/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // AliRICHRecon // // // // RICH class to perfom pattern recognition based on Hough transfrom // // // ////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "AliRICH.h" #include "AliRICHParam.h" #include "AliRICHRecon.h" #include "AliRICHHelix.h" #include #define NPointsOfRing 201 //__________________________________________________________________________________________________ AliRICHRecon::AliRICHRecon(AliRICHHelix *pHelix,TClonesArray *pClusters,Int_t iMipId) :TTask("RichRec","RichPat") { // main ctor SetFreonScaleFactor(1); fIsWEIGHT = kFALSE; fThetaBin=750; fThetaMin = 0.0; fThetaMax = 0.75; fDTheta = 0.001; fWindowWidth = 0.060; fRadiatorWidth = AliRICHParam::Zfreon(); fQuartzWidth = AliRICHParam::Zwin(); fGapWidth = AliRICHParam::Freon2Pc() - fRadiatorWidth - fQuartzWidth; fXmin = -AliRICHParam::PcSizeX()/2.; fXmax = AliRICHParam::PcSizeX()/2.; fYmin = -AliRICHParam::PcSizeY()/2.; fYmax = AliRICHParam::PcSizeY()/2.; SetTrackTheta(pHelix->Ploc().Theta()); SetTrackPhi(pHelix->Ploc().Phi()); SetMipIndex(iMipId); SetShiftX(pHelix->PosRad().X()); SetShiftY(pHelix->PosRad().Y()); fpClusters = pClusters; } //__________________________________________________________________________________________________ Double_t AliRICHRecon::ThetaCerenkov() { // Pattern recognition method based on Hough transform // Return theta Cerenkov for a given track and list of clusters which are set in ctor if(fpClusters->GetEntries()==0) return kBad;//no clusters at all for a given track Bool_t kPatRec = kFALSE; AliDebug(1,Form("---Track Parameters--- Theta: %f , Phi: %f ",GetTrackTheta()*TMath::RadToDeg(),GetTrackPhi()*TMath::RadToDeg())); Int_t candidatePhotons = 0; SetThetaCerenkov(999.); SetHoughPhotons(0); SetHoughPhotonsNorm(0); for (Int_t j=0; j < fpClusters->GetEntries(); j++){//clusters loop SetPhotonIndex(j); SetPhotonFlag(0); SetPhotonEta(-999.); SetPhotonWeight(0.); if (j == GetMipIndex()) continue; // do not consider MIP cluster as a candidate photon Float_t xtoentr = ((AliRICHcluster*)fpClusters->UncheckedAt(j))->X() - GetShiftX(); Float_t ytoentr = ((AliRICHcluster*)fpClusters->UncheckedAt(j))->Y() - GetShiftY(); SetEntranceX(xtoentr); SetEntranceY(ytoentr); FindPhiPoint(); // Int_t photonStatus = PhotonInBand(); // if(photonStatus == 0) continue; SetPhotonFlag(1); FindThetaPhotonCerenkov(); Float_t thetaPhotonCerenkov = GetThetaPhotonCerenkov(); AliDebug(1,Form("THETA CERENKOV ---> %f",thetaPhotonCerenkov)); SetPhotonEta(thetaPhotonCerenkov); candidatePhotons++; }//clusters loop if(candidatePhotons >= 1) kPatRec = kTRUE; if(!kPatRec) return kBad; SetPhotonsNumber(fpClusters->GetEntries()); HoughResponse(); fNrings++; FlagPhotons(); Int_t nPhotonHough = GetHoughPhotons(); if(nPhotonHough < 1) { SetThetaCerenkov(999.); SetHoughPhotonsNorm(0.); return kBad; } if(fIsWEIGHT) FindWeightThetaCerenkov(); Float_t thetaCerenkov = GetThetaCerenkov(); AliDebug(1,Form("Number of clusters accepted ---> %i",nPhotonHough)); SetThetaOfRing(thetaCerenkov); // FindAreaAndPortionOfRing(); // Float_t nPhotonHoughNorm = ((Float_t)nPhotonHough)/GetPortionOfRing(); // SetHoughPhotonsNorm(nPhotonHoughNorm); // Calculate the area where the photon are accepted... /* Float_t thetaInternal = thetaCerenkov - 0.5*fWindowWidth; SetThetaOfRing(thetaInternal); FindAreaAndPortionOfRing(); Float_t internalArea = GetAreaOfRing(); Float_t thetaExternal = thetaCerenkov + 0.5*fWindowWidth; SetThetaOfRing(thetaExternal); FindAreaAndPortionOfRing(); Float_t externalArea = GetAreaOfRing(); Float_t houghArea = externalArea - internalArea; SetHoughArea(houghArea); */ return GetThetaCerenkov(); }//ThetaCerenkov() //__________________________________________________________________________________________________ void AliRICHRecon::FindEmissionPoint() { //estimate the emission point in radiator // Find emission point Float_t absorbtionLenght=7.83*fRadiatorWidth; //absorption length in the freon (cm) // 7.83 = -1/ln(T0) where // T0->Trasmission freon at 180nm = 0.88 (Eph=6.85eV) Float_t photonLenght, photonLenghtMin, photonLenghtMax; photonLenght=exp(-fRadiatorWidth/(absorbtionLenght*cos(fCerenkovAnglePad))); photonLenghtMin=fRadiatorWidth*photonLenght/(1.-photonLenght); photonLenghtMax=absorbtionLenght*cos(fCerenkovAnglePad); Float_t emissionPoint = fRadiatorWidth + photonLenghtMin - photonLenghtMax; SetEmissionPoint(emissionPoint); SetEmissionPoint(fRadiatorWidth/2); // tune the emission point } Int_t AliRICHRecon::PhotonInBand() { //search band fro photon candidates // Float_t massOfParticle; Float_t nfreon; Float_t thetacer; Float_t xtoentr = GetEntranceX(); Float_t ytoentr = GetEntranceY(); Float_t innerRadius; Float_t outerRadius; Float_t phpad = GetPhiPoint(); // inner radius // SetPhotonEnergy(5.6); SetEmissionPoint(fRadiatorWidth -0.0001); SetFreonRefractiveIndex(); nfreon = GetFreonRefractiveIndex(); thetacer = 0.; AliDebug(1,Form("thetacer in photoninband min %f",thetacer)); FindThetaAtQuartz(thetacer); if(thetacer == 999. || GetThetaAtQuartz() == 999.) { innerRadius = -999.; SetXInnerRing(-999.); SetYInnerRing(-999.); SetRadiusInnerRing(-999.); } else { SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phpad); innerRadius = FromEmissionToCathode(); if(innerRadius == 999.) innerRadius = -999.; SetXInnerRing(GetXPointOnCathode()); SetYInnerRing(GetYPointOnCathode()); SetRadiusInnerRing(innerRadius); } // outer radius // SetPhotonEnergy(7.7); SetEmissionPoint(0.); // SetMassHypotesis(0.139567); SetFreonRefractiveIndex(); nfreon = GetFreonRefractiveIndex(); thetacer = Cerenkovangle(nfreon,1); // thetacer = 0.75; AliDebug(1,Form("thetacer in photoninband max %f",thetacer)); FindThetaAtQuartz(thetacer); if(thetacer == 999. || GetThetaAtQuartz() == 999.) { outerRadius = 999.; SetXOuterRing(999.); SetYOuterRing(999.); SetRadiusOuterRing(999.); } else { SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phpad); outerRadius = FromEmissionToCathode(); // cout << " outerRadius " << outerRadius << endl; SetXOuterRing(GetXPointOnCathode()); SetYOuterRing(GetYPointOnCathode()); SetRadiusOuterRing(outerRadius); } Float_t padradius = sqrt(TMath::Power(xtoentr,2)+TMath::Power(ytoentr,2)); AliDebug(1,Form("rmin %f r %f rmax %f",innerRadius,padradius,outerRadius)); if(padradius>=innerRadius && padradius<=outerRadius) return 1; return 0; } void AliRICHRecon::FindThetaAtQuartz(Float_t thetaCerenkov) { //find the theta at the quartz plate if(thetaCerenkov == 999.) { SetThetaAtQuartz(999.); return; } Float_t thetaAtQuartz = 999.; Float_t trackTheta = GetTrackTheta(); if(trackTheta == 0) { thetaAtQuartz = thetaCerenkov; SetThetaAtQuartz(thetaAtQuartz); return; } Float_t trackPhi = GetTrackPhi(); Float_t phiPoint = GetPhiPoint(); Double_t den = TMath::Sin((Double_t)trackTheta) *TMath::Cos((Double_t)trackPhi) *TMath::Cos((Double_t)phiPoint) + TMath::Sin((Double_t)trackTheta) *TMath::Sin((Double_t)trackPhi) *TMath::Sin((Double_t)phiPoint); Double_t b = TMath::Cos((Double_t)trackTheta)/den; Double_t c = -TMath::Cos((Double_t)thetaCerenkov)/den; Double_t underSqrt = 1 + b*b - c*c; if(underSqrt < 0) { SetThetaAtQuartz(999.); return; } Double_t sol1 = (1+TMath::Sqrt(underSqrt))/(b-c); Double_t sol2 = (1-TMath::Sqrt(underSqrt))/(b-c); Double_t thetaSol1 = 2*TMath::ATan(sol1); Double_t thetaSol2 = 2*TMath::ATan(sol2); if(thetaSol1>0 && thetaSol1 < TMath::Pi()) thetaAtQuartz = (Float_t)thetaSol1; if(thetaSol2>0 && thetaSol2 < TMath::Pi()) thetaAtQuartz = (Float_t)thetaSol2; // AliDebug(1,Form(" Theta @ quartz window %f ",thetaAtQuartz)); SetThetaAtQuartz(thetaAtQuartz); } void AliRICHRecon::FindThetaPhotonCerenkov() { //find theta cerenkov of ring Float_t thetaCerMin = 0.; Float_t thetaCerMax = 0.75; Float_t thetaCerMean; Float_t radiusMin, radiusMax, radiusMean; Int_t nIteration = 0; const Float_t kTollerance = 0.05; Float_t phiPoint = GetPhiPoint(); SetPhotonEnergy(6.85); SetEmissionPoint(fRadiatorWidth/2); Float_t xPoint = GetEntranceX(); Float_t yPoint = GetEntranceY(); Float_t distPoint = TMath::Sqrt(xPoint*xPoint + yPoint*yPoint); AliDebug(1,Form(" DistPoint %f ",distPoint)); // Star minimization... // First value... FindThetaAtQuartz(thetaCerMin); if(GetThetaAtQuartz() == 999.) { radiusMin = -999.; } else { SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phiPoint); radiusMin = FromEmissionToCathode(); } // Second value... FindThetaAtQuartz(thetaCerMax); if(GetThetaAtQuartz() == 999.) { radiusMax = 999.; } else { SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phiPoint); radiusMax = FromEmissionToCathode(); } // Mean value... thetaCerMean = (thetaCerMax + thetaCerMin)/2; FindThetaAtQuartz(thetaCerMean); if(GetThetaAtQuartz() == 999.) { radiusMean = 999.; } else { SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phiPoint); radiusMean = FromEmissionToCathode(); } AliDebug(1,Form(" r1 %f rmean %f r2 %f",radiusMin,radiusMean,radiusMax)); while (TMath::Abs(radiusMean-distPoint) > kTollerance) { if((radiusMin-distPoint)*(radiusMean-distPoint) < 0) thetaCerMax = thetaCerMean; if((radiusMin-distPoint)*(radiusMean-distPoint) > 0) { thetaCerMin = thetaCerMean; FindThetaAtQuartz(thetaCerMin); SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phiPoint); radiusMin =FromEmissionToCathode(); } thetaCerMean = (thetaCerMax + thetaCerMin)/2; FindThetaAtQuartz(thetaCerMean); SetThetaPhotonInDRS(GetThetaAtQuartz()); SetPhiPhotonInDRS(phiPoint); radiusMean = FromEmissionToCathode(); nIteration++; if(nIteration>=50) { AliDebug(1,Form(" max iterations in FindPhotonCerenkov ",nIteration)); SetThetaPhotonCerenkov(999.); return; } } AliDebug(1,Form(" distpoint %f radius %f ",distPoint,radiusMean)); SetThetaPhotonCerenkov(thetaCerMean); } void AliRICHRecon::FindAreaAndPortionOfRing() { //find fraction of the ring accepted by the RICH Float_t xPoint[NPointsOfRing], yPoint[NPointsOfRing]; // Float_t xtoentr = GetEntranceX(); // Float_t ytoentr = GetEntranceY(); Float_t shiftX = GetShiftX(); Float_t shiftY = GetShiftY(); Float_t xemiss = GetXCoordOfEmission(); Float_t yemiss = GetYCoordOfEmission(); Float_t x0 = xemiss + shiftX; Float_t y0 = yemiss + shiftY; SetPhotonEnergy(6.85); SetFreonRefractiveIndex(); SetEmissionPoint(fRadiatorWidth/2.); Float_t theta = GetThetaOfRing(); Int_t nPoints = 0; Int_t nPsiAccepted = 0; Int_t nPsiTotal = 0; for(Int_t i=0;i x0) { x1 = x0; x2 = xPoint; } else { x2 = x0; x1 = xPoint; } if(yPoint > y0) { y1 = y0; y2 = yPoint; } else { y2 = y0; y1 = yPoint; } // xIntersect = fXmax; yIntersect = m*(xIntersect - x0) + y0; if (yIntersect >= fYmin && yIntersect <= fYmax && xIntersect >= x1 && xIntersect <= x2) { SetIntersectionX(xIntersect); SetIntersectionY(yIntersect); return; } // xIntersect = fXmin; yIntersect = m*(xIntersect - x0) + y0; if (yIntersect >= fYmin && yIntersect <= fYmax && xIntersect >= x1 && xIntersect <= x2) { SetIntersectionX(xIntersect); SetIntersectionY(yIntersect); return; } // yIntersect = fYmax; xIntersect = (yIntersect - y0)/m + x0; if (xIntersect >= fXmin && xIntersect <= fXmax && yIntersect >= y1 && yIntersect <= y2) { SetIntersectionX(xIntersect); SetIntersectionY(yIntersect); return; } // yIntersect = fYmin; xIntersect = (yIntersect - y0)/m + x0; if (xIntersect >= fXmin && xIntersect <= fXmax && yIntersect >= y1 && yIntersect <= y2) { SetIntersectionX(xIntersect); SetIntersectionY(yIntersect); return; } cout << " sono fuori!!!!!!" << endl; } //__________________________________________________________________________________________________ Int_t AliRICHRecon::CheckDetectorAcceptance() const { // check for the acceptance // crosses X -2.6 2.6 cm // crosses Y -1 1 cm Float_t xcoord = GetDetectorWhereX(); Float_t ycoord = GetDetectorWhereY(); if(xcoord > fXmax) { if(ycoord > fYmax) return 2; if(ycoord > fYmin && ycoord < fYmax) return 3; if(ycoord < fYmin) return 4; } if(xcoord < fXmin) { if(ycoord > fYmax) return 8; if(ycoord > fYmin && ycoord < fYmax) return 7; if(ycoord < fYmin) return 6; } if(xcoord > fXmin && xcoord < fXmax) { if(ycoord > fYmax) return 1; if(ycoord > fYmin && ycoord < fYmax) return 0; if(ycoord < fYmin) return 5; } return 999; } //__________________________________________________________________________________________________ void AliRICHRecon::FindPhotonAnglesInDRS() { // Setup the rotation matrix of the track... TRotation mtheta; TRotation mphi; TRotation minv; TRotation mrot; Float_t trackTheta = GetTrackTheta(); Float_t trackPhi = GetTrackPhi(); mtheta.RotateY(trackTheta); mphi.RotateZ(trackPhi); mrot = mphi * mtheta; // minv = mrot.Inverse(); TVector3 photonInRadiator(1,1,1); Float_t thetaCerenkov = GetThetaPhotonInTRS(); Float_t phiCerenkov = GetPhiPhotonInTRS(); photonInRadiator.SetTheta(thetaCerenkov); photonInRadiator.SetPhi(phiCerenkov); photonInRadiator = mrot * photonInRadiator; Float_t theta = photonInRadiator.Theta(); Float_t phi = photonInRadiator.Phi(); SetThetaPhotonInDRS(theta); SetPhiPhotonInDRS(phi); } Float_t AliRICHRecon::FromEmissionToCathode() { // trace from emission point to cathode Float_t nfreon, nquartz, ngas; SetFreonRefractiveIndex(); SetQuartzRefractiveIndex(); SetGasRefractiveIndex(); nfreon = GetFreonRefractiveIndex(); nquartz = GetQuartzRefractiveIndex(); ngas = GetGasRefractiveIndex(); Float_t trackTheta = GetTrackTheta(); Float_t trackPhi = GetTrackPhi(); Float_t lengthOfEmissionPoint = GetEmissionPoint(); Float_t theta = GetThetaPhotonInDRS(); Float_t phi = GetPhiPhotonInDRS(); // cout << " Theta " << Theta << " Phi " << Phi << endl; Float_t xemiss = lengthOfEmissionPoint*tan(trackTheta)*cos(trackPhi); Float_t yemiss = lengthOfEmissionPoint*tan(trackTheta)*sin(trackPhi); SetXCoordOfEmission(xemiss); SetYCoordOfEmission(yemiss); Float_t thetaquar = SnellAngle(nfreon, nquartz, theta); if(thetaquar == 999.) { SetXPointOnCathode(999.); SetYPointOnCathode(999.); return thetaquar; } Float_t thetagap = SnellAngle( nquartz, ngas, thetaquar); if(thetagap == 999.) { SetXPointOnCathode(999.); SetYPointOnCathode(999.); return thetagap; } Float_t xw = (fRadiatorWidth - lengthOfEmissionPoint)*cos(phi)*tan(theta); Float_t xq = fQuartzWidth*cos(phi)*tan(thetaquar); Float_t xg = fGapWidth*cos(phi)*tan(thetagap); Float_t yw = (fRadiatorWidth - lengthOfEmissionPoint)*sin(phi)*tan(theta); Float_t yq = fQuartzWidth*sin(phi)*tan(thetaquar); Float_t yg = fGapWidth*sin(phi)*tan(thetagap); Float_t xtot = xemiss + xw + xq + xg; Float_t ytot = yemiss + yw + yq + yg; SetXPointOnCathode(xtot); SetYPointOnCathode(ytot); Float_t distanceFromEntrance = sqrt(TMath::Power(fPhotonLimitX,2) +TMath::Power(fPhotonLimitY,2)); return distanceFromEntrance; } void AliRICHRecon::FindPhiPoint() { //find phi of generated point Float_t xtoentr = GetEntranceX(); Float_t ytoentr = GetEntranceY(); Float_t trackTheta = GetTrackTheta(); Float_t trackPhi = GetTrackPhi(); Float_t emissionPoint = GetEmissionPoint(); Float_t argY = ytoentr - emissionPoint*tan(trackTheta)*sin(trackPhi); Float_t argX = xtoentr - emissionPoint*tan(trackTheta)*cos(trackPhi); Float_t phi = atan2(argY,argX); SetPhiPoint(phi); } Float_t AliRICHRecon::Cerenkovangle(Float_t n, Float_t beta) { // cerenkov angle from n and beta // Compute the cerenkov angle Float_t thetacer; if((n*beta)<1.) { thetacer = 999.; // cout << " warning in Cerenkoangle !!!!!! " << endl; return thetacer; } thetacer = acos (1./(n*beta)); return thetacer; } Float_t AliRICHRecon::SnellAngle(Float_t n1, Float_t n2, Float_t theta1) { // Snell law // Compute the Snell angle Float_t sinrefractangle; Float_t refractangle; sinrefractangle = (n1/n2)*sin(theta1); if(sinrefractangle>1.) { // cout << " PROBLEMS IN SNELL ANGLE !!!!! " << endl; refractangle = 999.; return refractangle; } refractangle = asin(sinrefractangle); return refractangle; } void AliRICHRecon::HoughResponse() { //Hough response // Implement Hough response pat. rec. method Float_t *hCSspace; int bin=0; int bin1=0; int bin2=0; int i, j, k, nCorrBand; float hcs[750],hcsw[750]; float angle, weight; float lowerlimit,upperlimit; float etaPeak[100]; int nBin; float etaPeakPos = -1; Int_t etaPeakCount = -1; Float_t thetaCerenkov = 0.; nBin = (int)(0.5+fThetaMax/(fDTheta)); nCorrBand = (int)(0.5+ fWindowWidth/(2 * fDTheta)); memset ((void *)hcs, 0, fThetaBin*sizeof(float)); memset ((void *)hcsw, 0, fThetaBin*sizeof(float)); Int_t nPhotons = GetPhotonsNumber(); Int_t weightFlag = 0; for (k=0; k< nPhotons; k++) { SetPhotonIndex(k); angle = GetPhotonEta(); if(angle == -999.) continue; if (angle>=fThetaMin && angle<= fThetaMax) { bin = (int)(0.5+angle/(fDTheta)); bin1= bin-nCorrBand; bin2= bin+nCorrBand; // calculate weights if(fIsWEIGHT) { lowerlimit = ((Float_t)bin1)*fDTheta + 0.5*fDTheta; SetThetaOfRing(lowerlimit); FindAreaAndPortionOfRing(); Float_t area1 = GetAreaOfRing(); upperlimit = ((Float_t)bin2)*fDTheta + 0.5*fDTheta; SetThetaOfRing(upperlimit); FindAreaAndPortionOfRing(); Float_t area2 = GetAreaOfRing(); // cout << "lowerlimit" << lowerlimit << "upperlimit " << upperlimit << endl; Float_t diffarea = area2 - area1; if(diffarea>0) { weight = 1./(area2-area1); } else { weightFlag = 1; weight = 1.; } // cout <<" low "<< lowerlimit << " up " << upperlimit << // " area1 " << area1 << " area2 " << area2 << " weight " << weight << endl; } else { weight = 1.; } SetPhotonWeight(weight); // cout << "weight..." << weight << endl; if (bin1<0) bin1=0; if (bin2>nBin) bin2=nBin; for (j=bin1; j etaPeakPos) { etaPeakCount = 0; etaPeakPos = hCSspace[bin]; etaPeak[0]=angle; } else { if (hCSspace[bin] == etaPeakPos) { etaPeak[++etaPeakCount] = angle; } } } for (i=0; i=0) { thetaCerenkov /= etaPeakCount+1; fThetaPeakPos = etaPeakPos; } SetThetaCerenkov(thetaCerenkov); } void AliRICHRecon::HoughFiltering(float hcs[]) { // filter for Hough // hough filtering float hcsFilt[750]; float k[5] = {0.05, 0.25, 0.4, 0.25, 0.05}; int nx, i, nxDx; int sizeHCS; int nBin; nBin = (int)(1+fThetaMax/fDTheta); sizeHCS = fThetaBin*sizeof(float); memset ((void *)hcsFilt, 0, sizeHCS); for (nx = 0; nx < nBin; nx++) { for (i = 0; i < 5; i++) { nxDx = nx + (i-2); if (nxDx> -1 && nxDx " << weightThetaCerenkov << endl; } void AliRICHRecon::FlagPhotons() { // flag photons Int_t nPhotonHough = 0; Float_t thetaCerenkov = GetThetaCerenkov(); AliDebug(1,Form(" fThetaCerenkov %f ",thetaCerenkov)); Float_t thetaDist= thetaCerenkov - fThetaMin; Int_t steps = (Int_t)(thetaDist / fDTheta); Float_t tmin = fThetaMin + (Float_t)(steps - 1)*fDTheta; Float_t tmax = fThetaMin + (Float_t)(steps)*fDTheta; Float_t tavg = 0.5*(tmin+tmax); tmin = tavg - 0.5*fWindowWidth; tmax = tavg + 0.5*fWindowWidth; // Int_t candidatePhotonsNumber = GetCandidatePhotonsNumber(); Int_t nPhotons = GetPhotonsNumber(); // for(Int_t i=0;i= tmin && photonEta <= tmax) { SetPhotonFlag(2); nPhotonHough++; } } SetHoughPhotons(nPhotonHough); }