#ifndef AliRICHParam_h #define AliRICHParam_h #include #include "AliRICHConst.h" class AliRICHParam :public TObject { public: AliRICHParam(); virtual ~AliRICHParam() {;} void Recalc(); //Recalculates dependent parameters after changes applied Int_t Sector(Float_t x,Float_t y)const; //Returns sector number for given point (x,y) Int_t L2P(Float_t x,Float_t y,Int_t &iPadX,Int_t &iPadY)const;//Which pad contains point (x,y), returns sector code inline Int_t Wire(Float_t x)const; //Returns wire number for local point (x,y) inline void SigGenInit(Float_t x,Float_t y); inline Bool_t SigGenCond(Float_t x,Float_t y); Float_t Gain(Float_t y); //Returns total charge induced by single photon Float_t TotalCharge(Int_t iPID,Float_t eloss,Float_t y); //Returns total charge induced by particle lost eloss GeV Float_t PadCharge(Int_t /* iPadX */,Int_t /* iPadY */) {return 0;} //Returns charge for a given pad void Segmentation(Int_t Nx,Int_t Ny) {fNpadX=Nx;fNpadY=Ny;Recalc();} Int_t Nx() const{return fNpadX;} Int_t Ny() const{return fNpadY;} void DeadZone(Float_t a) { fDeadZone=a;Recalc();} Float_t DeadZone() const{return fDeadZone;} void PadSize(Float_t x,Float_t y) { fPadSizeX=x;fPadSizeY=y;Recalc();} Float_t PadSizeX() const{return fPadSizeX;} Float_t PadSizeY() const{return fPadSizeY;} Float_t SectorSizeX() const{return fSectorSizeX;} Float_t SectorSizeY() const{return fSectorSizeY;} Float_t PcSizeX() const{return fPcSizeX;} Float_t PcSizeY() const{return fPcSizeY;} void Size(Float_t x,Float_t y,Float_t z){fSizeX=x;fSizeY=y;fSizeZ=z;} void GeantSize(Float_t *pArr) const{pArr[0]=fSizeX/2;pArr[1]=fSizeY/2;pArr[2]=fSizeZ/2;} Float_t SizeX() const{return fSizeX;} Float_t SizeY() const{return fSizeY;} Float_t SizeZ() const{return fSizeZ;} void Offset(Float_t offset) { fOffset=offset;} Float_t Offset() const{return fOffset;} void Angles(Float_t xy,Float_t yz) { fAngleXY=xy;fAngleYZ=yz;} Float_t AngleYZ() const{return fAngleYZ*kD2r;} Float_t AngleXY() const{return fAngleXY*kD2r;} void AngleRot(Float_t angle) { fAngleRot=angle;} Float_t AngleRot() const{return fAngleRot*kD2r;} void GapThickness(Float_t a) { fGapThickness=a;} Float_t GapThickness() const{return fGapThickness;} void ProximityGapThickness(Float_t a) { fProximityGapThickness=a;} Float_t ProximityGapThickness() const{return fProximityGapThickness;} void QuartzLength(Float_t a) { fQuartzLength=a;} Float_t QuartzLength() const{return fQuartzLength;} void QuartzWidth(Float_t a) { fQuartzWidth=a;} Float_t QuartzWidth() const{return fQuartzWidth;} void QuartzThickness(Float_t a) { fQuartzThickness=a;} Float_t QuartzThickness() const{return fQuartzThickness;} void OuterFreonLength(Float_t a) { fOuterFreonLength=a;} Float_t OuterFreonLength() const{return fOuterFreonLength;} void OuterFreonWidth(Float_t a) { fOuterFreonWidth=a;} Float_t OuterFreonWidth() const{return fOuterFreonWidth;} void InnerFreonLength(Float_t a) { fInnerFreonLength=a;} Float_t InnerFreonLength() const{return fInnerFreonLength;} void InnerFreonWidth(Float_t a) { fInnerFreonWidth=a;} Float_t InnerFreonWidth() const{return fInnerFreonWidth;} void FreonThickness(Float_t a) { fFreonThickness=a;} Float_t FreonThickness() const{return fFreonThickness;} void RadiatorToPads(Float_t a) { fRadiatorToPads=a;} Float_t RadiatorToPads() const{return fRadiatorToPads;} void SigmaIntegration(Float_t a) { fSigmaIntegration=a;} Float_t SigmaIntegration() const{return fSigmaIntegration;} void ChargeSpreadX(Float_t a) { fChargeSpreadX=a;} Float_t ChargeSpreadX() const{return fChargeSpreadX;} void ChargeSpreadY(Float_t a) { fChargeSpreadY=a;} Float_t ChargeSpreadY() const{return fChargeSpreadY;} void ChargeSlope(Float_t a) { fChargeSlope=a;} Float_t ChargeSlope() {return fChargeSlope;} void MaxAdc(Float_t a) { fMaxAdc=a;} Float_t MaxAdc() const{return fMaxAdc;} void Pitch(Float_t a) { fPitch=a;} Float_t Pitch() const{return fPitch;} void AlphaFeedback(Float_t a) { fAlphaFeedback=a;} Float_t AlphaFeedback() const{return fAlphaFeedback;} void EIonisation(Float_t a) { fEIonisation=a;} Float_t EIonisation() const{return fEIonisation;} void SqrtKx3(Float_t a) { fSqrtKx3=a;}; void Kx2(Float_t a) { fKx2=a;} void Kx4(Float_t a) { fKx4=a;} void SqrtKy3(Float_t a) { fSqrtKy3=a;} void Ky2(Float_t a) { fKy2=a;} void Ky4(Float_t a) { fKy4=a;} void WireSag(Int_t a) { fWireSag=a;} void Voltage(Int_t a) { fVoltage=a;} Float_t Voltage() const{return fVoltage;} protected: Int_t fNpadX; Int_t fNpadY; //number of pads along X-Y in whole chamber (6 sectors) Float_t fDeadZone; //space between PC sectors, cm Float_t fPadSizeX,fPadSizeY; //pad size, cm Float_t fSectorSizeX,fSectorSizeY; //photocathod sector size, cm Float_t fWirePitch; //not yet known parameter ??? Int_t fCurrentPadX,fCurrentPadY; //??? Int_t fCurrentWire; //??? Float_t fSizeX; Float_t fSizeY; Float_t fSizeZ; //chamber outer size, cm Float_t fAngleRot; //azimuthal rotation XY plane, deg Float_t fAngleYZ; //angle between chambers YZ plane, deg Float_t fAngleXY; //angle between chambers XY plane, deg Float_t fOffset; //chambers offset from IP, cm Float_t fGapThickness; //gap thickness, cm Float_t fProximityGapThickness; //proximity gap thickness, cm Float_t fQuartzLength; Float_t fQuartzWidth; Float_t fQuartzThickness; //quartz window size, cm Float_t fOuterFreonLength; Float_t fOuterFreonWidth; //freon box outer size, cm Float_t fInnerFreonLength; Float_t fInnerFreonWidth; //freon box inner size, cm Float_t fFreonThickness; //freon thickness Float_t fRadiatorToPads; //distance from radiator to pads, cm Float_t fPcSizeX,fPcSizeY; //photocathod active area size,cm Float_t fChargeSlope; //Slope of the charge distribution Float_t fChargeSpreadX; //Width of the charge distribution in x Float_t fChargeSpreadY; //Width of the charge distribution in y Float_t fSigmaIntegration; //Number of sigma's used for charge distribution Float_t fAlphaFeedback; //Feedback photons coefficient Float_t fEIonisation; //Mean ionisation energy Float_t fMaxAdc; //Maximum ADC channel Float_t fSqrtKx3; //Mathieson parameters for x Float_t fKx2; //Mathieson parameters for x Float_t fKx4; //Mathieson parameters for x Float_t fSqrtKy3; //Mathieson parameters for y Float_t fKy2; //Mathieson parameters for y Float_t fKy4; //Mathieson parameters for y Float_t fPitch; //Anode-cathode pitch Int_t fWireSag; //Flag to turn on/off (0/1) wire sag Int_t fVoltage; //Working voltage (2000, 2050, 2100, 2150) ClassDef(AliRICHParam,1) //RICH main parameters }; //__________________________________________________________________________________________________ Int_t AliRICHParam::Wire(Float_t x)const { Int_t iWire=(x>0)?Int_t(x/fWirePitch)+1:Int_t(x/fWirePitch)-1; return iWire; }//Int_t AliRICHParam::Wire(Float_t x, Float_t y) //__________________________________________________________________________________________________ void AliRICHParam::SigGenInit(Float_t x,Float_t y) {//Initialises pad and wire position during stepping L2P(x,y,fCurrentPadX,fCurrentPadY); fCurrentWire= (x>0) ? Int_t(x/fWirePitch)+1 : Int_t(x/fWirePitch)-1 ; } //__________________________________________________________________________________________________ Bool_t AliRICHParam::SigGenCond(Float_t x,Float_t y) {//Signal will be generated if particle crosses pad boundary or boundary between two wires. Int_t curPadX,curPadY; L2P(x,y,curPadX,curPadY); Int_t currentWire=(x>0) ? Int_t(x/fWirePitch)+1 : Int_t(x/fWirePitch)-1; if((curPadX != fCurrentPadX) || (curPadY != fCurrentPadY) || (currentWire!=fCurrentWire)) return kTRUE; else return kFALSE; } //__________________________________________________________________________________________________ #endif //AliRICHParam_h