/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.53 2001/08/30 09:51:23 hristov The operator[] is replaced by At() or AddAt() in case of TObjArray. Revision 1.52 2001/05/16 14:57:20 alibrary New files for folders and Stack Revision 1.51 2001/05/14 10:18:55 hristov Default arguments declared once Revision 1.50 2001/05/10 14:44:16 jbarbosa Corrected some overlaps (thanks I. Hrivnacovna). Revision 1.49 2001/05/10 12:23:49 jbarbosa Repositioned the RICH modules. Eliminated magic numbers. Incorporated diagnostics (from macros). Revision 1.48 2001/03/15 10:35:00 jbarbosa Corrected bug in MakeBranch (was using a different version of STEER) Revision 1.47 2001/03/14 18:13:56 jbarbosa Several changes to adapt to new IO. Removed digitising function, using AliRICHMerger::Digitise from now on. Revision 1.46 2001/03/12 17:46:33 hristov Changes needed on Sun with CC 5.0 Revision 1.45 2001/02/27 22:11:46 jbarbosa Testing TreeS, removing of output. Revision 1.44 2001/02/27 15:19:12 jbarbosa Transition to SDigits. Revision 1.43 2001/02/23 17:19:06 jbarbosa Corrected photocathode definition in BuildGeometry(). Revision 1.42 2001/02/13 20:07:23 jbarbosa Parametrised definition of photcathode dimensions. New spacers. New data members in AliRICHHit to store particle momentum when entering the freon. Corrected calls to particle stack. Revision 1.41 2001/01/26 20:00:20 hristov Major upgrade of AliRoot code Revision 1.40 2001/01/24 20:58:03 jbarbosa Enhanced BuildGeometry. Now the photocathodes are drawn. Revision 1.39 2001/01/22 21:40:24 jbarbosa Removing magic numbers Revision 1.37 2000/12/20 14:07:25 jbarbosa Removed dependencies on TGeant3 (thanks to F. Carminati and I. Hrivnacova) Revision 1.36 2000/12/18 17:45:54 jbarbosa Cleaned up PadHits object. Revision 1.35 2000/12/15 16:49:40 jbarbosa Geometry and materials updates (wire supports, pcbs, backplane supports, frame). Revision 1.34 2000/11/10 18:12:12 jbarbosa Bug fix for AliRICHCerenkov (thanks to P. Hristov) Revision 1.33 2000/11/02 10:09:01 jbarbosa Minor bug correction (some pointers were not initialised in the default constructor) Revision 1.32 2000/11/01 15:32:55 jbarbosa Updated to handle both reconstruction algorithms. Revision 1.31 2000/10/26 20:18:33 jbarbosa Supports for methane and freon vessels Revision 1.30 2000/10/24 13:19:12 jbarbosa Geometry updates. Revision 1.29 2000/10/19 19:39:25 jbarbosa Some more changes to geometry. Further correction of digitisation "per part. type" Revision 1.28 2000/10/17 20:50:57 jbarbosa Inversed digtise by particle type (now, only the selected particle type is not digitsed). Corrected several geometry minor bugs. Added new parameter (opaque quartz thickness). Revision 1.27 2000/10/11 10:33:55 jbarbosa Corrected bug introduced by earlier revisions (CerenkovData array cannot be reset to zero on wach call of StepManager) Revision 1.26 2000/10/03 21:44:08 morsch Use AliSegmentation and AliHit abstract base classes. Revision 1.25 2000/10/02 21:28:12 fca Removal of useless dependecies via forward declarations Revision 1.24 2000/10/02 15:43:17 jbarbosa Fixed forward declarations. Fixed honeycomb density. Fixed cerenkov storing. New electronics. Revision 1.23 2000/09/13 10:42:14 hristov Minor corrections for HP, DEC and Sun; strings.h included Revision 1.22 2000/09/12 18:11:13 fca zero hits area before using Revision 1.21 2000/07/21 10:21:07 morsch fNrawch = 0; and fNrechits = 0; in the default constructor. Revision 1.20 2000/07/10 15:28:39 fca Correction of the inheritance scheme Revision 1.19 2000/06/30 16:29:51 dibari Added kDebugLevel variable to control output size on demand Revision 1.18 2000/06/12 15:15:46 jbarbosa Cleaned up version. Revision 1.17 2000/06/09 14:58:37 jbarbosa New digitisation per particle type Revision 1.16 2000/04/19 12:55:43 morsch Newly structured and updated version (JB, AM) */ //////////////////////////////////////////////// // Manager and hits classes for set:RICH // //////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include #include #include #include #include "AliRICH.h" #include "AliSegmentation.h" #include "AliRICHSegmentationV0.h" #include "AliRICHHit.h" #include "AliRICHCerenkov.h" #include "AliRICHSDigit.h" #include "AliRICHDigit.h" #include "AliRICHTransientDigit.h" #include "AliRICHRawCluster.h" #include "AliRICHRecHit1D.h" #include "AliRICHRecHit3D.h" #include "AliRICHHitMapA1.h" #include "AliRICHClusterFinder.h" #include "AliRICHMerger.h" #include "AliRun.h" #include "AliMC.h" #include "AliMagF.h" #include "AliConst.h" #include "AliPDG.h" #include "AliPoints.h" #include "AliCallf77.h" // Static variables for the pad-hit iterator routines static Int_t sMaxIterPad=0; static Int_t sCurIterPad=0; ClassImp(AliRICH) //___________________________________________ AliRICH::AliRICH() { // Default constructor for RICH manager class fIshunt = 0; fHits = 0; fSDigits = 0; fNSDigits = 0; fNcerenkovs = 0; fDchambers = 0; fRecHits1D = 0; fRecHits3D = 0; fRawClusters = 0; fChambers = 0; fCerenkovs = 0; for (Int_t i=0; i<7; i++) { fNdch[i] = 0; fNrawch[i] = 0; fNrechits1D[i] = 0; fNrechits3D[i] = 0; } fFileName = 0; fMerger = 0; } //___________________________________________ AliRICH::AliRICH(const char *name, const char *title) : AliDetector(name,title) { //Begin_Html /* */ //End_Html fHits = new TClonesArray("AliRICHHit",1000 ); gAlice->AddHitList(fHits); fSDigits = new TClonesArray("AliRICHSDigit",100000); fCerenkovs = new TClonesArray("AliRICHCerenkov",1000); gAlice->AddHitList(fCerenkovs); //gAlice->AddHitList(fHits); fNSDigits = 0; fNcerenkovs = 0; fIshunt = 0; //fNdch = new Int_t[kNCH]; fDchambers = new TObjArray(kNCH); fRecHits1D = new TObjArray(kNCH); fRecHits3D = new TObjArray(kNCH); Int_t i; for (i=0; iAddAt(new TClonesArray("AliRICHDigit",10000), i); fNdch[i]=0; } //fNrawch = new Int_t[kNCH]; fRawClusters = new TObjArray(kNCH); //printf("Created fRwClusters with adress:%p",fRawClusters); for (i=0; iAddAt(new TClonesArray("AliRICHRawCluster",10000), i); fNrawch[i]=0; } //fNrechits = new Int_t[kNCH]; for (i=0; iAddAt(new TClonesArray("AliRICHRecHit1D",1000), i); } for (i=0; iAddAt(new TClonesArray("AliRICHRecHit3D",1000), i); } //printf("Created fRecHits with adress:%p",fRecHits); SetMarkerColor(kRed); /*fChambers = new TObjArray(kNCH); for (i=0; iDelete(); delete fChambers; } if (fDchambers) { fDchambers->Delete(); delete fDchambers; } if (fRawClusters) { fRawClusters->Delete(); delete fRawClusters; } if (fRecHits1D) { fRecHits1D->Delete(); delete fRecHits1D; } if (fRecHits3D) { fRecHits3D->Delete(); delete fRecHits3D; } } //_____________________________________________________________________________ Int_t AliRICH::Hits2SDigits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res) { // // Calls the charge disintegration method of the current chamber and adds // the simulated cluster to the root treee // Int_t clhits[5]; Float_t newclust[4][500]; Int_t nnew; // // Integrated pulse height on chamber clhits[0]=fNhits+1; //PH ((AliRICHChamber*) (*fChambers)[idvol])->DisIntegration(eloss, xhit, yhit, nnew, newclust, res); ((AliRICHChamber*)fChambers->At(idvol))->DisIntegration(eloss, xhit, yhit, nnew, newclust, res); Int_t ic=0; // // Add new clusters for (Int_t i=0; i 0) { ic++; // Cluster Charge clhits[1] = Int_t(newclust[0][i]); // Pad: ix clhits[2] = Int_t(newclust[1][i]); // Pad: iy clhits[3] = Int_t(newclust[2][i]); // Pad: chamber sector clhits[4] = Int_t(newclust[3][i]); //printf(" %d %d %d %d %d\n", clhits[0], clhits[1], clhits[2], clhits[3], clhits[4]); AddSDigit(clhits); } } if (gAlice->TreeS()) { gAlice->TreeS()->Fill(); gAlice->TreeS()->Write(0,TObject::kOverwrite); //printf("Filled SDigits...\n"); } return nnew; } //___________________________________________ void AliRICH::Hits2SDigits() { // Dummy: sdigits are created during transport. // Called from alirun. int nparticles = gAlice->GetNtrack(); cout << "Particles (RICH):" < 0) printf("SDigits were already generated.\n"); } //___________________________________________ void AliRICH::SDigits2Digits(Int_t nev, Int_t flag) { // // Generate digits. // Called from macro. Multiple events, more functionality. AliRICHChamber* iChamber; printf("Generating tresholds...\n"); for(Int_t i=0;i<7;i++) { iChamber = &(Chamber(i)); iChamber->GenerateTresholds(); } int nparticles = gAlice->GetNtrack(); if (nparticles > 0) { if (fMerger) { fMerger->Init(); fMerger->Digitise(nev,flag); } } //Digitise(nev,flag); } //___________________________________________ void AliRICH::SDigits2Digits() { // // Generate digits // Called from alirun, single event only. AliRICHChamber* iChamber; printf("Generating tresholds...\n"); for(Int_t i=0;i<7;i++) { iChamber = &(Chamber(i)); iChamber->GenerateTresholds(); } int nparticles = gAlice->GetNtrack(); cout << "Particles (RICH):" < 0) { if (fMerger) { fMerger->Init(); fMerger->Digitise(0,0); } } } //___________________________________________ void AliRICH::Digits2Reco() { // Generate clusters // Called from alirun, single event only. int nparticles = gAlice->GetNtrack(); cout << "Particles (RICH):" < 0) FindClusters(0,0); } //___________________________________________ void AliRICH::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Adds a hit to the Hits list TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliRICHHit(fIshunt,track,vol,hits); } //_____________________________________________________________________________ void AliRICH::AddCerenkov(Int_t track, Int_t *vol, Float_t *cerenkovs) { // // Adds a RICH cerenkov hit to the Cerenkov Hits list // TClonesArray &lcerenkovs = *fCerenkovs; new(lcerenkovs[fNcerenkovs++]) AliRICHCerenkov(fIshunt,track,vol,cerenkovs); //printf ("Done for Cerenkov %d\n\n\n\n",fNcerenkovs); } //___________________________________________ void AliRICH::AddSDigit(Int_t *clhits) { // // Add a RICH pad hit to the list // //printf("fsdigits:%p, data: %d\n",fSDigits,clhits[2]); TClonesArray &lSDigits = *fSDigits; new(lSDigits[fNSDigits++]) AliRICHSDigit(clhits); } //_____________________________________________________________________________ void AliRICH::AddDigits(Int_t id, Int_t *tracks, Int_t *charges, Int_t *digits) { // // Add a RICH digit to the list // //printf("fdigits:%p, data: %d\n",((TClonesArray*)(*fDchambers)[id]),digits[0]); //PH TClonesArray &ldigits = *((TClonesArray*)(*fDchambers)[id]); TClonesArray &ldigits = *((TClonesArray*)fDchambers->At(id)); new(ldigits[fNdch[id]++]) AliRICHDigit(tracks,charges,digits); } //_____________________________________________________________________________ void AliRICH::AddRawCluster(Int_t id, const AliRICHRawCluster& c) { // // Add a RICH digit to the list // //PH TClonesArray &lrawcl = *((TClonesArray*)(*fRawClusters)[id]); TClonesArray &lrawcl = *((TClonesArray*)fRawClusters->At(id)); new(lrawcl[fNrawch[id]++]) AliRICHRawCluster(c); } //_____________________________________________________________________________ void AliRICH::AddRecHit1D(Int_t id, Float_t *rechit, Float_t *photons, Int_t *padsx, Int_t* padsy) { // // Add a RICH reconstructed hit to the list // //PH TClonesArray &lrec1D = *((TClonesArray*)(*fRecHits1D)[id]); TClonesArray &lrec1D = *((TClonesArray*)fRecHits1D->At(id)); new(lrec1D[fNrechits1D[id]++]) AliRICHRecHit1D(id,rechit,photons,padsx,padsy); } //_____________________________________________________________________________ void AliRICH::AddRecHit3D(Int_t id, Float_t *rechit) { // // Add a RICH reconstructed hit to the list // //PH TClonesArray &lrec3D = *((TClonesArray*)(*fRecHits3D)[id]); TClonesArray &lrec3D = *((TClonesArray*)fRecHits3D->At(id)); new(lrec3D[fNrechits3D[id]++]) AliRICHRecHit3D(id,rechit); } //___________________________________________ void AliRICH::BuildGeometry() { // // Builds a TNode geometry for event display // TNode *node, *subnode, *top; const int kColorRICH = kRed; // top=gAlice->GetGeometry()->GetNode("alice"); AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); AliRICHSegmentationV0* segmentation; AliRICHChamber* iChamber; AliRICHGeometry* geometry; iChamber = &(pRICH->Chamber(0)); segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0); geometry=iChamber->GetGeometryModel(); new TBRIK("S_RICH","S_RICH","void",71.09999,11.5,73.15); Float_t padplane_width = segmentation->GetPadPlaneWidth(); Float_t padplane_length = segmentation->GetPadPlaneLength(); //printf("\n\n\n\n\n In BuildGeometry() npx: %d, npy: %d, dpx: %f, dpy:%f\n\n\n\n\n\n",segmentation->Npx(),segmentation->Npy(),segmentation->Dpx(),segmentation->Dpy()); new TBRIK("PHOTO","PHOTO","void", padplane_width/2,.1,padplane_length/2); //printf("\n\n\n\n\n Padplane w: %f l: %f \n\n\n\n\n", padplane_width/2,padplane_length/2); //printf("\n\n\n\n\n Padplane w: %f l: %f \n\n\n\n\n", segmentation->GetPadPlaneWidth(), segmentation->GetPadPlaneLength()); Float_t offset = 490 + 1.276 - geometry->GetGapThickness()/2; //distance from center of mother volume to methane Float_t deltaphi = 19.5; //phi angle between center of chambers - z direction Float_t deltatheta = 20; //theta angle between center of chambers - x direction Float_t cosphi = TMath::Cos(deltaphi*TMath::Pi()/180); Float_t sinphi = TMath::Sin(deltaphi*TMath::Pi()/180); Float_t costheta = TMath::Cos(deltatheta*TMath::Pi()/180); Float_t sintheta = TMath::Sin(deltatheta*TMath::Pi()/180); //printf("\n\n%f %f %f %f %f %f %f\n\n",offset,deltatheta,deltaphi,cosphi,costheta,sinphi,sintheta); new TRotMatrix("rot993","rot993",90., 0. , 90. - deltaphi, 90. , deltaphi, -90. ); new TRotMatrix("rot994","rot994",90., -deltatheta , 90. , 90.- deltatheta , 0. , 0. ); new TRotMatrix("rot995","rot995",90., 0. , 90. , 90. , 0. , 0. ); new TRotMatrix("rot996","rot996",90., deltatheta , 90. , 90 + deltatheta , 0. , 0. ); new TRotMatrix("rot997","rot997",90., 360. - deltatheta, 108.2 , 90.- deltatheta ,18.2 , 90 - deltatheta); new TRotMatrix("rot998","rot998",90., 0. , 90 + deltaphi , 90. , deltaphi, 90. ); new TRotMatrix("rot999","rot999",90., deltatheta , 108.2 , 90.+ deltatheta ,18.2 , 90 + deltatheta); Float_t pos1[3]={0. , offset*cosphi , offset*sinphi}; Float_t pos2[3]={offset*sintheta , offset*costheta , 0. }; Float_t pos3[3]={0. , offset , 0.}; Float_t pos4[3]={-offset*sintheta , offset*costheta , 0.}; Float_t pos5[3]={offset*sinphi , offset*costheta*cosphi, -offset*sinphi}; Float_t pos6[3]={0. , offset*cosphi , -offset*sinphi}; Float_t pos7[3]={ -offset*sinphi , offset*costheta*cosphi, -offset*sinphi}; top->cd(); //Float_t pos1[3]={0,471.8999,165.2599}; //Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2], //new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90); node = new TNode("RICH1","RICH1","S_RICH",pos1[0],pos1[1],pos1[2],"rot993"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); top->cd(); //Float_t pos2[3]={171,470,0}; //Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2], //new TRotMatrix("rot994","rot994",90,-20,90,70,0,0); node = new TNode("RICH2","RICH2","S_RICH",pos2[0],pos2[1],pos2[2],"rot994"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); top->cd(); //Float_t pos3[3]={0,500,0}; //Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2], //new TRotMatrix("rot995","rot995",90,0,90,90,0,0); node = new TNode("RICH3","RICH3","S_RICH",pos3[0],pos3[1],pos3[2],"rot995"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); top->cd(); //Float_t pos4[3]={-171,470,0}; //Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], //new TRotMatrix("rot996","rot996",90,20,90,110,0,0); node = new TNode("RICH4","RICH4","S_RICH",pos4[0],pos4[1],pos4[2],"rot996"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); top->cd(); //Float_t pos5[3]={161.3999,443.3999,-165.3}; //Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2], //new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70); node = new TNode("RICH5","RICH5","S_RICH",pos5[0],pos5[1],pos5[2],"rot997"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); top->cd(); //Float_t pos6[3]={0., 471.9, -165.3,}; //Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2], //new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90); node = new TNode("RICH6","RICH6","S_RICH",pos6[0],pos6[1],pos6[2],"rot998"); node->SetLineColor(kColorRICH); fNodes->Add(node);node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); top->cd(); //Float_t pos7[3]={-161.399,443.3999,-165.3}; //Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2], //new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110); node = new TNode("RICH7","RICH7","S_RICH",pos7[0],pos7[1],pos7[2],"rot999"); node->SetLineColor(kColorRICH); node->cd(); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,""); subnode->SetLineColor(kGreen); fNodes->Add(subnode); fNodes->Add(node); } //___________________________________________ void AliRICH::CreateGeometry() { // // Create the geometry for RICH version 1 // // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); AliRICHSegmentationV0* segmentation; AliRICHGeometry* geometry; AliRICHChamber* iChamber; iChamber = &(pRICH->Chamber(0)); segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0); geometry=iChamber->GetGeometryModel(); Float_t distance; distance = geometry->GetFreonThickness()/2 + geometry->GetQuartzThickness() + geometry->GetGapThickness(); geometry->SetRadiatorToPads(distance); //Opaque quartz thickness Float_t oqua_thickness = .5; //CsI dimensions //Float_t csi_length = 160*.8 + 2.6; //Float_t csi_width = 144*.84 + 2*2.6; Float_t csi_width = segmentation->Npx()*segmentation->Dpx() + segmentation->DeadZone(); Float_t csi_length = segmentation->Npy()*segmentation->Dpy() + 2*segmentation->DeadZone(); //printf("\n\n\n\n\n In CreateGeometry() npx: %d, npy: %d, dpx: %f, dpy:%f deadzone: %f \n\n\n\n\n\n",segmentation->Npx(),segmentation->Npy(),segmentation->Dpx(),segmentation->Dpy(),segmentation->DeadZone()); Int_t *idtmed = fIdtmed->GetArray()-999; Int_t i; Float_t zs; Int_t idrotm[1099]; Float_t par[3]; // --- Define the RICH detector // External aluminium box par[0] = 68.8; par[1] = 13; //Original Settings par[2] = 70.86; /*par[0] = 73.15; par[1] = 11.5; par[2] = 71.1;*/ gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3); // Air par[0] = 66.3; par[1] = 13; //Original Settings par[2] = 68.35; /*par[0] = 66.55; par[1] = 11.5; par[2] = 64.8;*/ gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); // Air 2 (cutting the lower part of the box) par[0] = 1.25; par[1] = 3; //Original Settings par[2] = 70.86; gMC->Gsvolu("AIR2", "BOX ", idtmed[1000], par, 3); // Air 3 (cutting the lower part of the box) par[0] = 66.3; par[1] = 3; //Original Settings par[2] = 1.2505; gMC->Gsvolu("AIR3", "BOX ", idtmed[1000], par, 3); // Honeycomb par[0] = 66.3; par[1] = .188; //Original Settings par[2] = 68.35; /*par[0] = 66.55; par[1] = .188; par[2] = 63.1;*/ gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3); // Aluminium sheet par[0] = 66.3; par[1] = .025; //Original Settings par[2] = 68.35; /*par[0] = 66.5; par[1] = .025; par[2] = 63.1;*/ gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3); // Quartz par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2; /*par[0] = 63.1; par[1] = .25; //Original Settings par[2] = 65.5;*/ /*par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2;*/ //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]); gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3); // Spacers (cylinders) par[0] = 0.; par[1] = .5; par[2] = geometry->GetFreonThickness()/2; gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3); // Feet (freon slabs supports) par[0] = .7; par[1] = .3; par[2] = 1.9; gMC->Gsvolu("FOOT", "BOX", idtmed[1009], par, 3); // Opaque quartz par[0] = geometry->GetQuartzWidth()/2; par[1] = .2; par[2] = geometry->GetQuartzLength()/2; /*par[0] = 61.95; par[1] = .2; //Original Settings par[2] = 66.5;*/ /*par[0] = 66.5; par[1] = .2; par[2] = 61.95;*/ gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3); // Frame of opaque quartz par[0] = geometry->GetOuterFreonWidth()/2; //+ oqua_thickness; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2; //+ oqua_thickness; /*par[0] = 20.65; par[1] = .5; //Original Settings par[2] = 66.5;*/ /*par[0] = 66.5; par[1] = .5; par[2] = 20.65;*/ gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2; gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3); // Little bar of opaque quartz //par[0] = .275; //par[1] = geometry->GetQuartzThickness()/2; //par[2] = geometry->GetInnerFreonLength()/2 - 2.4; //par[2] = geometry->GetInnerFreonLength()/2; //+ oqua_thickness; /*par[0] = .275; par[1] = .25; //Original Settings par[2] = 63.1;*/ /*par[0] = 63.1; par[1] = .25; par[2] = .275;*/ //gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3); // Freon par[0] = geometry->GetOuterFreonWidth()/2 - oqua_thickness; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2 - 2*oqua_thickness; /*par[0] = 20.15; par[1] = .5; //Original Settings par[2] = 65.5;*/ /*par[0] = 65.5; par[1] = .5; par[2] = 20.15;*/ gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3); par[0] = geometry->GetInnerFreonWidth()/2 - oqua_thickness; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 - 2*oqua_thickness; gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3); // Methane //par[0] = 64.8; par[0] = csi_width/2; par[1] = geometry->GetGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); //par[2] = 64.8; par[2] = csi_length/2; gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3); // Methane gap //par[0] = 64.8; par[0] = csi_width/2; par[1] = geometry->GetProximityGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); //par[2] = 64.8; par[2] = csi_length/2; gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3); // CsI photocathode //par[0] = 64.8; par[0] = csi_width/2; par[1] = .25; //par[2] = 64.8; par[2] = csi_length/2; gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3); // Anode grid par[0] = 0.; par[1] = .001; par[2] = 20.; gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3); // Wire supports // Bar of metal par[0] = csi_width/2; par[1] = 1.05; par[2] = 1.05; gMC->Gsvolu("WSMe", "BOX ", idtmed[1009], par, 3); // Ceramic pick up (base) par[0] = csi_width/2; par[1] = .25; par[2] = 1.05; gMC->Gsvolu("WSG1", "BOX ", idtmed[1010], par, 3); // Ceramic pick up (head) par[0] = csi_width/2; par[1] = .1; par[2] = .1; gMC->Gsvolu("WSG2", "BOX ", idtmed[1010], par, 3); // Aluminium supports for methane and CsI // Short bar par[0] = csi_width/2; par[1] = geometry->GetGapThickness()/2 + .25; par[2] = (68.35 - csi_length/2)/2; gMC->Gsvolu("SMSH", "BOX", idtmed[1009], par, 3); // Long bar par[0] = (66.3 - csi_width/2)/2; par[1] = geometry->GetGapThickness()/2 + .25; par[2] = csi_length/2 + 68.35 - csi_length/2; gMC->Gsvolu("SMLG", "BOX", idtmed[1009], par, 3); // Aluminium supports for freon // Short bar par[0] = geometry->GetQuartzWidth()/2; par[1] = .3; par[2] = (68.35 - geometry->GetQuartzLength()/2)/2; gMC->Gsvolu("SFSH", "BOX", idtmed[1009], par, 3); // Long bar par[0] = (66.3 - geometry->GetQuartzWidth()/2)/2; par[1] = .3; par[2] = geometry->GetQuartzLength()/2 + 68.35 - geometry->GetQuartzLength()/2; gMC->Gsvolu("SFLG", "BOX", idtmed[1009], par, 3); // PCB backplane par[0] = csi_width/2; par[1] = .25; par[2] = csi_length/4 -.5025; gMC->Gsvolu("PCB ", "BOX", idtmed[1011], par, 3); // Backplane supports // Aluminium slab par[0] = 33.15; par[1] = 2; par[2] = 21.65; gMC->Gsvolu("BACK", "BOX", idtmed[1009], par, 3); // Big hole par[0] = 9.05; par[1] = 2; par[2] = 4.4625; gMC->Gsvolu("BKHL", "BOX", idtmed[1000], par, 3); // Small hole par[0] = 5.7; par[1] = 2; par[2] = 4.4625; gMC->Gsvolu("BKHS", "BOX", idtmed[1000], par, 3); // Place holes inside backplane support gMC->Gspos("BKHS", 1, "BACK", .8 + 5.7,0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 2, "BACK", -.8 - 5.7,0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 3, "BACK", .8 + 5.7,0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 4, "BACK", -.8 - 5.7,0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 5, "BACK", .8 + 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 6, "BACK", -.8 - 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 7, "BACK", .8 + 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHS", 8, "BACK", -.8 - 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 1, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 2, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 3, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 4, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 5, "BACK", .8 + 11.4+ 1.6 + 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 6, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 7, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); gMC->Gspos("BKHL", 8, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY"); // --- Places the detectors defined with GSVOLU // Place material inside RICH gMC->Gspos("SRIC", 1, "RICH", 0.,0., 0., 0, "ONLY"); gMC->Gspos("AIR2", 1, "RICH", 66.3 + 1.2505, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY"); gMC->Gspos("AIR2", 2, "RICH", -66.3 - 1.2505, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY"); gMC->Gspos("AIR3", 1, "RICH", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, -68.35 - 1.25, 0, "ONLY"); gMC->Gspos("AIR3", 2, "RICH", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 68.35 + 1.25, 0, "ONLY"); gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.025, 0., 0, "ONLY"); gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .188, 0., 0, "ONLY"); gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .025, 0., 0, "ONLY"); gMC->Gspos("FOOT", 1, "SRIC", 64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 2, "SRIC", 21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3 , 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 3, "SRIC", -21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 4, "SRIC", -64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY"); gMC->Gspos("FOOT", 5, "SRIC", 64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 6, "SRIC", 21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 7, "SRIC", -21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("FOOT", 8, "SRIC", -64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY"); gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY"); // Supports placing // Methane supports gMC->Gspos("SMLG", 1, "SRIC", csi_width/2 + (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY"); gMC->Gspos("SMLG", 2, "SRIC", - csi_width/2 - (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY"); gMC->Gspos("SMSH", 1, "SRIC", 0., 1.276 + .25, csi_length/2 + (68.35 - csi_length/2)/2, 0, "ONLY"); gMC->Gspos("SMSH", 2, "SRIC", 0., 1.276 + .25, - csi_length/2 - (68.35 - csi_length/2)/2, 0, "ONLY"); //Freon supports Float_t supp_y = 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness() - .2 + .3; //y position of freon supports gMC->Gspos("SFLG", 1, "SRIC", geometry->GetQuartzWidth()/2 + (66.3 - geometry->GetQuartzWidth()/2)/2, supp_y, 0., 0, "ONLY"); gMC->Gspos("SFLG", 2, "SRIC", - geometry->GetQuartzWidth()/2 - (66.3 - geometry->GetQuartzWidth()/2)/2, supp_y, 0., 0, "ONLY"); gMC->Gspos("SFSH", 1, "SRIC", 0., supp_y, geometry->GetQuartzLength()/2 + (68.35 - geometry->GetQuartzLength()/2)/2, 0, "ONLY"); gMC->Gspos("SFSH", 2, "SRIC", 0., supp_y, - geometry->GetQuartzLength()/2 - (68.35 - geometry->GetQuartzLength()/2)/2, 0, "ONLY"); AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.); //Placing of the spacers inside the freon slabs Int_t nspacers = 30; //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); //printf("Nspacers: %d", nspacers); for (i = 0; i < nspacers/3; i++) { zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", 10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = nspacers/3; i < (nspacers*2)/3; i++) { zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", 0, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = (nspacers*2)/3; i < nspacers; ++i) { zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE1", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = 0; i < nspacers/3; i++) { zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", 10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = nspacers/3; i < (nspacers*2)/3; i++) { zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", 0, 0., zs, idrotm[1019], "ONLY"); //Original settings } for (i = (nspacers*2)/3; i < nspacers; ++i) { zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2; gMC->Gspos("SPAC", i, "FRE2", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings } gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2 + 2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3) // printf("Opaque quartz in SRIC %f\n", 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2); gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2) - 2, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (-31.3) //gMC->Gspos("BARR", 1, "QUAR", - geometry->GetInnerFreonWidth()/2 - oqua_thickness, 0., 0., 0, "ONLY"); //Original settings (-21.65) //gMC->Gspos("BARR", 2, "QUAR", geometry->GetInnerFreonWidth()/2 + oqua_thickness, 0., 0., 0, "ONLY"); //Original settings (21.65) gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + .25, 0., 0, "ONLY"); printf("CSI pos: %f\n",1.276 + geometry->GetGapThickness()/2 + .25); // Wire support placing gMC->Gspos("WSG2", 1, "GAP ", 0., geometry->GetProximityGapThickness()/2 - .1, 0., 0, "ONLY"); gMC->Gspos("WSG1", 1, "CSI ", 0., 0., 0., 0, "ONLY"); gMC->Gspos("WSMe", 1, "SRIC ", 0., 1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, 0., 0, "ONLY"); // Backplane placing gMC->Gspos("BACK", 1, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 43.3, 0, "ONLY"); gMC->Gspos("BACK", 2, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2 , 43.3, 0, "ONLY"); gMC->Gspos("BACK", 3, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY"); gMC->Gspos("BACK", 4, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY"); gMC->Gspos("BACK", 5, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY"); gMC->Gspos("BACK", 6, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY"); // PCB placing gMC->Gspos("PCB ", 1, "SRIC ", 0., 1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, csi_width/4 + .5025 + 2.5, 0, "ONLY"); gMC->Gspos("PCB ", 2, "SRIC ", 0., 1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, -csi_width/4 - .5025 - 2.5, 0, "ONLY"); //printf("Position of the gap: %f to %f\n", 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - .2, 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 + .2); // Place RICH inside ALICE apparatus /* old values AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.); AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.); AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.); AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.); AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.); AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.); AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.); gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26, idrotm[1000], "ONLY"); gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0., idrotm[1001], "ONLY"); gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0., idrotm[1002], "ONLY"); gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0., idrotm[1003], "ONLY"); gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3, idrotm[1004], "ONLY"); gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3, idrotm[1005], "ONLY"); gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY");*/ // The placing of the chambers is measured from the vertex to the base of the methane vessel (490 cm) Float_t offset = 490 + 1.276 - geometry->GetGapThickness()/2; //distance from center of mother volume to methane Float_t deltaphi = 19.5; //phi angle between center of chambers - z direction Float_t deltatheta = 20; //theta angle between center of chambers - x direction Float_t cosphi = TMath::Cos(deltaphi*TMath::Pi()/180); Float_t sinphi = TMath::Sin(deltaphi*TMath::Pi()/180); Float_t costheta = TMath::Cos(deltatheta*TMath::Pi()/180); Float_t sintheta = TMath::Sin(deltatheta*TMath::Pi()/180); //printf("\n\n%f %f %f %f %f %f %f\n\n",offset,deltatheta,deltaphi,cosphi,costheta,sinphi,sintheta); AliMatrix(idrotm[1000], 90., 0. , 90. - deltaphi, 90. , deltaphi, -90. ); AliMatrix(idrotm[1001], 90., -deltatheta , 90. , 90.- deltatheta , 0. , 0. ); AliMatrix(idrotm[1002], 90., 0. , 90. , 90. , 0. , 0. ); AliMatrix(idrotm[1003], 90., deltatheta , 90. , 90 + deltatheta , 0. , 0. ); AliMatrix(idrotm[1004], 90., 360. - deltatheta, 108.2 , 90.- deltatheta ,18.2 , 90 - deltatheta); AliMatrix(idrotm[1005], 90., 0. , 90 + deltaphi , 90. , deltaphi, 90. ); AliMatrix(idrotm[1006], 90., deltatheta , 108.2 , 90.+ deltatheta ,18.2 , 90 + deltatheta); gMC->Gspos("RICH", 1, "ALIC", 0. , offset*cosphi , offset*sinphi ,idrotm[1000], "ONLY"); gMC->Gspos("RICH", 2, "ALIC", (offset)*sintheta , offset*costheta , 0. ,idrotm[1001], "ONLY"); gMC->Gspos("RICH", 3, "ALIC", 0. , offset , 0. ,idrotm[1002], "ONLY"); gMC->Gspos("RICH", 4, "ALIC", -(offset)*sintheta, offset*costheta , 0. ,idrotm[1003], "ONLY"); gMC->Gspos("RICH", 5, "ALIC", (offset)*sinphi , offset*costheta*cosphi, -offset*sinphi,idrotm[1004], "ONLY"); gMC->Gspos("RICH", 6, "ALIC", 0. , offset*cosphi , -offset*sinphi,idrotm[1005], "ONLY"); gMC->Gspos("RICH", 7, "ALIC", -(offset)*sinphi , offset*costheta*cosphi, -offset*sinphi,idrotm[1006], "ONLY"); } //___________________________________________ void AliRICH::CreateMaterials() { // // *** DEFINITION OF AVAILABLE RICH MATERIALS *** // ORIGIN : NICK VAN EIJNDHOVEN // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); Int_t i; /************************************Antonnelo's Values (14-vectors)*****************************************/ /* Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9, 6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 }; Float_t rIndexQuarz[14] = { 1.528309,1.533333, 1.538243,1.544223,1.550568,1.55777, 1.565463,1.574765,1.584831,1.597027, 1.611858,1.6277,1.6472,1.6724 }; Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t abscoFreon[14] = { 179.0987,179.0987, 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. }; //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, // 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52, 14.177,9.282,4.0925,1.149,.3627,.10857 }; Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6, 1e6,1e6,1e6 }; Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575, .17425,.1785,.1836,.1904,.1938,.221 }; Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ /**********************************End of Antonnelo's Values**********************************/ /**********************************Values from rich_media.f (31-vectors)**********************************/ //Photons energy intervals Float_t ppckov[26]; for (i=0;i<26;i++) { ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9; //printf ("Energy intervals: %e\n",ppckov[i]); } //Refraction index for quarz Float_t rIndexQuarz[26]; Float_t e1= 10.666; Float_t e2= 18.125; Float_t f1= 46.411; Float_t f2= 228.71; for (i=0;i<26;i++) { Float_t ene=ppckov[i]*1e9; Float_t a=f1/(e1*e1 - ene*ene); Float_t b=f2/(e2*e2 - ene*ene); rIndexQuarz[i] = TMath::Sqrt(1. + a + b ); //printf ("rIndexQuarz: %e\n",rIndexQuarz[i]); } //Refraction index for opaque quarz, methane and grid Float_t rIndexOpaqueQuarz[26]; Float_t rIndexMethane[26]; Float_t rIndexGrid[26]; for (i=0;i<26;i++) { rIndexOpaqueQuarz[i]=1; rIndexMethane[i]=1.000444; rIndexGrid[i]=1; //printf ("rIndexOpaqueQuarz , etc: %e, %e, %e\n",rIndexOpaqueQuarz[i], rIndexMethane[i], rIndexGrid[i]=1); } //Absorption index for freon Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 7.069031, 4.461292, 2.028366, 1.293013, .577267, .40746, .334964, 0., 0., 0.}; //Absorption index for quarz /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902, .906,.907,.907,.907}; Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0, 215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0}; Float_t abscoQuarz[31]; for (Int_t i=0;i<31;i++) { Float_t Xlam = 1237.79 / (ppckov[i]*1e9); if (Xlam <= 160) abscoQuarz[i] = 0; if (Xlam > 250) abscoQuarz[i] = 1; else { for (Int_t j=0;j<21;j++) { //printf ("Passed\n"); if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1]) { Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]); Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]); abscoQuarz[i] = -5.0/(TMath::Log(Abso)); } } } printf ("abscoQuarz: %e abscoFreon: %e for energy: %e\n",abscoQuarz[i],abscoFreon[i],ppckov[i]); }*/ /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 , 39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 17.94531, 11.88753, 5.99128, 3.83503, 2.36661, 1.53155, 1.30582, 1.08574, .8779708, .675275, 0., 0., 0.}; for (Int_t i=0;i<31;i++) { abscoQuarz[i] = abscoQuarz[i]/10; }*/ Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004, 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627, .192, .1497, .10857}; //Absorption index for methane Float_t abscoMethane[26]; for (i=0;i<26;i++) { abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); //printf("abscoMethane: %e for energy: %e\n", abscoMethane[i],ppckov[i]*1e9); } //Absorption index for opaque quarz, csi and grid, efficiency for all and grid Float_t abscoOpaqueQuarz[26]; Float_t abscoCsI[26]; Float_t abscoGrid[26]; Float_t efficAll[26]; Float_t efficGrid[26]; for (i=0;i<26;i++) { abscoOpaqueQuarz[i]=1e-5; abscoCsI[i]=1e-4; abscoGrid[i]=1e-4; efficAll[i]=1; efficGrid[i]=1; //printf ("All must be 1: %e, %e, %e, %e, %e\n",abscoOpaqueQuarz[i],abscoCsI[i],abscoGrid[i],efficAll[i],efficGrid[i]); } //Efficiency for csi Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125, 0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999, 0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592, 0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987}; //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND //UNPOLARIZED PHOTONS for (i=0;i<26;i++) { efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9); } /*******************************************End of rich_media.f***************************************/ Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, zmet[2], zqua[2]; Int_t nlmatfre; Float_t densquao; Int_t nlmatmet, nlmatqua; Float_t wmatquao[2], rIndexFreon[26]; Float_t aquao[2], epsil, stmin, zquao[2]; Int_t nlmatquao; Float_t radlal, densal, tmaxfd, deemax, stemax; Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2]; Int_t *idtmed = fIdtmed->GetArray()-999; // --- Photon energy (GeV) // --- Refraction indexes for (i = 0; i < 26; ++i) { rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177; //rIndexFreon[i] = 1; //printf ("rIndexFreon: %e \n efficCsI: %e for energy: %e\n",rIndexFreon[i], efficCsI[i], ppckov[i]); } // --- Detection efficiencies (quantum efficiency for CsI) // --- Define parameters for honeycomb. // Used carbon of equivalent rad. lenght ahon = 12.01; zhon = 6.; denshon = 0.1; radlhon = 18.8; // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) aquao[0] = 28.09; aquao[1] = 16.; zquao[0] = 14.; zquao[1] = 8.; densquao = 2.64; nlmatquao = -2; wmatquao[0] = 1.; wmatquao[1] = 2.; // --- Parameters to include in GSMIXT, relative to Freon (C6F14) afre[0] = 12.; afre[1] = 19.; zfre[0] = 6.; zfre[1] = 9.; densfre = 1.7; nlmatfre = -2; wmatfre[0] = 6.; wmatfre[1] = 14.; // --- Parameters to include in GSMIXT, relative to methane (CH4) amet[0] = 12.01; amet[1] = 1.; zmet[0] = 6.; zmet[1] = 1.; densmet = 7.17e-4; nlmatmet = -2; wmatmet[0] = 1.; wmatmet[1] = 4.; // --- Parameters to include in GSMIXT, relative to anode grid (Cu) agri = 63.54; zgri = 29.; densgri = 8.96; radlgri = 1.43; // --- Parameters to include in GSMATE related to aluminium sheet aal = 26.98; zal = 13.; densal = 2.7; radlal = 8.9; // --- Glass parameters Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; Float_t zglass[5]={ 6., 14., 8., 5., 11.}; Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; Float_t dglass=1.74; AliMaterial(1, "Air $", 14.61, 7.3, .001205, 30420., 67500); AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0); AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0); AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao); AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre); AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet); AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet); AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0); AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0); AliMixture(32, "GLASS",aglass, zglass, dglass, 5, wglass); AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); tmaxfd = -10.; stemax = -.1; deemax = -.2; epsil = .001; stmin = -.001; AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin); AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(11, "GLASS", 32, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(12, "PCB_COPPER", 31, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); gMC->SetCerenkov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz); gMC->SetCerenkov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon); gMC->SetCerenkov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane); gMC->SetCerenkov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); gMC->SetCerenkov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); gMC->SetCerenkov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane); gMC->SetCerenkov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); gMC->SetCerenkov(idtmed[1010], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); } //___________________________________________ Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt(1-pdoti*pdoti); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return(fresn); } //__________________________________________ Float_t AliRICH::AbsoCH4(Float_t x) { //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31) Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.}; //MB X 10^22 //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145}; Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55}; const Float_t kLosch=2.686763E19; // LOSCHMIDT NUMBER IN CM-3 const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.; Float_t pn=kPressure/760.; Float_t tn=kTemperature/273.16; // ------- METHANE CROSS SECTION ----------------- // ASTROPH. J. 214, L47 (1978) Float_t sm=0; if (x<7.75) sm=.06e-22; if(x>=7.75 && x<=8.1) { Float_t c0=-1.655279e-1; Float_t c1=6.307392e-2; Float_t c2=-8.011441e-3; Float_t c3=3.392126e-4; sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18; } if (x> 8.1) { Int_t j=0; while (x<=em[j] && x>=em[j+1]) { j++; Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]); sm=(sch4[j]+a*(x-em[j]))*1e-22; } } Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; Float_t abslm=1./sm/dm; // ------- ISOBUTHANE CROSS SECTION -------------- // i-C4H10 (ai) abs. length from curves in // Lu-McDonald paper for BARI RICH workshop . // ----------------------------------------------------------- Float_t ai; Float_t absli; if (kIgas2 != 0) { if (x<7.25) ai=100000000.; if(x>=7.25 && x<7.375) ai=24.3; if(x>=7.375) ai=.0000000001; Float_t si = 1./(ai*kLosch*273.16/293.); // ISOB. CRO.SEC.IN CM2 Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; absli =1./si/di; } else absli=1.e18; // --------------------------------------------------------- // // transmission of O2 // // y= path in cm, x=energy in eV // so= cross section for UV absorption in cm2 // do= O2 molecular density in cm-3 // --------------------------------------------------------- Float_t abslo; Float_t so=0; if(x>=6.0) { if(x>=6.0 && x<6.5) { so=3.392709e-13 * TMath::Exp(2.864104 *x); so=so*1e-18; } if(x>=6.5 && x<7.0) { so=2.910039e-34 * TMath::Exp(10.3337*x); so=so*1e-18; } if (x>=7.0) { Float_t a0=-73770.76; Float_t a1=46190.69; Float_t a2=-11475.44; Float_t a3=1412.611; Float_t a4=-86.07027; Float_t a5=2.074234; so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x); so=so*1e-18; } Float_t dox=(kOxy/1e6)*kLosch*pn/tn; abslo=1./so/dox; } else abslo=1.e18; // --------------------------------------------------------- // // transmission of H2O // // y= path in cm, x=energy in eV // sw= cross section for UV absorption in cm2 // dw= H2O molecular density in cm-3 // --------------------------------------------------------- Float_t abslw; Float_t b0=29231.65; Float_t b1=-15807.74; Float_t b2=3192.926; Float_t b3=-285.4809; Float_t b4=9.533944; if(x>6.75) { Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x); sw=sw*1e-18; Float_t dw=(kWater/1e6)*kLosch*pn/tn; abslw=1./sw/dw; } else abslw=1.e18; // --------------------------------------------------------- Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw); return (alength); } //___________________________________________ Int_t AliRICH::DistancetoPrimitive(Int_t , Int_t ) { // Default value return 9999; } //___________________________________________ void AliRICH::MakeBranch(Option_t* option, const char *file) { // Create Tree branches for the RICH. const Int_t kBufferSize = 4000; char branchname[20]; AliDetector::MakeBranch(option,file); const char *cH = strstr(option,"H"); const char *cD = strstr(option,"D"); const char *cR = strstr(option,"R"); const char *cS = strstr(option,"S"); if (cH) { sprintf(branchname,"%sCerenkov",GetName()); if (fCerenkovs && gAlice->TreeH()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeH(),branchname, &fCerenkovs, kBufferSize, file) ; MakeBranchInTree(gAlice->TreeH(),branchname, &fCerenkovs, kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); } sprintf(branchname,"%sSDigits",GetName()); if (fSDigits && gAlice->TreeH()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeH(),branchname, &fSDigits, kBufferSize, file) ; MakeBranchInTree(gAlice->TreeH(),branchname, &fSDigits, kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); //printf("Making branch %sSDigits in TreeH\n",GetName()); } } if (cS) { sprintf(branchname,"%sSDigits",GetName()); if (fSDigits && gAlice->TreeS()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeS(),branchname, &fSDigits, kBufferSize, file) ; MakeBranchInTree(gAlice->TreeS(),branchname, &fSDigits, kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); //printf("Making branch %sSDigits in TreeS\n",GetName()); } } if (cD) { // // one branch for digits per chamber // Int_t i; for (i=0; iTreeD()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeD(),branchname, &((*fDchambers)[i]), kBufferSize, file) ; MakeBranchInTree(gAlice->TreeD(),branchname, &((*fDchambers)[i]), kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); //printf("Making Branch %sDigits%d\n",GetName(),i+1); } } } if (cR) { // // one branch for raw clusters per chamber // //printf("Called MakeBranch for TreeR\n"); Int_t i; for (i=0; iTreeR()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRawClusters)[i]), kBufferSize, file) ; MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRawClusters)[i]), kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); } } // // one branch for rec hits per chamber // for (i=0; iTreeR()) { //TBranch* branch = MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRecHits1D)[i]), kBufferSize, file) ; MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRecHits1D)[i]), kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); } } for (i=0; iTreeR()) { MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRecHits3D)[i]), kBufferSize, file) ; //branch->SetAutoDelete(kFALSE); } } } } //___________________________________________ void AliRICH::SetTreeAddress() { // Set branch address for the Hits and Digits Tree. char branchname[20]; Int_t i; AliDetector::SetTreeAddress(); TBranch *branch; TTree *treeH = gAlice->TreeH(); TTree *treeD = gAlice->TreeD(); TTree *treeR = gAlice->TreeR(); TTree *treeS = gAlice->TreeS(); if (treeH) { if (fCerenkovs) { branch = treeH->GetBranch("RICHCerenkov"); if (branch) branch->SetAddress(&fCerenkovs); } if (fSDigits) { branch = treeH->GetBranch("RICHSDigits"); if (branch) { branch->SetAddress(&fSDigits); //printf("Setting sdigits branch address at %p in TreeH\n",&fSDigits); } } } if (treeS) { if (fSDigits) { branch = treeS->GetBranch("RICHSDigits"); if (branch) { branch->SetAddress(&fSDigits); //printf("Setting sdigits branch address at %p in TreeS\n",&fSDigits); } } } if (treeD) { for (int i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fDchambers)[i])); } } } if (treeR) { for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRawClusters)[i])); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRecHits1D)[i])); } } for (i=0; iGetBranch(branchname); if (branch) branch->SetAddress(&((*fRecHits3D)[i])); } } } } //___________________________________________ void AliRICH::ResetHits() { // Reset number of clusters and the cluster array for this detector AliDetector::ResetHits(); fNSDigits = 0; fNcerenkovs = 0; if (fSDigits) fSDigits->Clear(); if (fCerenkovs) fCerenkovs->Clear(); } //____________________________________________ void AliRICH::ResetDigits() { // // Reset number of digits and the digits array for this detector // for ( int i=0;iClear(); if (fDchambers && fDchambers->At(i)) fDchambers->At(i)->Clear(); if (fNdch) fNdch[i]=0; } } //____________________________________________ void AliRICH::ResetRawClusters() { // // Reset number of raw clusters and the raw clust array for this detector // for ( int i=0;iClear(); if (fRawClusters->At(i)) ((TClonesArray*)fRawClusters->At(i))->Clear(); if (fNrawch) fNrawch[i]=0; } } //____________________________________________ void AliRICH::ResetRecHits1D() { // // Reset number of raw clusters and the raw clust array for this detector // for ( int i=0;iClear(); if (fRecHits1D->At(i)) ((TClonesArray*)fRecHits1D->At(i))->Clear(); if (fNrechits1D) fNrechits1D[i]=0; } } //____________________________________________ void AliRICH::ResetRecHits3D() { // // Reset number of raw clusters and the raw clust array for this detector // for ( int i=0;iClear(); if (fRecHits3D->At(i)) ((TClonesArray*)fRecHits3D->At(i))->Clear(); if (fNrechits3D) fNrechits3D[i]=0; } } //___________________________________________ void AliRICH::SetGeometryModel(Int_t id, AliRICHGeometry *geometry) { // // Setter for the RICH geometry model // //PH ((AliRICHChamber*) (*fChambers)[id])->GeometryModel(geometry); ((AliRICHChamber*)fChambers->At(id))->GeometryModel(geometry); } //___________________________________________ void AliRICH::SetSegmentationModel(Int_t id, AliSegmentation *segmentation) { // // Setter for the RICH segmentation model // //PH ((AliRICHChamber*) (*fChambers)[id])->SetSegmentationModel(segmentation); ((AliRICHChamber*)fChambers->At(id))->SetSegmentationModel(segmentation); } //___________________________________________ void AliRICH::SetResponseModel(Int_t id, AliRICHResponse *response) { // // Setter for the RICH response model // //PH ((AliRICHChamber*) (*fChambers)[id])->ResponseModel(response); ((AliRICHChamber*)fChambers->At(id))->ResponseModel(response); } void AliRICH::SetReconstructionModel(Int_t id, AliRICHClusterFinder *reconst) { // // Setter for the RICH reconstruction model (clusters) // //PH ((AliRICHChamber*) (*fChambers)[id])->SetReconstructionModel(reconst); ((AliRICHChamber*)fChambers->At(id))->SetReconstructionModel(reconst); } //___________________________________________ void AliRICH::StepManager() { // Full Step Manager Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; static Float_t hits[22]; static Float_t ckovData[19]; TLorentzVector position; TLorentzVector momentum; Float_t pos[3]; Float_t mom[4]; Float_t localPos[3]; Float_t localMom[4]; Float_t localTheta,localPhi; Float_t theta,phi; Float_t destep, step; Float_t ranf[2]; Int_t nPads; Float_t coscerenkov; static Float_t eloss, xhit, yhit, tlength; const Float_t kBig=1.e10; TClonesArray &lhits = *fHits; TParticle *current = (TParticle*)(*gAlice->Particles())[gAlice->CurrentTrack()]; //if (current->Energy()>1) //{ // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); Float_t cherenkovLoss=0; //gAlice->KeepTrack(gAlice->CurrentTrack()); gMC->TrackPosition(position); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); //bzero((char *)ckovData,sizeof(ckovData)*19); ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit ckovData[6] = 0; // dummy track length //ckovData[11] = gAlice->CurrentTrack(); //printf("\n+++++++++++\nTrack: %d\n++++++++++++\n",gAlice->CurrentTrack()); //AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); /********************Store production parameters for Cerenkov photons************************/ //is it a Cerenkov photon? if (gMC->TrackPid() == 50000050) { //if (gMC->VolId("GAP ")==gMC->CurrentVolID(copy)) //{ Float_t ckovEnergy = current->Energy(); //energy interval for tracking if (ckovEnergy > 5.6e-09 && ckovEnergy < 7.8e-09 ) //if (ckovEnergy > 0) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Track entered (1)\n"); if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { //is it in freo? if (gMC->IsNewTrack()){ //is it the first step? //printf("I'm in!\n"); Int_t mother = current->GetFirstMother(); //printf("Second Mother:%d\n",current->GetSecondMother()); ckovData[10] = mother; ckovData[11] = gAlice->CurrentTrack(); ckovData[12] = 1; //Media where photon was produced 1->Freon, 2->Quarz //printf("Produced in FREO\n"); fCkovNumber++; fFreonProd=1; //printf("Index: %d\n",fCkovNumber); } //first step question } //freo question if (gMC->IsNewTrack()){ //is it first step? if (gMC->VolId("QUAR")==gMC->CurrentVolID(copy)) //is it in quarz? { ckovData[12] = 2; //printf("Produced in QUAR\n"); } //quarz question } //first step question //printf("Before %d\n",fFreonProd); } //track entering question if (ckovData[12] == 1) //was it produced in Freon? //if (fFreonProd == 1) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Track entered (2)\n"); //printf("Current volume (should be META): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("META"),gMC->CurrentVolID(copy)); if (gMC->VolId("META")==gMC->CurrentVolID(copy)) //is it in gap? { //printf("Got in META\n"); gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); // Z-position for hit /**************** Photons lost in second grid have to be calculated by hand************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = (1. - .025 / cophi) * (1. - .05 / cophi); gMC->Rndm(ranf, 1); //printf("grid calculation:%f\n",t); if (ranf[0] > t) { gMC->StopTrack(); ckovData[13] = 5; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (1)!\n"); //printf("Lost one in grid\n"); } /**********************************************************************************/ } //gap //printf("Current volume (should be CSI) (1): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("CSI "),gMC->CurrentVolID(copy)); if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) //is it in csi? { //printf("Got in CSI\n"); gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); /********* Photons lost by Fresnel reflection have to be calculated by hand********/ /***********************Cerenkov phtons (always polarised)*************************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = Fresnel(ckovEnergy*1e9,cophi,1); gMC->Rndm(ranf, 1); if (ranf[0] < t) { gMC->StopTrack(); ckovData[13] = 6; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (2)!\n"); //printf("Lost by Fresnel\n"); } /**********************************************************************************/ } } //track entering? /********************Evaluation of losses************************/ /******************still in the old fashion**********************/ TArrayI procs; Int_t i1 = gMC->StepProcesses(procs); //number of physics mechanisms acting on the particle for (Int_t i = 0; i < i1; ++i) { // Reflection loss if (procs[i] == kPLightReflection) { //was it reflected ckovData[13]=10; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=1; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=2; //gMC->StopTrack(); //AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); } //reflection question // Absorption loss else if (procs[i] == kPLightAbsorption) { //was it absorbed? //printf("Got in absorption\n"); ckovData[13]=20; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=11; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=12; if (gMC->CurrentVolID(copy) == gMC->VolId("META")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("GAP ")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("SRIC")) ckovData[13]=15; // CsI inefficiency if (gMC->CurrentVolID(copy) == gMC->VolId("CSI ")) { ckovData[13]=16; } gMC->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (3)!\n"); //printf("Added cerenkov %d\n",fCkovNumber); } //absorption question // Photon goes out of tracking scope else if (procs[i] == kPStop) { //is it below energy treshold? ckovData[13]=21; gMC->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (4)!\n"); } // energy treshold question } //number of mechanisms cycle /**********************End of evaluation************************/ } //freon production question } //energy interval question //}//inside the proximity gap question } //cerenkov photon question /**************************************End of Production Parameters Storing*********************/ /*******************************Treat photons that hit the CsI (Ckovs and Feedbacks)************/ if (gMC->TrackPid() == 50000050 || gMC->TrackPid() == 50000051) { //printf("Cerenkov\n"); //if (gMC->TrackPid() == 50000051) //printf("Tracking a feedback\n"); if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) { //printf("Current volume (should be CSI) (2): %s\n",gMC->CurrentVolName()); //printf("VolId: %d, CurrentVolID: %d\n",gMC->VolId("CSI "),gMC->CurrentVolID(copy)); //printf("Got in CSI\n"); //printf("Tracking a %d\n",gMC->TrackPid()); if (gMC->Edep() > 0.){ gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); gMC->CurrentVolOffID(2,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); /*if (gMC->TrackPid() == 50000051){ fFeedbacks++; printf("Feedbacks:%d\n",fFeedbacks); }*/ //PH ((AliRICHChamber*) (*fChambers)[idvol]) ((AliRICHChamber*)fChambers->At(idvol)) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if(idvolTrackPid(); // particle type ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit ckovData[4] = theta; // theta angle of incidence ckovData[5] = phi; // phi angle of incidence ckovData[8] = (Float_t) fNSDigits; // first sdigit ckovData[9] = -1; // last pad hit ckovData[13] = 4; // photon was detected ckovData[14] = mom[0]; ckovData[15] = mom[1]; ckovData[16] = mom[2]; destep = gMC->Edep(); gMC->SetMaxStep(kBig); cherenkovLoss += destep; ckovData[7]=cherenkovLoss; nPads = Hits2SDigits(localPos[0],localPos[2],cherenkovLoss,idvol,kCerenkov); if (fNSDigits > (Int_t)ckovData[8]) { ckovData[8]= ckovData[8]+1; ckovData[9]= (Float_t) fNSDigits; } //printf("Cerenkov loss: %f\n", cherenkovLoss); ckovData[17] = nPads; //printf("nPads:%d",nPads); //TClonesArray *Hits = RICH->Hits(); AliRICHHit *mipHit = (AliRICHHit*) (fHits->UncheckedAt(0)); if (mipHit) { mom[0] = current->Px(); mom[1] = current->Py(); mom[2] = current->Pz(); Float_t mipPx = mipHit->fMomX; Float_t mipPy = mipHit->fMomY; Float_t mipPz = mipHit->fMomZ; Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2]; Float_t rt = TMath::Sqrt(r); Float_t mipR = mipPx*mipPx + mipPy*mipPy + mipPz*mipPz; Float_t mipRt = TMath::Sqrt(mipR); if ((rt*mipRt) > 0) { coscerenkov = (mom[0]*mipPx + mom[1]*mipPy + mom[2]*mipPz)/(rt*mipRt); } else { coscerenkov = 0; } Float_t cherenkov = TMath::ACos(coscerenkov); ckovData[18]=cherenkov; } //if (sector != -1) //{ AddHit(gAlice->CurrentTrack(),vol,ckovData); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added One (5)!\n"); //} } } } } /***********************************************End of photon hits*********************************************/ /**********************************************Charged particles treatment*************************************/ else if (gMC->TrackCharge()) //else if (1 == 1) { //If MIP /*if (gMC->IsTrackEntering()) { hits[13]=20;//is track entering? }*/ if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); hits [19] = mom[0]; hits [20] = mom[1]; hits [21] = mom[2]; fFreonProd=1; } if (gMC->VolId("GAP ")== gMC->CurrentVolID(copy)) { // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->CurrentVolOffID(3,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); ipart = gMC->TrackPid(); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { // gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2]; Double_t localRt = TMath::Sqrt(localTc); localTheta = Float_t(TMath::ATan2(localRt,Double_t(localMom[1])))*kRaddeg; localPhi = Float_t(TMath::ATan2(Double_t(localMom[2]),Double_t(localMom[0])))*kRaddeg; hits[0] = Float_t(ipart); // particle type hits[1] = localPos[0]; // X-position for hit hits[2] = localPos[1]; // Y-position for hit hits[3] = localPos[2]; // Z-position for hit hits[4] = localTheta; // theta angle of incidence hits[5] = localPhi; // phi angle of incidence hits[8] = (Float_t) fNSDigits; // first sdigit hits[9] = -1; // last pad hit hits[13] = fFreonProd; // did id hit the freon? hits[14] = mom[0]; hits[15] = mom[1]; hits[16] = mom[2]; hits[18] = 0; // dummy cerenkov angle tlength = 0; eloss = 0; fFreonProd = 0; Chamber(idvol).LocaltoGlobal(localPos,hits+1); //To make chamber coordinates x-y had to pass localPos[0], localPos[2] xhit = localPos[0]; yhit = localPos[2]; // Only if not trigger chamber if(idvolAt(idvol)) ->SigGenInit(localPos[0], localPos[2], localPos[1]); } } // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; // Only if not trigger chamber if(idvol 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = Hits2SDigits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("nPads:%d",nPads); } } hits[6]=tlength; hits[7]=eloss; if (fNSDigits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNSDigits; } //if(sector !=-1) new(lhits[fNhits++]) AliRICHHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) } else if //PH (((AliRICHChamber*) (*fChambers)[idvol]) (((AliRICHChamber*)fChambers->At(idvol)) ->SigGenCond(localPos[0], localPos[2], localPos[1])) { //PH ((AliRICHChamber*) (*fChambers)[idvol]) ((AliRICHChamber*)fChambers->At(idvol)) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if (eloss > 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = Hits2SDigits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("Npads:%d",NPads); } xhit = localPos[0]; yhit = localPos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } } } /*************************************************End of MIP treatment**************************************/ //} } void AliRICH::FindClusters(Int_t nev,Int_t lastEntry) { // // Loop on chambers and on cathode planes // for (Int_t icat=1;icat<2;icat++) { gAlice->ResetDigits(); gAlice->TreeD()->GetEvent(0); for (Int_t ich=0;ichAt(ich); TClonesArray *pRICHdigits = this->DigitsAddress(ich); if (pRICHdigits == 0) continue; // // Get ready the current chamber stuff // AliRICHResponse* response = iChamber->GetResponseModel(); AliSegmentation* seg = iChamber->GetSegmentationModel(); AliRICHClusterFinder* rec = iChamber->GetReconstructionModel(); if (seg) { rec->SetSegmentation(seg); rec->SetResponse(response); rec->SetDigits(pRICHdigits); rec->SetChamber(ich); if (nev==0) rec->CalibrateCOG(); rec->FindRawClusters(); } TClonesArray *fRch; fRch=RawClustAddress(ich); fRch->Sort(); } // for ich gAlice->TreeR()->Fill(); TClonesArray *fRch; for (int i=0;iGetEntriesFast(); printf ("Chamber %d, raw clusters %d\n",i,nraw); } ResetRawClusters(); } // for icat char hname[30]; sprintf(hname,"TreeR%d",nev); gAlice->TreeR()->Write(hname,kOverwrite,0); gAlice->TreeR()->Reset(); //gObjectTable->Print(); } AliRICHSDigit* AliRICH::FirstPad(AliRICHHit* hit,TClonesArray *clusters ) { // // Initialise the pad iterator // Return the address of the first sdigit for hit TClonesArray *theClusters = clusters; Int_t nclust = theClusters->GetEntriesFast(); if (nclust && hit->fPHlast > 0) { sMaxIterPad=Int_t(hit->fPHlast); sCurIterPad=Int_t(hit->fPHfirst); return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } AliRICHSDigit* AliRICH::NextPad(TClonesArray *clusters) { // Iterates over pads sCurIterPad++; if (sCurIterPad <= sMaxIterPad) { return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1); } else { return 0; } } AliRICH& AliRICH::operator=(const AliRICH& rhs) { // Assignment operator return *this; } void AliRICH::DiagnosticsFE(Int_t evNumber1,Int_t evNumber2) { Int_t NpadX = 162; // number of pads on X Int_t NpadY = 162; // number of pads on Y Int_t Pad[162][162]; for (Int_t i=0;i3 GeV primary tracks",100,0,50); TH2F *production = new TH2F("production","Mother production vertices",100,-300,300,100,0,600); // Start loop over events Int_t pion=0, kaon=0, proton=0, electron=0, positron=0, neutron=0, highneutrons=0, muon=0; Int_t chargedpions=0,primarypions=0,highprimarypions=0,chargedkaons=0,primarykaons=0,highprimarykaons=0; Int_t photons=0, primaryphotons=0, highprimaryphotons=0; TRandom* random=0; for (int nev=0; nev<= evNumber2; nev++) { Int_t nparticles = gAlice->GetEvent(nev); printf ("Event number : %d\n",nev); printf ("Number of particles: %d\n",nparticles); if (nev < evNumber1) continue; if (nparticles <= 0) return; // Get pointers to RICH detector and Hits containers AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); TTree *treeH = gAlice->TreeH(); Int_t ntracks =(Int_t) treeH->GetEntries(); // Start loop on tracks in the hits containers for (Int_t track=0; trackResetHits(); treeH->GetEvent(track); for(AliRICHHit* mHit=(AliRICHHit*)pRICH->FirstHit(-1); mHit; mHit=(AliRICHHit*)pRICH->NextHit()) { //Int_t nch = mHit->fChamber; // chamber number //Float_t x = mHit->X(); // x-pos of hit //Float_t y = mHit->Z(); // y-pos //Float_t z = mHit->Y(); //Float_t phi = mHit->fPhi; //Phi angle of incidence Float_t theta = mHit->fTheta; //Theta angle of incidence Float_t px = mHit->MomX(); Float_t py = mHit->MomY(); Int_t index = mHit->Track(); Int_t particle = (Int_t)(mHit->fParticle); Float_t R; Float_t PTfinal; Float_t PTvertex; TParticle *current = gAlice->Particle(index); //Float_t energy=current->Energy(); R=TMath::Sqrt(current->Vx()*current->Vx() + current->Vy()*current->Vy()); PTfinal=TMath::Sqrt(px*px + py*py); PTvertex=TMath::Sqrt(current->Px()*current->Px() + current->Py()*current->Py()); if (TMath::Abs(particle) < 10000000) { hitsTheta->Fill(theta,(float) 1); if (R<5) { if (PTvertex>.5 && PTvertex<=1) { hitsTheta500MeV->Fill(theta,(float) 1); } if (PTvertex>1 && PTvertex<=2) { hitsTheta1GeV->Fill(theta,(float) 1); } if (PTvertex>2 && PTvertex<=3) { hitsTheta2GeV->Fill(theta,(float) 1); } if (PTvertex>3) { hitsTheta3GeV->Fill(theta,(float) 1); } } } //if (nch == 3) //{ //printf("Particle type: %d\n",current->GetPdgCode()); if (TMath::Abs(particle) < 50000051) { //if (TMath::Abs(particle) == 50000050 || TMath::Abs(particle) == 2112) if (TMath::Abs(particle) == 2112 || TMath::Abs(particle) == 50000050) { //gMC->Rndm(&random, 1); if (random->Rndm() < .1) production->Fill(current->Vz(),R,(float) 1); if (TMath::Abs(particle) == 50000050) //if (TMath::Abs(particle) > 50000000) { photons +=1; if (R<5) { primaryphotons +=1; if (current->Energy()>0.001) highprimaryphotons +=1; } } if (TMath::Abs(particle) == 2112) { neutron +=1; if (current->Energy()>0.0001) highneutrons +=1; } } if (TMath::Abs(particle) < 50000000) { production->Fill(current->Vz(),R,(float) 1); //printf("Adding %d at %f\n",particle,R); } //mip->Fill(x,y,(float) 1); } if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111) { if (R<5) { pionptspectravertex->Fill(PTvertex,(float) 1); pionptspectrafinal->Fill(PTfinal,(float) 1); } } if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 || TMath::Abs(particle)==311) { if (R<5) { kaonptspectravertex->Fill(PTvertex,(float) 1); kaonptspectrafinal->Fill(PTfinal,(float) 1); } } if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111) { pionspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf ("fParticle: %d, PDG code:%d\n",particle,current->GetPdgCode()); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) pionspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) { pionspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R); } //printf("Pion mass: %e\n",current->GetCalcMass()); pion +=1; if (TMath::Abs(particle)==211) { chargedpions +=1; if (R<5) { primarypions +=1; if (current->Energy()>1) highprimarypions +=1; } } } if (TMath::Abs(particle)==2212) { protonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //ptspectra->Fill(Pt,(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) protonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) protonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("\n\n\n\n\n\n\nProton mass: %e\n\n\n\n\n\n\n\n\n",current->GetCalcMass()); proton +=1; } if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 || TMath::Abs(particle)==311) { kaonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //ptspectra->Fill(Pt,(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) kaonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) kaonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("Kaon mass: %e\n",current->GetCalcMass()); kaon +=1; if (TMath::Abs(particle)==321) { chargedkaons +=1; if (R<5) { primarykaons +=1; if (current->Energy()>1) highprimarykaons +=1; } } } if (TMath::Abs(particle)==11) { electronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //ptspectra->Fill(Pt,(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) electronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) electronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("Electron mass: %e\n",current->GetCalcMass()); if (particle == 11) electron +=1; if (particle == -11) positron +=1; } if (TMath::Abs(particle)==13) { muonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //ptspectra->Fill(Pt,(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) muonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) muonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("Muon mass: %e\n",current->GetCalcMass()); muon +=1; } if (TMath::Abs(particle)==2112) { neutronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //ptspectra->Fill(Pt,(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) neutronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) { neutronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R); } //printf("Neutron mass: %e\n",current->GetCalcMass()); neutron +=1; } if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321) { if (current->Energy()-current->GetCalcMass()>1) { chargedspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5) chargedspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); if (R>250 && R<450) chargedspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1); } } //printf("Hits:%d\n",hit); //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y); // Fill the histograms //Nh1+=nhits; //h->Fill(x,y,(float) 1); //} //} } } } // } //Create canvases, set the view range, show histograms TCanvas *c2 = new TCanvas("c2","Angles of incidence",150,150,100,150); c2->Divide(2,2); //c2->SetFillColor(42); c2->cd(1); hitsTheta500MeV->SetFillColor(5); hitsTheta500MeV->Draw(); c2->cd(2); hitsTheta1GeV->SetFillColor(5); hitsTheta1GeV->Draw(); c2->cd(3); hitsTheta2GeV->SetFillColor(5); hitsTheta2GeV->Draw(); c2->cd(4); hitsTheta3GeV->SetFillColor(5); hitsTheta3GeV->Draw(); TCanvas *c15 = new TCanvas("c15","Mothers Production Vertices",50,50,600,600); c15->cd(); production->SetFillColor(42); production->SetXTitle("z (m)"); production->SetYTitle("R (m)"); production->Draw(); TCanvas *c10 = new TCanvas("c10","Pt Spectra",50,50,600,700); c10->Divide(2,2); c10->cd(1); pionptspectravertex->SetFillColor(5); pionptspectravertex->SetXTitle("Pt (GeV)"); pionptspectravertex->Draw(); c10->cd(2); pionptspectrafinal->SetFillColor(5); pionptspectrafinal->SetXTitle("Pt (GeV)"); pionptspectrafinal->Draw(); c10->cd(3); kaonptspectravertex->SetFillColor(5); kaonptspectravertex->SetXTitle("Pt (GeV)"); kaonptspectravertex->Draw(); c10->cd(4); kaonptspectrafinal->SetFillColor(5); kaonptspectrafinal->SetXTitle("Pt (GeV)"); kaonptspectrafinal->Draw(); TCanvas *c16 = new TCanvas("c16","Particles Spectra II",150,150,600,350); c16->Divide(2,1); c16->cd(1); //TCanvas *c13 = new TCanvas("c13","Electron Spectra",400,10,600,700); electronspectra1->SetFillColor(5); electronspectra1->SetXTitle("log(GeV)"); electronspectra2->SetFillColor(46); electronspectra2->SetXTitle("log(GeV)"); electronspectra3->SetFillColor(10); electronspectra3->SetXTitle("log(GeV)"); //c13->SetLogx(); electronspectra1->Draw(); electronspectra2->Draw("same"); electronspectra3->Draw("same"); c16->cd(2); //TCanvas *c14 = new TCanvas("c14","Muon Spectra",400,10,600,700); muonspectra1->SetFillColor(5); muonspectra1->SetXTitle("log(GeV)"); muonspectra2->SetFillColor(46); muonspectra2->SetXTitle("log(GeV)"); muonspectra3->SetFillColor(10); muonspectra3->SetXTitle("log(GeV)"); //c14->SetLogx(); muonspectra1->Draw(); muonspectra2->Draw("same"); muonspectra3->Draw("same"); //c16->cd(3); //TCanvas *c16 = new TCanvas("c16","Neutron Spectra",400,10,600,700); //neutronspectra1->SetFillColor(42); //neutronspectra1->SetXTitle("log(GeV)"); //neutronspectra2->SetFillColor(46); //neutronspectra2->SetXTitle("log(GeV)"); //neutronspectra3->SetFillColor(10); //neutronspectra3->SetXTitle("log(GeV)"); //c16->SetLogx(); //neutronspectra1->Draw(); //neutronspectra2->Draw("same"); //neutronspectra3->Draw("same"); TCanvas *c9 = new TCanvas("c9","Particles Spectra",150,150,600,700); //TCanvas *c9 = new TCanvas("c9","Pion Spectra",400,10,600,700); c9->Divide(2,2); c9->cd(1); pionspectra1->SetFillColor(5); pionspectra1->SetXTitle("log(GeV)"); pionspectra2->SetFillColor(46); pionspectra2->SetXTitle("log(GeV)"); pionspectra3->SetFillColor(10); pionspectra3->SetXTitle("log(GeV)"); //c9->SetLogx(); pionspectra1->Draw(); pionspectra2->Draw("same"); pionspectra3->Draw("same"); c9->cd(2); //TCanvas *c10 = new TCanvas("c10","Proton Spectra",400,10,600,700); protonspectra1->SetFillColor(5); protonspectra1->SetXTitle("log(GeV)"); protonspectra2->SetFillColor(46); protonspectra2->SetXTitle("log(GeV)"); protonspectra3->SetFillColor(10); protonspectra3->SetXTitle("log(GeV)"); //c10->SetLogx(); protonspectra1->Draw(); protonspectra2->Draw("same"); protonspectra3->Draw("same"); c9->cd(3); //TCanvas *c11 = new TCanvas("c11","Kaon Spectra",400,10,600,700); kaonspectra1->SetFillColor(5); kaonspectra1->SetXTitle("log(GeV)"); kaonspectra2->SetFillColor(46); kaonspectra2->SetXTitle("log(GeV)"); kaonspectra3->SetFillColor(10); kaonspectra3->SetXTitle("log(GeV)"); //c11->SetLogx(); kaonspectra1->Draw(); kaonspectra2->Draw("same"); kaonspectra3->Draw("same"); c9->cd(4); //TCanvas *c12 = new TCanvas("c12","Charged Particles Spectra",400,10,600,700); chargedspectra1->SetFillColor(5); chargedspectra1->SetXTitle("log(GeV)"); chargedspectra2->SetFillColor(46); chargedspectra2->SetXTitle("log(GeV)"); chargedspectra3->SetFillColor(10); chargedspectra3->SetXTitle("log(GeV)"); //c12->SetLogx(); chargedspectra1->Draw(); chargedspectra2->Draw("same"); chargedspectra3->Draw("same"); printf("*****************************************\n"); printf("* Particle * Counts *\n"); printf("*****************************************\n"); printf("* Pions: * %4d *\n",pion); printf("* Charged Pions: * %4d *\n",chargedpions); printf("* Primary Pions: * %4d *\n",primarypions); printf("* Primary Pions (p>1GeV/c): * %4d *\n",highprimarypions); printf("* Kaons: * %4d *\n",kaon); printf("* Charged Kaons: * %4d *\n",chargedkaons); printf("* Primary Kaons: * %4d *\n",primarykaons); printf("* Primary Kaons (p>1GeV/c): * %4d *\n",highprimarykaons); printf("* Muons: * %4d *\n",muon); printf("* Electrons: * %4d *\n",electron); printf("* Positrons: * %4d *\n",positron); printf("* Protons: * %4d *\n",proton); printf("* All Charged: * %4d *\n",(chargedpions+chargedkaons+muon+electron+positron+proton)); printf("*****************************************\n"); //printf("* Photons: * %3.1f *\n",photons); //printf("* Primary Photons: * %3.1f *\n",primaryphotons); //printf("* Primary Photons (p>1MeV/c):* %3.1f *\n",highprimaryphotons); //printf("*****************************************\n"); //printf("* Neutrons: * %3.1f *\n",neutron); //printf("* Neutrons (p>100keV/c): * %3.1f *\n",highneutrons); //printf("*****************************************\n"); if (gAlice->TreeD()) { gAlice->TreeD()->GetEvent(0); Float_t occ[7]; Float_t sum=0; Float_t mean=0; printf("\n*****************************************\n"); printf("* Chamber * Digits * Occupancy *\n"); printf("*****************************************\n"); for (Int_t ich=0;ich<7;ich++) { TClonesArray *Digits = DigitsAddress(ich); // Raw clusters branch Int_t ndigits = Digits->GetEntriesFast(); occ[ich] = Float_t(ndigits)/(160*144); sum += Float_t(ndigits)/(160*144); printf("* %d * %d * %3.1f%% *\n",ich,ndigits,occ[ich]*100); } mean = sum/7; printf("*****************************************\n"); printf("* Mean occupancy * %3.1f%% *\n",mean*100); printf("*****************************************\n"); } printf("\nEnd of analysis\n"); } //_________________________________________________________________________________________________ void AliRICH::DiagnosticsSE(Int_t diaglevel,Int_t evNumber1,Int_t evNumber2) { AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH"); AliRICHSegmentationV0* segmentation; AliRICHChamber* chamber; chamber = &(pRICH->Chamber(0)); segmentation=(AliRICHSegmentationV0*) chamber->GetSegmentationModel(0); Int_t NpadX = segmentation->Npx(); // number of pads on X Int_t NpadY = segmentation->Npy(); // number of pads on Y //Int_t Pad[144][160]; /*for (Int_t i=0;iGetEvent(nev); //cout<<"nev "<TreeH(); Stat_t ntracks = TH->GetEntries(); // Start loop on tracks in the hits containers //Int_t Nc=0; for (Int_t track=0; trackResetHits(); TH->GetEvent(track); Int_t nhits = pRICH->Hits()->GetEntriesFast(); if (nhits) Nh+=nhits; printf("Hits : %d\n",nhits); for(AliRICHHit* mHit=(AliRICHHit*)pRICH->FirstHit(-1); mHit; mHit=(AliRICHHit*)pRICH->NextHit()) { //Int_t nch = mHit->fChamber; // chamber number x = mHit->X(); // x-pos of hit y = mHit->Z(); // y-pos Float_t phi = mHit->fPhi; //Phi angle of incidence Float_t theta = mHit->fTheta; //Theta angle of incidence Int_t index = mHit->Track(); Int_t particle = (Int_t)(mHit->fParticle); //Int_t freon = (Int_t)(mHit->fLoss); hitsX->Fill(x,(float) 1); hitsY->Fill(y,(float) 1); //printf("Particle:%9d\n",particle); TParticle *current = (TParticle*)gAlice->Particle(index); //printf("Particle type: %d\n",sizeoff(Particles)); hitsTheta->Fill(theta,(float) 1); //hitsPhi->Fill(phi,(float) 1); //if (pRICH->GetDebugLevel() == -1) //printf("Theta:%f, Phi:%f\n",theta,phi); //printf("Debug Level:%d\n",pRICH->GetDebugLevel()); if (current->GetPdgCode() < 10000000) { mip->Fill(x,y,(float) 1); //printf("adding mip\n"); //if (current->Energy() - current->GetCalcMass()>1 && freon==1) //{ hitsPhi->Fill(TMath::Abs(phi),(float) 1); //hitsTheta->Fill(theta,(float) 1); //printf("Theta:%f, Phi:%f\n",theta,phi); //} } if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111) { pionspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1); } if (TMath::Abs(particle)==2212) { protonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1); } if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 || TMath::Abs(particle)==311) { kaonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1); } if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321) { if (current->Energy() - current->GetCalcMass()>1) chargedspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1); } //printf("Hits:%d\n",hit); //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y); // Fill the histograms Nh1+=nhits; h->Fill(x,y,(float) 1); //} //} } Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast(); //if (current->GetPdgCode() < 50000051 && current->GetPdgCode() > 50000040) //totalphotonsevent->Fill(ncerenkovs,(float) 1); if (ncerenkovs) { printf("Cerenkovs : %d\n",ncerenkovs); totalphotonsevent->Fill(ncerenkovs,(float) 1); for (Int_t hit=0;hitCerenkovs()->UncheckedAt(hit); //Int_t nchamber = cHit->fChamber; // chamber number Int_t index = cHit->Track(); //Int_t pindex = (Int_t)(cHit->fIndex); Float_t cx = cHit->X(); // x-position Float_t cy = cHit->Z(); // y-position Int_t cmother = cHit->fCMother; // Index of mother particle Int_t closs = (Int_t)(cHit->fLoss); // How did the particle get lost? Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle //printf ("Cerenkov hit number %d/%d, X:%d, Y:%d\n",hit,ncerenkovs,cx,cy); //printf("Particle:%9d\n",index); TParticle *current = (TParticle*)gAlice->Particle(index); Float_t energyckov = current->Energy(); if (current->GetPdgCode() == 50000051) { if (closs==4) { feedback->Fill(cx,cy,(float) 1); feed++; } } if (current->GetPdgCode() == 50000050) { if (closs !=4) { phspectra2->Fill(energyckov*1e9,(float) 1); } if (closs==4) { cerenkov->Fill(cx,cy,(float) 1); //printf ("Cerenkov hit number %d/%d, X:%d, Y:%d\n",hit,ncerenkovs,cx,cy); //TParticle *MIP = (TParticle*)gAlice->Particle(cmother); AliRICHHit* mipHit = (AliRICHHit*) pRICH->Hits()->UncheckedAt(0); mom[0] = current->Px(); mom[1] = current->Py(); mom[2] = current->Pz(); //mom[0] = cHit->fMomX; // mom[1] = cHit->fMomZ; //mom[2] = cHit->fMomY; //Float_t energymip = MIP->Energy(); //Float_t Mip_px = mipHit->fMomFreoX; //Float_t Mip_py = mipHit->fMomFreoY; //Float_t Mip_pz = mipHit->fMomFreoZ; //Float_t Mip_px = MIP->Px(); //Float_t Mip_py = MIP->Py(); //Float_t Mip_pz = MIP->Pz(); //Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2]; //Float_t rt = TMath::Sqrt(r); //Float_t Mip_r = Mip_px*Mip_px + Mip_py*Mip_py + Mip_pz*Mip_pz; //Float_t Mip_rt = TMath::Sqrt(Mip_r); //Float_t coscerenkov = (mom[0]*Mip_px + mom[1]*Mip_py + mom[2]*Mip_pz)/(rt*Mip_rt+0.0000001); //Float_t cherenkov = TMath::ACos(coscerenkov); ckovangle->Fill(cherenkov,(float) 1); //Cerenkov angle calculus //printf("Cherenkov: %f\n",cherenkov); Float_t ckphi=TMath::ATan2(mom[0], mom[2]); hckphi->Fill(ckphi,(float) 1); //Float_t mix = MIP->Vx(); //Float_t miy = MIP->Vy(); Float_t mx = mipHit->X(); Float_t my = mipHit->Z(); //printf("FX %e, FY %e, VX %e, VY %e\n",cx,cy,mx,my); Float_t dx = cx - mx; Float_t dy = cy - my; //printf("Dx:%f, Dy:%f\n",dx,dy); Float_t final_radius = TMath::Sqrt(dx*dx+dy*dy); //printf("Final radius:%f\n",final_radius); radius->Fill(final_radius,(float) 1); phspectra1->Fill(energyckov*1e9,(float) 1); phot++; } for (Int_t nmothers=0;nmothers<=ntracks;nmothers++){ if (cmother == nmothers){ if (closs == 4) mothers2[cmother]++; mothers[cmother]++; } } } } } if(gAlice->TreeR()) { Int_t nent=(Int_t)gAlice->TreeR()->GetEntries(); gAlice->TreeR()->GetEvent(nent-1); TClonesArray *Rawclusters = pRICH->RawClustAddress(2); // Raw clusters branch //printf ("Rawclusters:%p",Rawclusters); Int_t nrawclusters = Rawclusters->GetEntriesFast(); if (nrawclusters) { printf("Raw Clusters : %d\n",nrawclusters); for (Int_t hit=0;hitRawClustAddress(2)->UncheckedAt(hit); //Int_t nchamber = rcHit->fChamber; // chamber number //Int_t nhit = cHit->fHitNumber; // hit number Int_t qtot = rcHit->fQ; // charge Float_t fx = rcHit->fX; // x-position Float_t fy = rcHit->fY; // y-position //Int_t type = rcHit->fCtype; // cluster type ? Int_t mult = rcHit->fMultiplicity; // How many pads form the cluster pads += mult; if (qtot > 0) { //printf ("fx: %d, fy: %d\n",fx,fy); if (fx>(x-4) && fx<(x+4) && fy>(y-4) && fy<(y+4)) { //printf("There %d \n",mult); padmip+=mult; } else { padnumber->Fill(mult,(float) 1); nraw++; if (mult<4) Clcharge->Fill(qtot,(float) 1); } } } } TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2); Int_t nrechits1D = RecHits1D->GetEntriesFast(); //printf (" nrechits:%d\n",nrechits); if(nrechits1D) { for (Int_t hit=0;hitRecHitsAddress1D(2)->UncheckedAt(hit); Float_t r_omega = recHit1D->fOmega; // Cerenkov angle Float_t *cer_pho = recHit1D->fCerPerPhoton; // Cerenkov angle per photon Int_t *padsx = recHit1D->fPadsUsedX; // Pads Used fo reconstruction (x) Int_t *padsy = recHit1D->fPadsUsedY; // Pads Used fo reconstruction (y) Int_t goodPhotons = recHit1D->fGoodPhotons; // Number of pads used for reconstruction Omega1D->Fill(r_omega,(float) 1); for (Int_t i=0; iFill(cer_pho[i],(float) 1); PadsUsed->Fill(padsx[i],padsy[i],1); //printf("Angle:%f, pad: %d %d\n",cer_pho[i],padsx[i],padsy[i]); } //printf("Omega: %f, Theta: %f, Phi: %f\n",r_omega,r_theta,r_phi); } } TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2); Int_t nrechits3D = RecHits3D->GetEntriesFast(); //printf (" nrechits:%d\n",nrechits); if(nrechits3D) { for (Int_t hit=0;hitRecHitsAddress3D(2)->UncheckedAt(hit); Float_t r_omega = recHit3D->fOmega; // Cerenkov angle Float_t r_theta = recHit3D->fTheta; // Theta angle of incidence Float_t r_phi = recHit3D->fPhi; // Phi angle if incidence Float_t meanradius = recHit3D->fMeanRadius; // Mean radius for reconstructed point //printf("rechit %f %f %f %f %f\n",recHit3D->fOmega,recHit3D->fTheta,recHit3D->fPhi, recHit3D->fX,recHit3D->fY); Omega3D->Fill(r_omega,(float) 1); Theta->Fill(r_theta*180/TMath::Pi(),(float) 1); Phi->Fill(r_phi*180/TMath::Pi()-180,(float) 1); MeanRadius->Fill(meanradius,(float) 1); } } } } for (Int_t nmothers=0;nmothersFill(mothers[nmothers],(float) 1); mother->Fill(mothers2[nmothers],(float) 1); //printf ("Entries in %d : %d\n",nmothers, mothers[nmothers]); } clusev->Fill(nraw,(float) 1); photev->Fill(phot,(float) 1); feedev->Fill(feed,(float) 1); padsmip->Fill(padmip,(float) 1); padscl->Fill(pads,(float) 1); //printf("Photons:%d\n",phot); phot = 0; feed = 0; pads = 0; nraw=0; padmip=0; gAlice->ResetDigits(); //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries(); gAlice->TreeD()->GetEvent(0); if (diaglevel < 4) { TClonesArray *Digits = pRICH->DigitsAddress(2); Int_t ndigits = Digits->GetEntriesFast(); printf("Digits : %d\n",ndigits); padsev->Fill(ndigits,(float) 1); for (Int_t hit=0;hitUncheckedAt(hit); Int_t qtot = dHit->fSignal; // charge Int_t ipx = dHit->fPadX; // pad number on X Int_t ipy = dHit->fPadY; // pad number on Y //printf("%d, %d\n",ipx,ipy); if( ipx<=100 && ipy <=100) hc0->Fill(ipx,ipy,(float) qtot); } } if (diaglevel == 5) { for (Int_t ich=0;ich<7;ich++) { TClonesArray *Digits = pRICH->DigitsAddress(ich); // Raw clusters branch Int_t ndigits = Digits->GetEntriesFast(); //printf("Digits:%d\n",ndigits); padsev->Fill(ndigits,(float) 1); if (ndigits) { for (Int_t hit=0;hitUncheckedAt(hit); //Int_t nchamber = dHit->fChamber; // chamber number //Int_t nhit = dHit->fHitNumber; // hit number Int_t qtot = dHit->fSignal; // charge Int_t ipx = dHit->fPadX; // pad number on X Int_t ipy = dHit->fPadY; // pad number on Y //Int_t iqpad = dHit->fQpad; // charge per pad //Int_t rpad = dHit->fRSec; // R-position of pad //printf ("Pad hit, PadX:%d, PadY:%d\n",ipx,ipy); if( ipx<=100 && ipy <=100 && ich==2) hc0->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==0) hc1->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==1) hc2->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==2) hc3->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==3) hc4->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==4) hc5->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==5) hc6->Fill(ipx,ipy,(float) qtot); if( ipx<=162 && ipy <=162 && ich==6) hc7->Fill(ipx,ipy,(float) qtot); } } } } } //Create canvases, set the view range, show histograms TCanvas *c1 = 0; TCanvas *c2 = 0; TCanvas *c3 = 0; TCanvas *c4 = 0; TCanvas *c5 = 0; TCanvas *c6 = 0; TCanvas *c7 = 0; TCanvas *c8 = 0; TCanvas *c9 = 0; TCanvas *c10 = 0; TCanvas *c11 = 0; TCanvas *c12 = 0; //TF1* expo = 0; //TF1* gaus = 0; TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2); Int_t nrechits3D = RecHits3D->GetEntriesFast(); TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2); Int_t nrechits1D = RecHits1D->GetEntriesFast(); switch(diaglevel) { case 1: c1 = new TCanvas("c1","Alice RICH digits",50,50,300,350); hc0->SetXTitle("ix (npads)"); hc0->Draw("box"); // c2 = new TCanvas("c2","Hits per type",100,100,600,700); c2->Divide(2,2); //c4->SetFillColor(42); c2->cd(1); feedback->SetXTitle("x (cm)"); feedback->SetYTitle("y (cm)"); feedback->Draw(); c2->cd(2); //mip->SetFillColor(5); mip->SetXTitle("x (cm)"); mip->SetYTitle("y (cm)"); mip->Draw(); c2->cd(3); //cerenkov->SetFillColor(5); cerenkov->SetXTitle("x (cm)"); cerenkov->SetYTitle("y (cm)"); cerenkov->Draw(); c2->cd(4); //h->SetFillColor(5); h->SetXTitle("x (cm)"); h->SetYTitle("y (cm)"); h->Draw(); c3 = new TCanvas("c3","Hits distribution",150,150,600,350); c3->Divide(2,1); //c10->SetFillColor(42); c3->cd(1); hitsX->SetFillColor(5); hitsX->SetXTitle("(cm)"); hitsX->Draw(); c3->cd(2); hitsY->SetFillColor(5); hitsY->SetXTitle("(cm)"); hitsY->Draw(); break; // case 2: c4 = new TCanvas("c4","Photon Spectra",50,50,600,350); c4->Divide(2,1); //c6->SetFillColor(42); c4->cd(1); phspectra2->SetFillColor(5); phspectra2->SetXTitle("energy (eV)"); phspectra2->Draw(); c4->cd(2); phspectra1->SetFillColor(5); phspectra1->SetXTitle("energy (eV)"); phspectra1->Draw(); c5 = new TCanvas("c5","Particles Spectra",100,100,600,700); c5->Divide(2,2); //c9->SetFillColor(42); c5->cd(1); pionspectra->SetFillColor(5); pionspectra->SetXTitle("(GeV)"); pionspectra->Draw(); c5->cd(2); protonspectra->SetFillColor(5); protonspectra->SetXTitle("(GeV)"); protonspectra->Draw(); c5->cd(3); kaonspectra->SetFillColor(5); kaonspectra->SetXTitle("(GeV)"); kaonspectra->Draw(); c5->cd(4); chargedspectra->SetFillColor(5); chargedspectra->SetXTitle("(GeV)"); chargedspectra->Draw(); break; case 3: if(gAlice->TreeR()) { c6=new TCanvas("c6","Clusters Statistics",50,50,600,700); c6->Divide(2,2); //c3->SetFillColor(42); c6->cd(1); //TPad* c6_1; //c6_1->SetLogy(); Clcharge->SetFillColor(5); Clcharge->SetXTitle("ADC counts"); if (evNumber2>10) { Clcharge->Fit("expo"); //expo->SetLineColor(2); //expo->SetLineWidth(3); } Clcharge->Draw(); c6->cd(2); padnumber->SetFillColor(5); padnumber->SetXTitle("(counts)"); padnumber->Draw(); c6->cd(3); clusev->SetFillColor(5); clusev->SetXTitle("(counts)"); if (evNumber2>10) { clusev->Fit("gaus"); //gaus->SetLineColor(2); //gaus->SetLineWidth(3); } clusev->Draw(); c6->cd(4); padsmip->SetFillColor(5); padsmip->SetXTitle("(counts)"); padsmip->Draw(); } if(evNumber2<1) { c11 = new TCanvas("c11","Cherenkov per Mip",400,10,600,700); mother->SetFillColor(5); mother->SetXTitle("counts"); mother->Draw(); } c7 = new TCanvas("c7","Production Statistics",100,100,600,700); c7->Divide(2,2); //c7->SetFillColor(42); c7->cd(1); totalphotonsevent->SetFillColor(5); totalphotonsevent->SetXTitle("Photons (counts)"); if (evNumber2>10) { totalphotonsevent->Fit("gaus"); //gaus->SetLineColor(2); //gaus->SetLineWidth(3); } totalphotonsevent->Draw(); c7->cd(2); photev->SetFillColor(5); photev->SetXTitle("(counts)"); if (evNumber2>10) { photev->Fit("gaus"); //gaus->SetLineColor(2); //gaus->SetLineWidth(3); } photev->Draw(); c7->cd(3); feedev->SetFillColor(5); feedev->SetXTitle("(counts)"); if (evNumber2>10) { feedev->Fit("gaus"); //gaus->SetLineColor(2); //gaus->SetLineWidth(3); } feedev->Draw(); c7->cd(4); padsev->SetFillColor(5); padsev->SetXTitle("(counts)"); if (evNumber2>10) { padsev->Fit("gaus"); //gaus->SetLineColor(2); //gaus->SetLineWidth(3); } padsev->Draw(); break; case 4: if(nrechits3D) { c8 = new TCanvas("c8","3D reconstruction",50,50,1100,700); c8->Divide(4,2); //c2->SetFillColor(42); c8->cd(1); hitsPhi->SetFillColor(5); hitsPhi->Draw(); c8->cd(2); hitsTheta->SetFillColor(5); hitsTheta->Draw(); c8->cd(3); ckovangle->SetFillColor(5); ckovangle->SetXTitle("angle (radians)"); ckovangle->Draw(); c8->cd(4); radius->SetFillColor(5); radius->SetXTitle("radius (cm)"); radius->Draw(); c8->cd(5); Phi->SetFillColor(5); Phi->Draw(); c8->cd(6); Theta->SetFillColor(5); Theta->Draw(); c8->cd(7); Omega3D->SetFillColor(5); Omega3D->SetXTitle("angle (radians)"); Omega3D->Draw(); c8->cd(8); MeanRadius->SetFillColor(5); MeanRadius->SetXTitle("radius (cm)"); MeanRadius->Draw(); } if(nrechits1D) { c9 = new TCanvas("c9","1D Reconstruction",100,100,1100,700); c9->Divide(3,2); //c5->SetFillColor(42); c9->cd(1); ckovangle->SetFillColor(5); ckovangle->SetXTitle("angle (radians)"); ckovangle->Draw(); c9->cd(2); radius->SetFillColor(5); radius->SetXTitle("radius (cm)"); radius->Draw(); c9->cd(3); hc0->SetXTitle("pads"); hc0->Draw("box"); c9->cd(5); Omega1D->SetFillColor(5); Omega1D->SetXTitle("angle (radians)"); Omega1D->Draw(); c9->cd(4); PhotonCer->SetFillColor(5); PhotonCer->SetXTitle("angle (radians)"); PhotonCer->Draw(); c9->cd(6); PadsUsed->SetXTitle("pads"); PadsUsed->Draw("box"); } break; case 5: printf("Drawing histograms.../n"); //if (ndigits) //{ c10 = new TCanvas("c10","Alice RICH digits",50,50,1200,700); c1->Divide(4,2); //c1->SetFillColor(42); c10->cd(1); hc1->SetXTitle("ix (npads)"); hc1->Draw("box"); c10->cd(2); hc2->SetXTitle("ix (npads)"); hc2->Draw("box"); c10->cd(3); hc3->SetXTitle("ix (npads)"); hc3->Draw("box"); c10->cd(4); hc4->SetXTitle("ix (npads)"); hc4->Draw("box"); c10->cd(5); hc5->SetXTitle("ix (npads)"); hc5->Draw("box"); c10->cd(6); hc6->SetXTitle("ix (npads)"); hc6->Draw("box"); c10->cd(7); hc7->SetXTitle("ix (npads)"); hc7->Draw("box"); c10->cd(8); hc0->SetXTitle("ix (npads)"); hc0->Draw("box"); //} // c11 = new TCanvas("c11","Hits per type",100,100,600,700); c11->Divide(2,2); //c4->SetFillColor(42); c11->cd(1); feedback->SetXTitle("x (cm)"); feedback->SetYTitle("y (cm)"); feedback->Draw(); c11->cd(2); //mip->SetFillColor(5); mip->SetXTitle("x (cm)"); mip->SetYTitle("y (cm)"); mip->Draw(); c11->cd(3); //cerenkov->SetFillColor(5); cerenkov->SetXTitle("x (cm)"); cerenkov->SetYTitle("y (cm)"); cerenkov->Draw(); c11->cd(4); //h->SetFillColor(5); h->SetXTitle("x (cm)"); h->SetYTitle("y (cm)"); h->Draw(); c12 = new TCanvas("c12","Hits distribution",150,150,600,350); c12->Divide(2,1); //c10->SetFillColor(42); c12->cd(1); hitsX->SetFillColor(5); hitsX->SetXTitle("(cm)"); hitsX->Draw(); c12->cd(2); hitsY->SetFillColor(5); hitsY->SetXTitle("(cm)"); hitsY->Draw(); break; } // calculate the number of pads which give a signal //Int_t Np=0; /*for (Int_t i=0;i< NpadX;i++) { for (Int_t j=0;j< NpadY;j++) { if (Pad[i][j]>=6){ Np+=1; } } }*/ //printf("The total number of pads which give a signal: %d %d\n",Nh,Nh1); printf("\nEnd of analysis\n"); printf("**********************************\n"); }