66.5; par[1] = .025; par[2] = 63.1;*/ gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3); // Quartz par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2; /*par[0] = 63.1; par[1] = .25; //Original Settings par[2] = 65.5;*/ /*par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2;*/ //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]); gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3); // Spacers (cylinders) par[0] = 0.; par[1] = .5; par[2] = geometry->GetFreonThickness()/2; gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3); // Opaque quartz par[0] = 61.95; par[1] = .2; //Original Settings par[2] = 66.5; /*par[0] = 66.5; par[1] = .2; par[2] = 61.95;*/ gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3); // Frame of opaque quartz par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2 + 1; /*par[0] = 20.65; par[1] = .5; //Original Settings par[2] = 66.5;*/ /*par[0] = 66.5; par[1] = .5; par[2] = 20.65;*/ gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 + 1; gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3); // Little bar of opaque quartz par[0] = .275; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 - 2.4; /*par[0] = .275; par[1] = .25; //Original Settings par[2] = 63.1;*/ /*par[0] = 63.1; par[1] = .25; par[2] = .275;*/ gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3); // Freon par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2; /*par[0] = 20.15; par[1] = .5; //Original Settings par[2] = 65.5;*/ /*par[0] = 65.5; par[1] = .5; par[2] = 20.15;*/ gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2; gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3); // Methane par[0] = 64.8; par[1] = geometry->GetGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3); // Methane gap par[0] = 64.8; par[1] = geometry->GetProximityGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3); // CsI photocathode par[0] = 64.8; par[1] = .25; par[2] = 64.8; gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3); // Anode grid par[0] = 0.; par[1] = .001; par[2] = 20.; gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3); // --- Places the detectors defined with GSVOLU // Place material inside RICH gMC->Gspos("SRIC", 1, "RICH", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .376 -.025, 0., 0, "ONLY"); gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .188, 0., 0, "ONLY"); gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .025, 0., 0, "ONLY"); gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY"); AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.); Int_t nspacers = (Int_t)(TMath::Abs(geometry->GetInnerFreonLength()/14.4)); //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); //printf("Nspacers: %d", nspacers); //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i < nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (14 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., -6.7, idrotm[1019], "ONLY"); } //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i < nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., -6.7, idrotm[1019], "ONLY"); } /*gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", 31.3, -4.724, 41.3, 0, "ONLY"); gMC->Gspos("OQF2", 2, "SRIC", 0., -4.724, 0., 0, "ONLY"); gMC->Gspos("OQF1", 3, "SRIC", -31.3, -4.724, -41.3, 0, "ONLY"); gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., -3.974, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., 4.8, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 6.526, 0., 0, "ONLY");*/ gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3) gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2), 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (-31.3) gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + .25, 0., 0, "ONLY"); //printf("Position of the gap: %f to %f\n", 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - .2, 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 + .2); // Place RICH inside ALICE apparatus AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.); AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.); AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.); AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.); AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.); AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.); AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.); gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26, idrotm[1000], "ONLY"); gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0., idrotm[1001], "ONLY"); gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0., idrotm[1002], "ONLY"); gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0., idrotm[1003], "ONLY"); gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3, idrotm[1004], "ONLY"); gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3, idrotm[1005], "ONLY"); gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY"); } //___________________________________________ void AliRICH::CreateMaterials() { // // *** DEFINITION OF AVAILABLE RICH MATERIALS *** // ORIGIN : NICK VAN EIJNDHOVEN // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); Int_t i; /************************************Antonnelo's Values (14-vectors)*****************************************/ /* Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9, 6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 }; Float_t rIndexQuarz[14] = { 1.528309,1.533333, 1.538243,1.544223,1.550568,1.55777, 1.565463,1.574765,1.584831,1.597027, 1.611858,1.6277,1.6472,1.6724 }; Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t abscoFreon[14] = { 179.0987,179.0987, 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. }; //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, // 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52, 14.177,9.282,4.0925,1.149,.3627,.10857 }; Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6, 1e6,1e6,1e6 }; Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575, .17425,.1785,.1836,.1904,.1938,.221 }; Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ /**********************************End of Antonnelo's Values**********************************/ /**********************************Values from rich_media.f (31-vectors)**********************************/ //Photons energy intervals Float_t ppckov[26]; for (i=0;i<26;i++) { ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9; //printf ("Energy intervals: %e\n",ppckov[i]); } //Refraction index for quarz Float_t rIndexQuarz[26]; Float_t e1= 10.666; Float_t e2= 18.125; Float_t f1= 46.411; Float_t f2= 228.71; for (i=0;i<26;i++) { Float_t ene=ppckov[i]*1e9; Float_t a=f1/(e1*e1 - ene*ene); Float_t b=f2/(e2*e2 - ene*ene); rIndexQuarz[i] = TMath::Sqrt(1. + a + b ); //printf ("rIndexQuarz: %e\n",rIndexQuarz[i]); } //Refraction index for opaque quarz, methane and grid Float_t rIndexOpaqueQuarz[26]; Float_t rIndexMethane[26]; Float_t rIndexGrid[26]; for (i=0;i<26;i++) { rIndexOpaqueQuarz[i]=1; rIndexMethane[i]=1.000444; rIndexGrid[i]=1; //printf ("rIndexOpaqueQuarz , etc: %e, %e, %e\n",rIndexOpaqueQuarz[i], rIndexMethane[i], rIndexGrid[i]=1); } //Absorption index for freon Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 7.069031, 4.461292, 2.028366, 1.293013, .577267, .40746, .334964, 0., 0., 0.}; //Absorption index for quarz /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902, .906,.907,.907,.907}; Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0, 215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0}; Float_t abscoQuarz[31]; for (Int_t i=0;i<31;i++) { Float_t Xlam = 1237.79 / (ppckov[i]*1e9); if (Xlam <= 160) abscoQuarz[i] = 0; if (Xlam > 250) abscoQuarz[i] = 1; else { for (Int_t j=0;j<21;j++) { //printf ("Passed\n"); if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1]) { Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]); Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]); abscoQuarz[i] = -5.0/(TMath::Log(Abso)); } } } printf ("abscoQuarz: %e abscoFreon: %e for energy: %e\n",abscoQuarz[i],abscoFreon[i],ppckov[i]); }*/ /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 , 39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 17.94531, 11.88753, 5.99128, 3.83503, 2.36661, 1.53155, 1.30582, 1.08574, .8779708, .675275, 0., 0., 0.}; for (Int_t i=0;i<31;i++) { abscoQuarz[i] = abscoQuarz[i]/10; }*/ Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004, 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627, .192, .1497, .10857}; //Absorption index for methane Float_t abscoMethane[26]; for (i=0;i<26;i++) { abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); //printf("abscoMethane: %e for energy: %e\n", abscoMethane[i],ppckov[i]*1e9); } //Absorption index for opaque quarz, csi and grid, efficiency for all and grid Float_t abscoOpaqueQuarz[26]; Float_t abscoCsI[26]; Float_t abscoGrid[26]; Float_t efficAll[26]; Float_t efficGrid[26]; for (i=0;i<26;i++) { abscoOpaqueQuarz[i]=1e-5; abscoCsI[i]=1e-4; abscoGrid[i]=1e-4; efficAll[i]=1; efficGrid[i]=1; //printf ("All must be 1: %e, %e, %e, %e, %e\n",abscoOpaqueQuarz[i],abscoCsI[i],abscoGrid[i],efficAll[i],efficGrid[i]); } //Efficiency for csi Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125, 0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999, 0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592, 0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987}; //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND //UNPOLARIZED PHOTONS for (i=0;i<26;i++) { efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9); } /*******************************************End of rich_media.f***************************************/ Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, zmet[2], zqua[2]; Int_t nlmatfre; Float_t densquao; Int_t nlmatmet, nlmatqua; Float_t wmatquao[2], rIndexFreon[26]; Float_t aquao[2], epsil, stmin, zquao[2]; Int_t nlmatquao; Float_t radlal, densal, tmaxfd, deemax, stemax; Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2]; Int_t *idtmed = fIdtmed->GetArray()-999; TGeant3 *geant3 = (TGeant3*) gMC; // --- Photon energy (GeV) // --- Refraction indexes for (i = 0; i < 26; ++i) { rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177; //rIndexFreon[i] = 1; //printf ("rIndexFreon: %e \n efficCsI: %e for energy: %e\n",rIndexFreon[i], efficCsI[i], ppckov[i]); } // --- Detection efficiencies (quantum efficiency for CsI) // --- Define parameters for honeycomb. // Used carbon of equivalent rad. lenght ahon = 12.01; zhon = 6.; denshon = 0.1; radlhon = 18.8; // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) aquao[0] = 28.09; aquao[1] = 16.; zquao[0] = 14.; zquao[1] = 8.; densquao = 2.64; nlmatquao = -2; wmatquao[0] = 1.; wmatquao[1] = 2.; // --- Parameters to include in GSMIXT, relative to Freon (C6F14) afre[0] = 12.; afre[1] = 19.; zfre[0] = 6.; zfre[1] = 9.; densfre = 1.7; nlmatfre = -2; wmatfre[0] = 6.; wmatfre[1] = 14.; // --- Parameters to include in GSMIXT, relative to methane (CH4) amet[0] = 12.01; amet[1] = 1.; zmet[0] = 6.; zmet[1] = 1.; densmet = 7.17e-4; nlmatmet = -2; wmatmet[0] = 1.; wmatmet[1] = 4.; // --- Parameters to include in GSMIXT, relative to anode grid (Cu) agri = 63.54; zgri = 29.; densgri = 8.96; radlgri = 1.43; // --- Parameters to include in GSMATE related to aluminium sheet aal = 26.98; zal = 13.; densal = 2.7; radlal = 8.9; AliMaterial(1, "Air $", 14.61, 7.3, .001205, 30420., 67500); AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0); AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0); AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao); AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre); AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet); AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet); AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0); AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0); tmaxfd = -10.; stemax = -.1; deemax = -.2; epsil = .001; stmin = -.001; AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin); AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); geant3->Gsckov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz); geant3->Gsckov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon); geant3->Gsckov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane); geant3->Gsckov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); geant3->Gsckov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); geant3->Gsckov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); } //___________________________________________ Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt(1-pdoti*pdoti); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return(fresn); } //__________________________________________ Float_t AliRICH::AbsoCH4(Float_t x) { //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31) Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.}; //MB X 10^22 //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145}; Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55}; const Float_t kLosch=2.686763E19; // LOSCHMIDT NUMBER IN CM-3 const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.; Float_t pn=kPressure/760.; Float_t tn=kTemperature/273.16; // ------- METHANE CROSS SECTION ----------------- // ASTROPH. J. 214, L47 (1978) Float_t sm=0; if (x<7.75) sm=.06e-22; if(x>=7.75 && x<=8.1) { Float_t c0=-1.655279e-1; Float_t c1=6.307392e-2; Float_t c2=-8.011441e-3; Float_t c3=3.392126e-4; sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18; } if (x> 8.1) { Int_t j=0; while (x<=em[j] && x>=em[j+1]) { j++; Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]); sm=(sch4[j]+a*(x-em[j]))*1e-22; } } Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; Float_t abslm=1./sm/dm; // ------- ISOBUTHANE CROSS SECTION -------------- // i-C4H10 (ai) abs. length from curves in // Lu-McDonald paper for BARI RICH workshop . // ----------------------------------------------------------- Float_t ai; Float_t absli; if (kIgas2 != 0) { if (x<7.25) ai=100000000.; if(x>=7.25 && x<7.375) ai=24.3; if(x>=7.375) ai=.0000000001; Float_t si = 1./(ai*kLosch*273.16/293.); // ISOB. CRO.SEC.IN CM2 Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; absli =1./si/di; } else absli=1.e18; // --------------------------------------------------------- // // transmission of O2 // // y= path in cm, x=energy in eV // so= cross section for UV absorption in cm2 // do= O2 molecular density in cm-3 // --------------------------------------------------------- Float_t abslo; Float_t so=0; if(x>=6.0) { if(x>=6.0 && x<6.5) { so=3.392709e-13 * TMath::Exp(2.864104 *x); so=so*1e-18; } if(x>=6.5 && x<7.0) { so=2.910039e-34 * TMath::Exp(10.3337*x); so=so*1e-18; } if (x>=7.0) { Float_t a0=-73770.76; Float_t a1=46190.69; Float_t a2=-11475.44; Float_t a3=1412.611; Float_t a4=-86.07027; Float_t a5=2.074234; so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x); so=so*1e-18; } Float_t dox=(kOxy/1e6)*kLosch*pn/tn; abslo=1./so/dox; } else abslo=1.e18; // --------------------------------------------------------- // // transmission of H2O // // y= path in cm, x=energy in eV // sw= cross section for UV absorption in cm2 // dw= H2O molecular density in cm-3 // --------------------------------------------------------- Float_t abslw; Float_t b0=29231.65; Float_t b1=-15807.74; Float_t b2=3192.926; Float_t b3=-285.4809; Float_t b4=9.533944; if(x>6.75) { Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x); sw=sw*1e-18; Float_t dw=(kWater/1e6)*kLosch*pn/tn; abslw=1./sw/dw; } else abslw=1.e18; // --------------------------------------------------------- Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw); return (alength); } //___________________________________________ Int_t AliRICH::DistancetoPrimitive(Int_t , Int_t ) { // Default value return 9999; } //___________________________________________ void AliRICH::MakeBranch(Option_t* option) { // Create Tree branches for the RICH. const Int_t kBufferSize = 4000; char branchname[20]; AliDetector::MakeBranch(option); sprintf(branchname,"%sCerenkov",GetName()); if (fCerenkovs && gAlice->TreeH()) { gAlice->TreeH()->Branch(branchname,&fCerenkovs, kBufferSize); printf("Making Branch %s for Cerenkov Hits\n",branchname); } sprintf(branchname,"%sPadHits",GetName()); if (fPadHits && gAlice->TreeH()) { gAlice->TreeH()->Branch(branchname,&fPadHits, kBufferSize); printf("Making Branch %s for PadHits\n",branchname); } // one branch for digits per chamber Int_t i; for (i=0; iTreeD()) { gAlice->TreeD()->Branch(branchname,&((*fDchambers)[i]), kBufferSize); printf("Making Branch %s for digits in chamber %d\n",branchname,i+1); } } // one branch for raw clusters per chamber for (i=0; iTreeR()) { gAlice->TreeR()->Branch(branchname,&((*fRawClusters)[i]), kBufferSize); printf("Making Branch %s for raw clusters in chamber %d\n",branchname,i+1); } } // one branch for rec hits per chamber for (i=0; iTreeR()) { gAlice->TreeR()->Branch(branchname,&((*fRecHits)[i]), kBufferSize); printf("Making Branch %s for rec. hits in chamber %d\n",branchname,i+1); } } } //___________________________________________ void AliRICH::SetTreeAddress() { // Set branch address for the Hits and Digits Tree. char branchname[20]; Int_t i; AliDetector::SetTreeAddress(); TBranch *branch; TTree *treeH = gAlice->TreeH(); TTree *treeD = gAlice->TreeD(); TTree *treeR = gAlice->TreeR(); if (treeH) { if (fPadHits) { branch = treeH->GetBranch("RICHPadHits"); if (branch) branch->SetAddress(&fPadHits); } if (fCerenkovs) { branch = treeH->GetBranch("RICHCerenkov"); if (branch) branch->SetAddress(&fCerenkovs); } } if (treeD) { for (int i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fDchambers)[i])); } } } if (treeR) { for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRawClusters)[i])); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRecHits)[i])); } } } } //___________________________________________ void AliRICH::ResetHits() { // Reset number of clusters and the cluster array for this detector AliDetector::ResetHits(); fNPadHits = 0; fNcerenkovs = 0; if (fPadHits) fPadHits->Clear(); if (fCerenkovs) fCerenkovs->Clear(); } //____________________________________________ void AliRICH::ResetDigits() { // // Reset number of digits and the digits array for this detector // for ( int i=0;iClear(); if (fNdch) fNdch[i]=0; } } //____________________________________________ void AliRICH::ResetRawClusters() { // // Reset number of raw clusters and the raw clust array for this detector // for ( int i=0;iClear(); if (fNrawch) fNrawch[i]=0; } } //____________________________________________ void AliRICH::ResetRecHits() { // // Reset number of raw clusters and the raw clust array for this detector // for ( int i=0;iClear(); if (fNrechits) fNrechits[i]=0; } } //___________________________________________ void AliRICH::SetGeometryModel(Int_t id, AliRICHGeometry *geometry) { // // Setter for the RICH geometry model // ((AliRICHChamber*) (*fChambers)[id])->GeometryModel(geometry); } //___________________________________________ void AliRICH::SetSegmentationModel(Int_t id, AliSegmentation *segmentation) { // // Setter for the RICH segmentation model // ((AliRICHChamber*) (*fChambers)[id])->SetSegmentationModel(segmentation); } //___________________________________________ void AliRICH::SetResponseModel(Int_t id, AliRICHResponse *response) { // // Setter for the RICH response model // ((AliRICHChamber*) (*fChambers)[id])->ResponseModel(response); } void AliRICH::SetReconstructionModel(Int_t id, AliRICHClusterFinder *reconst) { // // Setter for the RICH reconstruction model (clusters) // ((AliRICHChamber*) (*fChambers)[id])->SetReconstructionModel(reconst); } void AliRICH::SetNsec(Int_t id, Int_t nsec) { // // Sets the number of padplanes // ((AliRICHChamber*) (*fChambers)[id])->SetNsec(nsec); } //___________________________________________ void AliRICH::StepManager() { // Full Step Manager Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; static Float_t hits[18]; static Float_t ckovData[19]; TLorentzVector position; TLorentzVector momentum; Float_t pos[3]; Float_t mom[4]; Float_t localPos[3]; Float_t localMom[4]; Float_t localTheta,localPhi; Float_t theta,phi; Float_t destep, step; Float_t ranf[2]; Int_t nPads; Float_t coscerenkov; static Float_t eloss, xhit, yhit, tlength; const Float_t kBig=1.e10; TClonesArray &lhits = *fHits; TGeant3 *geant3 = (TGeant3*) gMC; TParticle *current = (TParticle*)(*gAlice->Particles())[gAlice->CurrentTrack()]; //if (current->Energy()>1) //{ // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); Float_t cherenkovLoss=0; //gAlice->KeepTrack(gAlice->CurrentTrack()); gMC->TrackPosition(position); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); //bzero((char *)ckovData,sizeof(ckovData)*19); ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit //ckovData[11] = gAlice->CurrentTrack(); //printf("\n+++++++++++\nTrack: %d\n++++++++++++\n",gAlice->CurrentTrack()); //AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); /********************Store production parameters for Cerenkov photons************************/ //is it a Cerenkov photon? if (gMC->TrackPid() == 50000050) { //if (gMC->VolId("GAP ")==gMC->CurrentVolID(copy)) //{ Float_t ckovEnergy = current->Energy(); //energy interval for tracking if (ckovEnergy > 5.6e-09 && ckovEnergy < 7.8e-09 ) //if (ckovEnergy > 0) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Track entered (1)\n"); if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { //is it in freo? if (geant3->Gctrak()->nstep<1){ //is it the first step? //printf("I'm in!\n"); Int_t mother = current->GetFirstMother(); //printf("Second Mother:%d\n",current->GetSecondMother()); ckovData[10] = mother; ckovData[11] = gAlice->CurrentTrack(); ckovData[12] = 1; //Media where photon was produced 1->Freon, 2->Quarz //printf("Produced in FREO\n"); fCkovNumber++; fFreonProd=1; //printf("Index: %d\n",fCkovNumber); } //first step question } //freo question if (geant3->Gctrak()->nstep<1){ //is it first step? if (gMC->VolId("QUAR")==gMC->CurrentVolID(copy)) //is it in quarz? { ckovData[12] = 2; //printf("Produced in QUAR\n"); } //quarz question } //first step question //printf("Before %d\n",fFreonProd); } //track entering question if (ckovData[12] == 1) //was it produced in Freon? //if (fFreonProd == 1) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Track entered (2)\n"); //printf("Current volume (should be META): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("META"),gMC->CurrentVolID(copy)); if (gMC->VolId("META")==gMC->CurrentVolID(copy)) //is it in gap? { //printf("Got in META\n"); gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); // Z-position for hit /**************** Photons lost in second grid have to be calculated by hand************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = (1. - .025 / cophi) * (1. - .05 / cophi); gMC->Rndm(ranf, 1); //printf("grid calculation:%f\n",t); if (ranf[0] > t) { geant3->StopTrack(); ckovData[13] = 5; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (1)!\n"); //printf("Lost one in grid\n"); } /**********************************************************************************/ } //gap //printf("Current volume (should be CSI) (1): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("CSI "),gMC->CurrentVolID(copy)); if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) //is it in csi? { //printf("Got in CSI\n"); gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); /********* Photons lost by Fresnel reflection have to be calculated by hand********/ /***********************Cerenkov phtons (always polarised)*************************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = Fresnel(ckovEnergy*1e9,cophi,1); gMC->Rndm(ranf, 1); if (ranf[0] < t) { geant3->StopTrack(); ckovData[13] = 6; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (2)!\n"); //printf("Lost by Fresnel\n"); } /**********************************************************************************/ } } //track entering? /********************Evaluation of losses************************/ /******************still in the old fashion**********************/ Int_t i1 = geant3->Gctrak()->nmec; //number of physics mechanisms acting on the particle for (Int_t i = 0; i < i1; ++i) { // Reflection loss if (geant3->Gctrak()->lmec[i] == 106) { //was it reflected ckovData[13]=10; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=1; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=2; //geant3->StopTrack(); //AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); } //reflection question // Absorption loss else if (geant3->Gctrak()->lmec[i] == 101) { //was it absorbed? //printf("Got in absorption\n"); ckovData[13]=20; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=11; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=12; if (gMC->CurrentVolID(copy) == gMC->VolId("META")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("GAP ")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("SRIC")) ckovData[13]=15; // CsI inefficiency if (gMC->CurrentVolID(copy) == gMC->VolId("CSI ")) { ckovData[13]=16; } geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (3)!\n"); //printf("Added cerenkov %d\n",fCkovNumber); } //absorption question // Photon goes out of tracking scope else if (geant3->Gctrak()->lmec[i] == 30) { //is it below energy treshold? ckovData[13]=21; geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (4)!\n"); } // energy treshold question } //number of mechanisms cycle /**********************End of evaluation************************/ } //freon production question } //energy interval question //}//inside the proximity gap question } //cerenkov photon question /**************************************End of Production Parameters Storing*********************/ /*******************************Treat photons that hit the CsI (Ckovs and Feedbacks)************/ if (gMC->TrackPid() == 50000050 || gMC->TrackPid() == 50000051) { //printf("Cerenkov\n"); if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) { //printf("Current volume (should be CSI) (2): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("CSI "),gMC->CurrentVolID(copy)); //printf("Got in CSI\n"); if (gMC->Edep() > 0.){ gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); gMC->CurrentVolOffID(2,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); /*if (gMC->TrackPid() == 50000051){ fFeedbacks++; printf("Feedbacks:%d\n",fFeedbacks); }*/ ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if(idvolTrackPid(); // particle type ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit ckovData[4] = theta; // theta angle of incidence ckovData[5] = phi; // phi angle of incidence ckovData[8] = (Float_t) fNPadHits; // first padhit ckovData[9] = -1; // last pad hit ckovData[13] = 4; // photon was detected ckovData[14] = mom[0]; ckovData[15] = mom[1]; ckovData[16] = mom[2]; destep = gMC->Edep(); gMC->SetMaxStep(kBig); cherenkovLoss += destep; ckovData[7]=cherenkovLoss; nPads = MakePadHits(localPos[0],localPos[2],cherenkovLoss,idvol,kCerenkov); if (fNPadHits > (Int_t)ckovData[8]) { ckovData[8]= ckovData[8]+1; ckovData[9]= (Float_t) fNPadHits; } ckovData[17] = nPads; //printf("nPads:%d",nPads); //TClonesArray *Hits = RICH->Hits(); AliRICHHit *mipHit = (AliRICHHit*) (fHits->UncheckedAt(0)); if (mipHit) { mom[0] = current->Px(); mom[1] = current->Py(); mom[2] = current->Pz(); Float_t mipPx = mipHit->fMomX; Float_t mipPy = mipHit->fMomY; Float_t mipPz = mipHit->fMomZ; Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2]; Float_t rt = TMath::Sqrt(r); Float_t mipR = mipPx*mipPx + mipPy*mipPy + mipPz*mipPz; Float_t mipRt = TMath::Sqrt(mipR); if ((rt*mipRt) > 0) { coscerenkov = (mom[0]*mipPx + mom[1]*mipPy + mom[2]*mipPz)/(rt*mipRt); } else { coscerenkov = 0; } Float_t cherenkov = TMath::ACos(coscerenkov); ckovData[18]=cherenkov; } //if (sector != -1) //{ AddHit(gAlice->CurrentTrack(),vol,ckovData); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (5)!\n"); //} } } } } /***********************************************End of photon hits*********************************************/ /**********************************************Charged particles treatment*************************************/ else if (gMC->TrackCharge()) //else if (1 == 1) { //If MIP /*if (gMC->IsTrackEntering()) { hits[13]=20;//is track entering? }*/ if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { fFreonProd=1; } if (gMC->VolId("GAP ")== gMC->CurrentVolID(copy)) { // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->CurrentVolOffID(3,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); ipart = gMC->TrackPid(); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { // gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2]; Double_t localRt = TMath::Sqrt(localTc); localTheta = Float_t(TMath::ATan2(localRt,Double_t(localMom[1])))*kRaddeg; localPhi = Float_t(TMath::ATan2(Double_t(localMom[2]),Double_t(localMom[0])))*kRaddeg; hits[0] = Float_t(ipart); // particle type hits[1] = localPos[0]; // X-position for hit hits[2] = localPos[1]; // Y-position for hit hits[3] = localPos[2]; // Z-position for hit hits[4] = localTheta; // theta angle of incidence hits[5] = localPhi; // phi angle of incidence hits[8] = (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit hits[13] = fFreonProd; // did id hit the freon? hits[14] = mom[0]; hits[15] = mom[1]; hits[16] = mom[2]; tlength = 0; eloss = 0; fFreonProd = 0; Chamber(idvol).LocaltoGlobal(localPos,hits+1); //To make chamber coordinates x-y had to pass localPos[0], localPos[2] xhit = localPos[0]; yhit = localPos[2]; // Only if not trigger chamber if(idvolSigGenInit(localPos[0], localPos[2], localPos[1]); } } // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; // Only if not trigger chamber if(idvol 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = MakePadHits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("nPads:%d",nPads); } } hits[6]=tlength; hits[7]=eloss; if (fNPadHits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNPadHits; } //if(sector !=-1) new(lhits[fNhits++]) AliRICHHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) } else if (((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenCond(localPos[0], localPos[2], localPos[1])) { ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if (eloss > 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = MakePadHits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("Npads:%d",NPads); } xhit = localPos[0]; yhit = localPos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } } } /*************************************************End of MIP treatment**************************************/ //} } void AliRICH::FindClusters(Int_t nev,Int_t lastEntry) { // // Loop on chambers and on cathode planes // for (Int_t icat=1;icat<2;icat++) { gAlice->ResetDigits(); gAlice->TreeD()->GetEvent(1); // spurious +1 ... for (Int_t ich=0;ichDigitsAddress(ich); if (pRICHdigits == 0) continue; // // Get ready the current chamber stuff // AliRICHResponse* response = iChamber->GetResponseModel(); AliSegmentation* seg = iChamber->GetSegmentationModel(); AliRICHClusterFinder* rec = iChamber->GetReconstructionModel(); if (seg) { rec->SetSegmentation(seg); rec->SetResponse(response); rec->SetDigits(pRICHdigits); rec->SetChamber(ich); if (nev==0) rec->CalibrateCOG(); rec->FindRawClusters(); } TClonesArray *fRch; fRch=RawClustAddress(ich); fRch->Sort(); } // for ich gAlice->TreeR()->Fill(); TClonesArray *fRch; for (int i=0;iGetEntriesFast(); printf ("Chamber %d, raw clusters %d\n",i,nraw); } ResetRawClusters(); } // for icat char hname[30]; sprintf(hname,"TreeR%d",nev); gAlice->TreeR()->Write(hname,kOverwrite,0); gAlice->TreeR()->Reset(); //gObjectTable->Print(); } //______________________________________________________________________________ void AliRICH::Streamer(TBuffer &R__b) { // Stream an object of class AliRICH. AliRICHChamber *iChamber; AliSegmentation *segmentation; AliRICHResponse *response; TClonesArray *digitsaddress; TClonesArray *rawcladdress; TClonesArray *rechitaddress; if (R__b.IsReading()) { Version_t R__v = R__b.ReadVersion(); if (R__v) { } AliDetector::Streamer(R__b); R__b >> fNPadHits; R__b >> fPadHits; // diff R__b >> fNcerenkovs; R__b >> fCerenkovs; // diff R__b >> fDchambers; R__b >> fRawClusters; R__b >> fRecHits; //diff R__b >> fDebugLevel; //diff R__b.ReadStaticArray(fNdch); R__b.ReadStaticArray(fNrawch); R__b.ReadStaticArray(fNrechits); // R__b >> fChambers; // Stream chamber related information for (Int_t i =0; iStreamer(R__b); segmentation=iChamber->GetSegmentationModel(); segmentation->Streamer(R__b); response=iChamber->GetResponseModel(); response->Streamer(R__b); rawcladdress=(TClonesArray*) (*fRawClusters)[i]; rawcladdress->Streamer(R__b); rechitaddress=(TClonesArray*) (*fRecHits)[i]; rechitaddress->Streamer(R__b); digitsaddress=(TClonesArray*) (*fDchambers)[i]; digitsaddress->Streamer(R__b); } R__b >> fDebugLevel; R__b >> fCkovNumber; R__b >> fCkovQuarz; R__b >> fCkovGap; R__b >> fCkovCsi; R__b >> fLostRfreo; R__b >> fLostRquar; R__b >> fLostAfreo; R__b >> fLostAquarz; R__b >> fLostAmeta; R__b >> fLostCsi; R__b >> fLostWires; R__b >> fFreonProd; R__b >> fMipx; R__b >> fMipy; R__b >> fFeedbacks; R__b >> fLostFresnel; } else { R__b.WriteVersion(AliRICH::IsA()); AliDetector::Streamer(R__b); R__b << fNPadHits; R__b << fPadHits; // diff R__b << fNcerenkovs; R__b << fCerenkovs; // diff R__b << fDchambers; R__b << fRawClusters; R__b << fRecHits; //diff R__b << fDebugLevel; //diff R__b.WriteArray(fNdch, kNCH); R__b.WriteArray(fNrawch, kNCH); R__b.WriteArray(fNrechits, kNCH); // R__b << fChambers; // Stream chamber related information for (Int_t i =0; iStreamer(R__b); segmentation=iChamber->GetSegmentationModel(); segmentation->Streamer(R__b); response=iChamber->GetResponseModel(); response->Streamer(R__b); rawcladdress=(TClonesArray*) (*fRawClusters)[i]; rawcladdress->Streamer(R__b); rechitaddress=(TClonesArray*) (*fRecHits)[i]; rechitaddress->Streamer(R__b); digitsaddress=(TClonesArray*) (*fDchambers)[i]; digitsaddress->Streamer(R__b); } R__b << fDebugLevel; R__b << fCkovNumber; R__b << fCkovQuarz; R__b << fCkovGap; R__b << fCkovCsi; R__b << fLostRfreo; R__b << fLostRquar; R__b << fLostAfreo; R__b << fLostAquarz; R__b << fLostAmeta; R__b << fLostCsi; R__b << fLostWires; R__b << fFreonProd; R__b << fMipx; R__b << fMipy; R__b << fFeedbacks; R__b << fLostFresnel; } } AliRICHPadHit* AliRICH::FirstPad(AliRICHHit* hit,TClonesArray *clusters ) { // // Initialise the pad iterator // Return the address of the first padhit for hit TClonesArray *theClusters = clusters; Int_t nclust = theClusters->GetEntriesFast(); if (nclust && hit->fPHlast > 0) { sMaxIterPad=Int_t(hit->fPHlast); sCurIterPad=Int_t(hit->fPHfirst); return (AliRICHPadHit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } AliRICHPadHit* AliRICH::NextPad(TClonesArray *clusters) { // Iterates over pads sCurIterPad++; if (sCurIterPad <= sMaxIterPad) { return (AliRICHPadHit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } void AliRICH::Digitise(Int_t nev, Int_t flag, Option_t *option,Text_t *filename) { // keep galice.root for signal and name differently the file for // background when add! otherwise the track info for signal will be lost ! static Bool_t first=kTRUE; static TFile *pFile; char *addBackground = strstr(option,"Add"); FILE* points; //these will be the digits... points=fopen("points.dat","w"); AliRICHChamber* iChamber; AliSegmentation* segmentation; Int_t digitse=0; Int_t trk[50]; Int_t chtrk[50]; TObjArray *list=new TObjArray; static TClonesArray *pAddress=0; if(!pAddress) pAddress=new TClonesArray("TVector",1000); Int_t digits[5]; AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); AliHitMap* pHitMap[10]; Int_t i; for (i=0; i<10; i++) {pHitMap[i]=0;} if (addBackground ) { if(first) { fFileName=filename; cout<<"filename"<cd(); // Get Hits Tree header from file if(fHits2) fHits2->Clear(); if(fClusters2) fClusters2->Clear(); if(TrH1) delete TrH1; TrH1=0; char treeName[20]; sprintf(treeName,"TreeH%d",nev); TrH1 = (TTree*)gDirectory->Get(treeName); if (!TrH1) { printf("ERROR: cannot find Hits Tree for event:%d\n",nev); } // Set branch addresses TBranch *branch; char branchname[20]; sprintf(branchname,"%s",GetName()); if (TrH1 && fHits2) { branch = TrH1->GetBranch(branchname); if (branch) branch->SetAddress(&fHits2); } if (TrH1 && fClusters2) { branch = TrH1->GetBranch("RICHCluster"); if (branch) branch->SetAddress(&fClusters2); } } AliHitMap* hm; Int_t countadr=0; Int_t counter=0; for (i =0; iGetSegmentationModel(1); pHitMap[i] = new AliRICHHitMapA1(segmentation, list); } // // Loop over tracks // TTree *treeH = gAlice->TreeH(); Int_t ntracks =(Int_t) treeH->GetEntries(); for (Int_t track=0; trackResetHits(); treeH->GetEvent(track); // // Loop over hits for(AliRICHHit* mHit=(AliRICHHit*)pRICH->FirstHit(-1); mHit; mHit=(AliRICHHit*)pRICH->NextHit()) { digitse=0; Int_t nch = mHit->fChamber-1; // chamber number if (nch >kNCH) continue; iChamber = &(pRICH->Chamber(nch)); TParticle *current = (TParticle*)(*gAlice->Particles())[track]; Int_t particle = current->GetPdgCode(); //printf("Flag:%d\n",flag); //printf("Track:%d\n",track); //printf("Particle:%d\n",particle); if (flag == 0) digitse=1; if (flag == 1) if(TMath::Abs(particle) == 211 || TMath::Abs(particle) == 111) digitse=1; if (flag == 2) if(TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 || TMath::Abs(particle)==311) digitse=1; if (flag == 3 && TMath::Abs(particle)==2212) digitse=1; if (flag == 4 && TMath::Abs(particle)==13) digitse=1; if (flag == 5 && TMath::Abs(particle)==11) digitse=1; if (flag == 6 && TMath::Abs(particle)==2112) digitse=1; //printf ("Particle: %d, Flag: %d, Digitse: %d\n",particle,flag,digitse); if (digitse) { // // Loop over pad hits for (AliRICHPadHit* mPad= (AliRICHPadHit*)pRICH->FirstPad(mHit,fPadHits); mPad; mPad=(AliRICHPadHit*)pRICH->NextPad(fPadHits)) { Int_t cathode = mPad->fCathode; // cathode number Int_t ipx = mPad->fPadX; // pad number on X Int_t ipy = mPad->fPadY; // pad number on Y Int_t iqpad = mPad->fQpad; // charge per pad // // //printf("X:%d, Y:%d, Q:%d\n",ipx,ipy,iqpad); Float_t thex, they, thez; segmentation=iChamber->GetSegmentationModel(cathode); segmentation->GetPadC(ipx,ipy,thex,they,thez); new((*pAddress)[countadr++]) TVector(2); TVector &trinfo=*((TVector*) (*pAddress)[countadr-1]); trinfo(0)=(Float_t)track; trinfo(1)=(Float_t)iqpad; digits[0]=ipx; digits[1]=ipy; digits[2]=iqpad; AliRICHTransientDigit* pdigit; // build the list of fired pads and update the info if (!pHitMap[nch]->TestHit(ipx, ipy)) { list->AddAtAndExpand(new AliRICHTransientDigit(nch,digits),counter); pHitMap[nch]->SetHit(ipx, ipy, counter); counter++; pdigit=(AliRICHTransientDigit*)list->At(list->GetLast()); // list of tracks TObjArray *trlist=(TObjArray*)pdigit->TrackList(); trlist->Add(&trinfo); } else { pdigit=(AliRICHTransientDigit*) pHitMap[nch]->GetHit(ipx, ipy); // update charge (*pdigit).fSignal+=iqpad; // update list of tracks TObjArray* trlist=(TObjArray*)pdigit->TrackList(); Int_t lastEntry=trlist->GetLast(); TVector *ptrkP=(TVector*)trlist->At(lastEntry); TVector &ptrk=*ptrkP; Int_t lastTrack=Int_t(ptrk(0)); Int_t lastCharge=Int_t(ptrk(1)); if (lastTrack==track) { lastCharge+=iqpad; trlist->RemoveAt(lastEntry); trinfo(0)=lastTrack; trinfo(1)=lastCharge; trlist->AddAt(&trinfo,lastEntry); } else { trlist->Add(&trinfo); } // check the track list Int_t nptracks=trlist->GetEntriesFast(); if (nptracks > 2) { printf("Attention - tracks: %d (>2)\n",nptracks); //printf("cat,nch,ix,iy %d %d %d %d \n",icat+1,nch,ipx,ipy); for (Int_t tr=0;trAt(tr); TVector &pptrk=*pptrkP; trk[tr]=Int_t(pptrk(0)); chtrk[tr]=Int_t(pptrk(1)); } } // end if nptracks } // end if pdigit } //end loop over clusters }// track type condition } // hit loop } // track loop // open the file with background if (addBackground ) { ntracks =(Int_t)TrH1->GetEntries(); //printf("background - icat,ntracks1 %d %d\n",icat,ntracks); //printf("background - Start loop over tracks \n"); // // Loop over tracks // for (Int_t trak=0; trakClear(); if (fClusters2) fClusters2->Clear(); TrH1->GetEvent(trak); // // Loop over hits AliRICHHit* mHit; for(int j=0;jGetEntriesFast();++j) { mHit=(AliRICHHit*) (*fHits2)[j]; Int_t nch = mHit->fChamber-1; // chamber number if (nch >6) continue; iChamber = &(pRICH->Chamber(nch)); Int_t rmin = (Int_t)iChamber->RInner(); Int_t rmax = (Int_t)iChamber->ROuter(); // // Loop over pad hits for (AliRICHPadHit* mPad= (AliRICHPadHit*)pRICH->FirstPad(mHit,fClusters2); mPad; mPad=(AliRICHPadHit*)pRICH->NextPad(fClusters2)) { Int_t cathode = mPad->fCathode; // cathode number Int_t ipx = mPad->fPadX; // pad number on X Int_t ipy = mPad->fPadY; // pad number on Y Int_t iqpad = mPad->fQpad; // charge per pad Float_t thex, they, thez; segmentation=iChamber->GetSegmentationModel(cathode); segmentation->GetPadC(ipx,ipy,thex,they,thez); Float_t rpad=TMath::Sqrt(thex*thex+they*they); if (rpad < rmin || iqpad ==0 || rpad > rmax) continue; new((*pAddress)[countadr++]) TVector(2); TVector &trinfo=*((TVector*) (*pAddress)[countadr-1]); trinfo(0)=-1; // tag background trinfo(1)=-1; digits[0]=ipx; digits[1]=ipy; digits[2]=iqpad; if (trak <4 && nch==0) printf("bgr - pHitMap[nch]->TestHit(ipx, ipy),trak %d %d\n", pHitMap[nch]->TestHit(ipx, ipy),trak); AliRICHTransientDigit* pdigit; // build the list of fired pads and update the info if (!pHitMap[nch]->TestHit(ipx, ipy)) { list->AddAtAndExpand(new AliRICHTransientDigit(nch,digits),counter); pHitMap[nch]->SetHit(ipx, ipy, counter); counter++; printf("bgr new elem in list - counter %d\n",counter); pdigit=(AliRICHTransientDigit*)list->At(list->GetLast()); // list of tracks TObjArray *trlist=(TObjArray*)pdigit->TrackList(); trlist->Add(&trinfo); } else { pdigit=(AliRICHTransientDigit*) pHitMap[nch]->GetHit(ipx, ipy); // update charge (*pdigit).fSignal+=iqpad; // update list of tracks TObjArray* trlist=(TObjArray*)pdigit->TrackList(); Int_t lastEntry=trlist->GetLast(); TVector *ptrkP=(TVector*)trlist->At(lastEntry); TVector &ptrk=*ptrkP; Int_t lastTrack=Int_t(ptrk(0)); if (lastTrack==-1) { continue; } else { trlist->Add(&trinfo); } // check the track list Int_t nptracks=trlist->GetEntriesFast(); if (nptracks > 0) { for (Int_t tr=0;trAt(tr); TVector &pptrk=*pptrkP; trk[tr]=Int_t(pptrk(0)); chtrk[tr]=Int_t(pptrk(1)); } } // end if nptracks } // end if pdigit } //end loop over clusters } // hit loop } // track loop TTree *fAli=gAlice->TreeK(); if (fAli) pFile =fAli->GetCurrentFile(); pFile->cd(); } // if Add Int_t tracks[10]; Int_t charges[10]; //cout<<"Start filling digits \n "<GetEntriesFast(); //printf(" \n \n nentries %d \n",nentries); // start filling the digits for (Int_t nent=0;nentAt(nent); if (address==0) continue; Int_t ich=address->fChamber; Int_t q=address->fSignal; iChamber=(AliRICHChamber*) (*fChambers)[ich]; AliRICHResponse * response=iChamber->GetResponseModel(); Int_t adcmax= (Int_t) response->MaxAdc(); // add white noise and do zero-suppression and signal truncation (new electronics,old electronics gaus 1.2,0.2) //printf("Treshold: %d\n",iChamber->fTresh->GetHitIndex(address->fPadX,address->fPadY)); Int_t pedestal = iChamber->fTresh->GetHitIndex(address->fPadX,address->fPadY); //printf("Pedestal:%d\n",pedestal); //Int_t pedestal=0; Float_t treshold = (pedestal + 4*2.2); Float_t meanNoise = gRandom->Gaus(2.2, 0.3); Float_t noise = gRandom->Gaus(0, meanNoise); q+=(Int_t)(noise + pedestal); //q+=(Int_t)(noise); // magic number to be parametrised !!! if ( q <= treshold) { q = q - pedestal; continue; } q = q - pedestal; if ( q >= adcmax) q=adcmax; digits[0]=address->fPadX; digits[1]=address->fPadY; digits[2]=q; TObjArray* trlist=(TObjArray*)address->TrackList(); Int_t nptracks=trlist->GetEntriesFast(); // this was changed to accomodate the real number of tracks if (nptracks > 10) { cout<<"Attention - tracks > 10 "< 2) { printf("Attention - tracks > 2 %d \n",nptracks); //printf("cat,ich,ix,iy,q %d %d %d %d %d \n", //icat,ich,digits[0],digits[1],q); } for (Int_t tr=0;trAt(tr); TVector &pp =*ppP; tracks[tr]=Int_t(pp(0)); charges[tr]=Int_t(pp(1)); } //end loop over list of tracks for one pad if (nptracks < 10 ) { for (Int_t t=nptracks; t<10; t++) { tracks[t]=0; charges[t]=0; } } //write file if (ich==2) fprintf(points,"%4d, %4d, %4d\n",digits[0],digits[1],digits[2]); // fill digits pRICH->AddDigits(ich,tracks,charges,digits); } gAlice->TreeD()->Fill(); list->Delete(); for(Int_t ii=0;iiTreeD(); //Stat_t ndig=TD->GetEntries(); //cout<<"number of digits "<DigitsAddress(k); int ndigit=fDch->GetEntriesFast(); printf ("Chamber %d digits %d \n",k,ndigit); } pRICH->ResetDigits(); char hname[30]; sprintf(hname,"TreeD%d",nev); gAlice->TreeD()->Write(hname,kOverwrite,0); // reset tree // gAlice->TreeD()->Reset(); delete list; pAddress->Clear(); // gObjectTable->Print(); } AliRICH& AliRICH::operator=(const AliRICH& rhs) { // Assignment operator return *this; } Int_t AliRICH::MakePadHits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res) { // // Calls the charge disintegration method of the current chamber and adds // the simulated cluster to the root treee // Int_t clhits[kNCH]; Float_t newclust[6][500]; Int_t nnew; // // Integrated pulse height on chamber clhits[0]=fNhits+1; ((AliRICHChamber*) (*fChambers)[idvol])->DisIntegration(eloss, xhit, yhit, nnew, newclust, res); Int_t ic=0; // // Add new clusters for (Int_t i=0; i 0) { ic++; // Cathode plane clhits[1] = Int_t(newclust[5][i]); // Cluster Charge clhits[2] = Int_t(newclust[0][i]); // Pad: ix clhits[3] = Int_t(newclust[1][i]); // Pad: iy clhits[4] = Int_t(newclust[2][i]); // Pad: charge clhits[5] = Int_t(newclust[3][i]); // Pad: chamber sector clhits[6] = Int_t(newclust[4][i]); AddPadHit(clhits); } } return nnew; }