#ifndef ALIRICHSEGMENTATIONV0_H #define ALIRICHSEGMENTATIONV0_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include "AliSegmentation.h" class AliRICHSegmentationV0 : public AliSegmentation { public: AliRICHSegmentationV0(); virtual ~AliRICHSegmentationV0(){} // // Set Chamber Segmentation Parameters // // Pad size Dx*Dy virtual void SetPadSize(Float_t p1, Float_t p2); // Anod Pitch virtual void SetDAnod(Float_t D) {fWireD = D;}; // // Transform from pad (wire) to real coordinates and vice versa // // Anod wire coordinate closest to xhit virtual Float_t GetAnod(Float_t xhit) const; // Transform from pad to real coordinates virtual void GetPadI(Float_t x, Float_t y , Int_t &ix, Int_t &iy); virtual void GetPadI(Float_t x, Float_t y , Float_t z, Int_t &ix, Int_t &iy) {GetPadI(x, y, ix, iy);} // Transform from real to pad coordinates virtual void GetPadC(Int_t ix, Int_t iy, Float_t &x, Float_t &y); virtual void GetPadC(Int_t ix, Int_t iy, Float_t &x, Float_t &y, Float_t &z) {z=0; GetPadC(ix, iy, x , y);} // // Initialisation virtual void Init(Int_t id); // // Get member data // // Pad size in x virtual Float_t Dpx() const {return fDpx;} // // Pad size in y virtual Float_t Dpy() const {return fDpy;} // Pad size in x by Sector virtual Float_t Dpx(Int_t) const {return fDpx;} // Pad size in y by Sector virtual Float_t Dpy(Int_t) const {return fDpy;} // Max number of Pads in x virtual Int_t Npx() const {return fNpx;} // Max number of Pads in y virtual Int_t Npy() const {return fNpy;} // Dead zone width virtual Float_t DeadZone() const {return fDeadZone;} // Getters for padplane dimensions virtual Float_t GetPadPlaneWidth() const {return fPadPlane_Width;} virtual Float_t GetPadPlaneLength() const {return fPadPlane_Length;} // set pad position virtual void SetPad(Int_t ix, Int_t iy); // set hit position virtual void SetHit(Float_t xhit , Float_t yhit); virtual void SetHit(Float_t xhit, Float_t yhit, Float_t zhit) {SetHit(xhit, yhit);} // // Iterate over pads // Initialiser virtual void FirstPad(Float_t xhit, Float_t yhit, Float_t dx, Float_t dy); virtual void FirstPad(Float_t xhit, Float_t yhit, Float_t zhit, Float_t dx, Float_t dy) {FirstPad(xhit, yhit, dx, dy);} // Stepper virtual void NextPad(); // Condition virtual Int_t MorePads(); // // Distance between 1 pad and a position virtual Float_t Distance2AndOffset(Int_t iX, Int_t iY, Float_t X, Float_t Y, Int_t * dummy); // Number of pads read in parallel and offset to add to x // (specific to LYON, but mandatory for display) virtual void GetNParallelAndOffset(Int_t iX, Int_t iY, Int_t *Nparallel, Int_t *Offset) {*Nparallel=1;*Offset=0;} // Get next neighbours virtual void Neighbours (Int_t iX, Int_t iY, Int_t* Nlist, Int_t Xlist[10], Int_t Ylist[10]); // // Current Pad during Integration // x-coordinate virtual Int_t Ix() {return fIx;} // y-coordinate virtual Int_t Iy() {return fIy;} // current sector virtual Int_t ISector() {return 1;} // calculate sector from x-y coordinates virtual Int_t Sector(Int_t ix, Int_t iy) {return 1;} // // Signal Generation Condition during Stepping virtual Int_t SigGenCond(Float_t x, Float_t y, Float_t z); // Initialise signal gneration at coord (x,y,z) virtual void SigGenInit(Float_t x, Float_t y, Float_t z); // Current integration limits virtual void IntegrationLimits (Float_t& x1, Float_t& x2, Float_t& y1, Float_t& y2); // Test points for auto calibration virtual void GiveTestPoints(Int_t &n, Float_t *x, Float_t *y) const; // Debugging utilities virtual void Draw(const char* = "") const; // Function for systematic corrections virtual void SetCorrFunc(Int_t dum, TF1* func) {fCorr=func;} virtual TF1* CorrFunc(Int_t) const {return fCorr;} ClassDef(AliRICHSegmentationV0,1) protected: // // Implementation of the segmentation data // Version 0 models rectangular pads with the same dimensions all // over the cathode plane // // geometry // Float_t fDpx; // x pad width per sector Float_t fDpy; // y pad base width Int_t fNpx; // Number of pads in x Int_t fNpy; // Number of pads in y Int_t fSector; // Current padplane Float_t fWireD; // wire pitch Float_t fDeadZone; //width of deadzones beteween CsI padplanes Float_t fPadPlane_Width; //width of CsI padplanes Float_t fPadPlane_Length; //length of CsI padplanes // Chamber region consideres during disintegration (lower left and upper right corner) // Int_t fIxmin; // lower left x Int_t fIxmax; // lower left y Int_t fIymin; // upper right x Int_t fIymax; // upper right y // // Current pad during integration (cursor for disintegration) Int_t fIx; // pad coord. x Int_t fIy; // pad coord. y Float_t fX; // x Float_t fY; // y // // Current pad and wire during tracking (cursor at hit centre) Float_t fXhit; //x position Float_t fYhit; //y position // Reference point to define signal generation condition Int_t fIxt; // pad coord. x Int_t fIyt; // pad coord. y Int_t fIwt; // wire number Float_t fXt; // x Float_t fYt; // y TF1* fCorr; // correction function }; #endif