#ifndef AliRICHHelix_h #define AliRICHHelix_h #include #include #include "AliRICHParam.h" #include "AliRICHChamber.h" class AliRICHHelix: public TObject { public: AliRICHHelix():TObject() {;} AliRICHHelix(const TVector3 &x0,const TVector3 &p0,Int_t q=1,Double_t b=0.2):TObject(),fX0(x0),fP0(p0),fX(x0),fP(p0), fLen(0),fQ(q),fBz(b) {;} virtual ~AliRICHHelix() {;} inline void Propagate(Double_t len); //propogate helix by length len along it inline Int_t RichIntersect(AliRICHParam *pParam); //search intersection with any RICH chamber inline Bool_t Intersection(TVector3 planePnt,TVector3 planeNorm); //intersection with plane given by point and normal vector Bool_t Intersection(TVector3 pl) {return Intersection(pl,pl.Unit());} // special plane given by point only TVector2 PosRad() const{return fPosRad;} //returns position of intersection with radiator (local system) TVector2 PosAnod() const{return fPosAnod;} //returns position of intersection with anod wires plane (local system) TVector2 PosPc() const{return fPosPc;} //returns position of intersection with PC (local system) TVector3 Ploc() const{return fPloc;} //returns momentum at the position of intersection with radiator Double_t Length() const{return fLen;} //returns length of the track from initial point to RICH void Print(Option_t *sOption)const; //virtual interface from TObject protected: TVector3 fX0; //helix position in parametrised point, cm in MRS TVector3 fP0; //helix momentum in parametrised point, GeV/c in MRS TVector3 fX; //helix position in point of interest, cm in MRS TVector3 fP; //helix momentum in point of interest, GeV/c in MRS Double_t fLen; //helix length in point of interest Int_t fQ; //sign of track charge (value not provided by current ESD) Double_t fBz; //magnetic field along z value in Tesla under assumption of uniformity TVector2 fPosRad; //track intersection with radiator (local system) TVector2 fPosAnod; //track intersection with anod wires plane (local system) TVector2 fPosPc; //track intersection with PC (local system) TVector3 fPloc; //momentum in local system ClassDef(AliRICHHelix,0) //General helix };//class AliRICHHelix //__________________________________________________________________________________________________ void AliRICHHelix::Propagate(Double_t len) { // Propogates the helix to the position of interest defined by helix length s // Assumes uniform magnetic field along z direction. const Double_t c = 0.00299792458;//this value provides that coordinates are in cm momentum in GeV/c Double_t a = -c*fBz*fQ; Double_t rho = a/fP0.Mag(); fX.SetX( fX0.X()+fP0.X()*TMath::Sin(rho*len)/a-fP0.Y()*(1-TMath::Cos(rho*len))/a ); fX.SetY( fX0.Y()+fP0.Y()*TMath::Sin(rho*len)/a+fP0.X()*(1-TMath::Cos(rho*len))/a ); fX.SetZ( fX0.Z()+fP0.Z()*len/fP0.Mag() ); fP.SetX( fP0.X()*TMath::Cos(rho*len)-fP0.Y()*TMath::Sin(rho*len) ); fP.SetY( fP0.Y()*TMath::Cos(rho*len)+fP0.X()*TMath::Sin(rho*len) ); fP.SetZ( fP0.Z() ); fLen=len; } //__________________________________________________________________________________________________ Bool_t AliRICHHelix::Intersection(TVector3 planePoint,TVector3 planeNorm) { // Finds point of intersection (if exists) of the helix to the plane given by point and normal vector. // Returns kTrue if helix intersects the plane, kFALSE otherwise. // Stores result in current helix fields fX and fP. Double_t s=(planePoint-fX0)*planeNorm,dist=99999,distPrev=dist;//estimates initial distance to plane while(TMath::Abs(dist)>0.00001){ Propagate(s); //calculates helix at the distance s from x0 ALONG the helix dist=(fX-planePoint)*planeNorm; //distance between current helix position and plane if(TMath::Abs(dist) >= TMath::Abs(distPrev)) { return kFALSE;} distPrev=dist; s-=dist; } return kTRUE; } //__________________________________________________________________________________________________ Int_t AliRICHHelix::RichIntersect(AliRICHParam *pParam) { // Searchs for intersection of this helix with all RICH chambers, returns chamber number or 0 if no intersection // On exit fPosRad contain position of intersection in Local System with radiator // fPosPc contains the same for photocathode for(Int_t iChamberN=1;iChamberN<=kNchambers;iChamberN++){//chamber loop if(Intersection(pParam->C(iChamberN)->Rad())){//there is intersection with radiator plane fPosRad=pParam->C(iChamberN)->Mrs2Rad(fX);//position on radiator plane if(pParam->IsAccepted(fPosRad)){//intersection within radiator (even if in dead zone) if(Intersection(pParam->C(iChamberN)->Pc())){//there is intersection with photocathode fPosPc=pParam->C(iChamberN)->Mrs2Pc(fX);//position on photcathode plane if(pParam->IsAccepted(fPosPc)){//intersection within pc (even if in dead zone) Intersection(pParam->C(iChamberN)->Anod()); //search for anod intersection position fPosAnod=pParam->C(iChamberN)->Mrs2Anod(fX); fPloc=pParam->C(iChamberN)->PMrs2Loc(fP);//trasform p to local system return iChamberN; }//if inside PC }//if intersects PC }//if inside radiator }//if for radiator }//chamber loop return 0; } //__________________________________________________________________________________________________ #endif