/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.11 2000/06/12 15:35:44 jbarbosa Cleaned up version. Revision 1.10 2000/06/09 14:59:25 jbarbosa New default version. No setters needed, no hits. Revision 1.9 2000/05/31 08:19:38 jbarbosa Fixed bug in StepManager Revision 1.8 2000/05/26 17:30:08 jbarbosa Cerenkov angle now stored within cerenkov data structure. Revision 1.7 2000/05/18 10:31:36 jbarbosa Fixed positioning of spacers inside freon. Fixed positioning of proximity gap inside methane. Fixed cut on neutral particles in the StepManager. Revision 1.6 2000/04/28 11:51:58 morsch Dimensions of arrays hits and Ckov_data corrected. Revision 1.5 2000/04/19 13:28:46 morsch Major changes in geometry (parametrised), materials (updated) and step manager (diagnostics) (JB, AM) */ ///////////////////////////////////////////////////////////// // Manager and hits classes for set: RICH default version // ///////////////////////////////////////////////////////////// #include #include #include #include "AliRICHv0.h" #include "AliRICHSegmentation.h" #include "AliRICHResponse.h" #include "AliRICHSegmentationV0.h" #include "AliRICHResponseV0.h" #include "AliRICHGeometry.h" #include "AliRun.h" #include "AliMC.h" #include "iostream.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliPDG.h" #include "TGeant3.h" ClassImp(AliRICHv0) //___________________________________________ AliRICHv0::AliRICHv0() : AliRICH() { // Default constructor //fChambers = 0; } //___________________________________________ AliRICHv0::AliRICHv0(const char *name, const char *title) : AliRICH(name,title) { // // Version 0 // Default Segmentation, no hits AliRICHSegmentationV0* segmentationV0 = new AliRICHSegmentationV0; // // Segmentation parameters segmentationV0->SetPadSize(0.84,0.80); segmentationV0->SetDAnod(0.84/2); // // Geometry parameters AliRICHGeometry* geometry = new AliRICHGeometry; geometry->SetGapThickness(8); geometry->SetProximityGapThickness(.4); geometry->SetQuartzLength(131); geometry->SetQuartzWidth(126.2); geometry->SetQuartzThickness(.5); geometry->SetOuterFreonLength(131); geometry->SetOuterFreonWidth(40.3); geometry->SetInnerFreonLength(131); geometry->SetInnerFreonWidth(40.3); geometry->SetFreonThickness(1); // // Response parameters AliRICHResponseV0* responseV0 = new AliRICHResponseV0; responseV0->SetSigmaIntegration(5.); responseV0->SetChargeSlope(40.); responseV0->SetChargeSpread(0.18, 0.18); responseV0->SetMaxAdc(1024); responseV0->SetAlphaFeedback(0.05); responseV0->SetEIonisation(26.e-9); responseV0->SetSqrtKx3(0.77459667); responseV0->SetKx2(0.962); responseV0->SetKx4(0.379); responseV0->SetSqrtKy3(0.77459667); responseV0->SetKy2(0.962); responseV0->SetKy4(0.379); responseV0->SetPitch(0.25); // // // AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); fCkovNumber=0; fFreonProd=0; Int_t i=0; fChambers = new TObjArray(kNCH); for (i=0; i */ //End_Html //Begin_Html /* */ //End_Html AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); AliRICHSegmentation* segmentation; AliRICHGeometry* geometry; AliRICHChamber* iChamber; iChamber = &(pRICH->Chamber(0)); segmentation=iChamber->GetSegmentationModel(0); geometry=iChamber->GetGeometryModel(); Float_t distance; distance = geometry->GetFreonThickness()/2 + geometry->GetQuartzThickness() + geometry->GetGapThickness(); geometry->SetRadiatorToPads(distance); Int_t *idtmed = fIdtmed->GetArray()-999; Int_t i; Float_t zs; Int_t idrotm[1099]; Float_t par[3]; // --- Define the RICH detector // External aluminium box par[0] = 71.1; par[1] = 11.5; //Original Settings par[2] = 73.15; /*par[0] = 73.15; par[1] = 11.5; par[2] = 71.1;*/ gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3); // Sensitive part of the whole RICH par[0] = 64.8; par[1] = 11.5; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = 11.5; par[2] = 64.8;*/ gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); // Honeycomb par[0] = 63.1; par[1] = .188; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = .188; par[2] = 63.1;*/ gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3); // Aluminium sheet par[0] = 63.1; par[1] = .025; //Original Settings par[2] = 66.55; /*par[0] = 66.5; par[1] = .025; par[2] = 63.1;*/ gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3); // Quartz par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2; /*par[0] = 63.1; par[1] = .25; //Original Settings par[2] = 65.5;*/ /*par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2;*/ //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]); gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3); // Spacers (cylinders) par[0] = 0.; par[1] = .5; par[2] = geometry->GetFreonThickness()/2; gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3); // Opaque quartz par[0] = 61.95; par[1] = .2; //Original Settings par[2] = 66.5; /*par[0] = 66.5; par[1] = .2; par[2] = 61.95;*/ gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3); // Frame of opaque quartz par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2 + 1; /*par[0] = 20.65; par[1] = .5; //Original Settings par[2] = 66.5;*/ /*par[0] = 66.5; par[1] = .5; par[2] = 20.65;*/ gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 + 1; gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3); // Little bar of opaque quartz par[0] = .275; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 - 2.4; /*par[0] = .275; par[1] = .25; //Original Settings par[2] = 63.1;*/ /*par[0] = 63.1; par[1] = .25; par[2] = .275;*/ gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3); // Freon par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2; /*par[0] = 20.15; par[1] = .5; //Original Settings par[2] = 65.5;*/ /*par[0] = 65.5; par[1] = .5; par[2] = 20.15;*/ gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2; gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3); // Methane par[0] = 64.8; par[1] = geometry->GetGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3); // Methane gap par[0] = 64.8; par[1] = geometry->GetProximityGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3); // CsI photocathode par[0] = 64.8; par[1] = .25; par[2] = 64.8; gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3); // Anode grid par[0] = 0.; par[1] = .001; par[2] = 20.; gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3); // --- Places the detectors defined with GSVOLU // Place material inside RICH gMC->Gspos("SRIC", 1, "RICH", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .376 -.025, 0., 0, "ONLY"); gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .188, 0., 0, "ONLY"); gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .025, 0., 0, "ONLY"); gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY"); AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.); Int_t nspacers = (Int_t)(TMath::Abs(geometry->GetInnerFreonLength()/14.4)); //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); //printf("Nspacers: %d", nspacers); //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i < nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (14 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., -6.7, idrotm[1019], "ONLY"); } //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i < nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., -6.7, idrotm[1019], "ONLY"); } /*gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", 31.3, -4.724, 41.3, 0, "ONLY"); gMC->Gspos("OQF2", 2, "SRIC", 0., -4.724, 0., 0, "ONLY"); gMC->Gspos("OQF1", 3, "SRIC", -31.3, -4.724, -41.3, 0, "ONLY"); gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., -3.974, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., 4.8, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 6.526, 0., 0, "ONLY");*/ gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3) gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2), 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (-31.3) gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + .25, 0., 0, "ONLY"); //printf("Position of the gap: %f to %f\n", 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - .2, 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 + .2); // Place RICH inside ALICE apparatus AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.); AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.); AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.); AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.); AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.); AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.); AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.); gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26, idrotm[1000], "ONLY"); gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0., idrotm[1001], "ONLY"); gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0., idrotm[1002], "ONLY"); gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0., idrotm[1003], "ONLY"); gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3, idrotm[1004], "ONLY"); gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3, idrotm[1005], "ONLY"); gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY"); } //___________________________________________ void AliRICHv0::CreateMaterials() { // // *** DEFINITION OF AVAILABLE RICH MATERIALS *** // ORIGIN : NICK VAN EIJNDHOVEN // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); Int_t i; /************************************Antonnelo's Values (14-vectors)*****************************************/ /* Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9, 6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 }; Float_t rIndexQuarz[14] = { 1.528309,1.533333, 1.538243,1.544223,1.550568,1.55777, 1.565463,1.574765,1.584831,1.597027, 1.611858,1.6277,1.6472,1.6724 }; Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t abscoFreon[14] = { 179.0987,179.0987, 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. }; //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, // 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52, 14.177,9.282,4.0925,1.149,.3627,.10857 }; Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6, 1e6,1e6,1e6 }; Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575, .17425,.1785,.1836,.1904,.1938,.221 }; Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ /**********************************End of Antonnelo's Values**********************************/ /**********************************Values from rich_media.f (31-vectors)**********************************/ //Photons energy intervals Float_t ppckov[26]; for (i=0;i<26;i++) { ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9; //printf ("Energy intervals: %e\n",ppckov[i]); } //Refraction index for quarz Float_t rIndexQuarz[26]; Float_t e1= 10.666; Float_t e2= 18.125; Float_t f1= 46.411; Float_t f2= 228.71; for (i=0;i<26;i++) { Float_t ene=ppckov[i]*1e9; Float_t a=f1/(e1*e1 - ene*ene); Float_t b=f2/(e2*e2 - ene*ene); rIndexQuarz[i] = TMath::Sqrt(1. + a + b ); //printf ("rIndexQuarz: %e\n",rIndexQuarz[i]); } //Refraction index for opaque quarz, methane and grid Float_t rIndexOpaqueQuarz[26]; Float_t rIndexMethane[26]; Float_t rIndexGrid[26]; for (i=0;i<26;i++) { rIndexOpaqueQuarz[i]=1; rIndexMethane[i]=1.000444; rIndexGrid[i]=1; //printf ("rIndexOpaqueQuarz , etc: %e, %e, %e\n",rIndexOpaqueQuarz[i], rIndexMethane[i], rIndexGrid[i]=1); } //Absorption index for freon Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 7.069031, 4.461292, 2.028366, 1.293013, .577267, .40746, .334964, 0., 0., 0.}; //Absorption index for quarz /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902, .906,.907,.907,.907}; Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0, 215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0}; Float_t abscoQuarz[31]; for (Int_t i=0;i<31;i++) { Float_t Xlam = 1237.79 / (ppckov[i]*1e9); if (Xlam <= 160) abscoQuarz[i] = 0; if (Xlam > 250) abscoQuarz[i] = 1; else { for (Int_t j=0;j<21;j++) { //printf ("Passed\n"); if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1]) { Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]); Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]); abscoQuarz[i] = -5.0/(TMath::Log(Abso)); } } } printf ("abscoQuarz: %e abscoFreon: %e for energy: %e\n",abscoQuarz[i],abscoFreon[i],ppckov[i]); }*/ /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 , 39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 17.94531, 11.88753, 5.99128, 3.83503, 2.36661, 1.53155, 1.30582, 1.08574, .8779708, .675275, 0., 0., 0.}; for (Int_t i=0;i<31;i++) { abscoQuarz[i] = abscoQuarz[i]/10; }*/ Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004, 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627, .192, .1497, .10857}; //Absorption index for methane Float_t abscoMethane[26]; for (i=0;i<26;i++) { abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); //printf("abscoMethane: %e for energy: %e\n", abscoMethane[i],ppckov[i]*1e9); } //Absorption index for opaque quarz, csi and grid, efficiency for all and grid Float_t abscoOpaqueQuarz[26]; Float_t abscoCsI[26]; Float_t abscoGrid[26]; Float_t efficAll[26]; Float_t efficGrid[26]; for (i=0;i<26;i++) { abscoOpaqueQuarz[i]=1e-5; abscoCsI[i]=1e-4; abscoGrid[i]=1e-4; efficAll[i]=1; efficGrid[i]=1; //printf ("All must be 1: %e, %e, %e, %e, %e\n",abscoOpaqueQuarz[i],abscoCsI[i],abscoGrid[i],efficAll[i],efficGrid[i]); } //Efficiency for csi Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125, 0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999, 0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592, 0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987}; //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND //UNPOLARIZED PHOTONS for (i=0;i<26;i++) { efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9); } /*******************************************End of rich_media.f***************************************/ Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, zmet[2], zqua[2]; Int_t nlmatfre; Float_t densquao; Int_t nlmatmet, nlmatqua; Float_t wmatquao[2], rIndexFreon[26]; Float_t aquao[2], epsil, stmin, zquao[2]; Int_t nlmatquao; Float_t radlal, densal, tmaxfd, deemax, stemax; Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2]; Int_t *idtmed = fIdtmed->GetArray()-999; TGeant3 *geant3 = (TGeant3*) gMC; // --- Photon energy (GeV) // --- Refraction indexes for (i = 0; i < 26; ++i) { rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177; //printf ("rIndexFreon: %e \n efficCsI: %e for energy: %e\n",rIndexFreon[i], efficCsI[i], ppckov[i]); } // --- Detection efficiencies (quantum efficiency for CsI) // --- Define parameters for honeycomb. // Used carbon of equivalent rad. lenght ahon = 12.01; zhon = 6.; denshon = 2.265; radlhon = 18.8; // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) aquao[0] = 28.09; aquao[1] = 16.; zquao[0] = 14.; zquao[1] = 8.; densquao = 2.64; nlmatquao = -2; wmatquao[0] = 1.; wmatquao[1] = 2.; // --- Parameters to include in GSMIXT, relative to Freon (C6F14) afre[0] = 12.; afre[1] = 19.; zfre[0] = 6.; zfre[1] = 9.; densfre = 1.7; nlmatfre = -2; wmatfre[0] = 6.; wmatfre[1] = 14.; // --- Parameters to include in GSMIXT, relative to methane (CH4) amet[0] = 12.01; amet[1] = 1.; zmet[0] = 6.; zmet[1] = 1.; densmet = 7.17e-4; nlmatmet = -2; wmatmet[0] = 1.; wmatmet[1] = 4.; // --- Parameters to include in GSMIXT, relative to anode grid (Cu) agri = 63.54; zgri = 29.; densgri = 8.96; radlgri = 1.43; // --- Parameters to include in GSMATE related to aluminium sheet aal = 26.98; zal = 13.; densal = 2.7; radlal = 8.9; AliMaterial(1, "Air $", 14.61, 7.3, .001205, 30420., 67500); AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0); AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0); AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao); AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre); AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet); AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet); AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0); AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0); tmaxfd = -10.; stemax = -.1; deemax = -.2; epsil = .001; stmin = -.001; AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin); AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); geant3->Gsckov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz); geant3->Gsckov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon); geant3->Gsckov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane); geant3->Gsckov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); geant3->Gsckov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz); geant3->Gsckov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane); geant3->Gsckov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid); } //___________________________________________ Float_t AliRICHv0::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt(1-pdoti*pdoti); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return(fresn); } //__________________________________________ Float_t AliRICHv0::AbsoCH4(Float_t x) { //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31) Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.}; //MB X 10^22 //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145}; Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55}; const Float_t kLosch=2.686763E19; // LOSCHMIDT NUMBER IN CM-3 const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.; Float_t pn=kPressure/760.; Float_t tn=kTemperature/273.16; // ------- METHANE CROSS SECTION ----------------- // ASTROPH. J. 214, L47 (1978) Float_t sm=0; if (x<7.75) sm=.06e-22; if(x>=7.75 && x<=8.1) { Float_t c0=-1.655279e-1; Float_t c1=6.307392e-2; Float_t c2=-8.011441e-3; Float_t c3=3.392126e-4; sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18; } if (x> 8.1) { Int_t j=0; while (x<=em[j] && x>=em[j+1]) { j++; Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]); sm=(sch4[j]+a*(x-em[j]))*1e-22; } } Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; Float_t abslm=1./sm/dm; // ------- ISOBUTHANE CROSS SECTION -------------- // i-C4H10 (ai) abs. length from curves in // Lu-McDonald paper for BARI RICH workshop . // ----------------------------------------------------------- Float_t ai; Float_t absli; if (kIgas2 != 0) { if (x<7.25) ai=100000000.; if(x>=7.25 && x<7.375) ai=24.3; if(x>=7.375) ai=.0000000001; Float_t si = 1./(ai*kLosch*273.16/293.); // ISOB. CRO.SEC.IN CM2 Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn; absli =1./si/di; } else absli=1.e18; // --------------------------------------------------------- // // transmission of O2 // // y= path in cm, x=energy in eV // so= cross section for UV absorption in cm2 // do= O2 molecular density in cm-3 // --------------------------------------------------------- Float_t abslo; Float_t so=0; if(x>=6.0) { if(x>=6.0 && x<6.5) { so=3.392709e-13 * TMath::Exp(2.864104 *x); so=so*1e-18; } if(x>=6.5 && x<7.0) { so=2.910039e-34 * TMath::Exp(10.3337*x); so=so*1e-18; } if (x>=7.0) { Float_t a0=-73770.76; Float_t a1=46190.69; Float_t a2=-11475.44; Float_t a3=1412.611; Float_t a4=-86.07027; Float_t a5=2.074234; so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x); so=so*1e-18; } Float_t dox=(kOxy/1e6)*kLosch*pn/tn; abslo=1./so/dox; } else abslo=1.e18; // --------------------------------------------------------- // // transmission of H2O // // y= path in cm, x=energy in eV // sw= cross section for UV absorption in cm2 // dw= H2O molecular density in cm-3 // --------------------------------------------------------- Float_t abslw; Float_t b0=29231.65; Float_t b1=-15807.74; Float_t b2=3192.926; Float_t b3=-285.4809; Float_t b4=9.533944; if(x>6.75) { Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x); sw=sw*1e-18; Float_t dw=(kWater/1e6)*kLosch*pn/tn; abslw=1./sw/dw; } else abslw=1.e18; // --------------------------------------------------------- Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw); return (alength); } //___________________________________________ void AliRICHv0::Init() { printf("*********************************** RICH_INIT ***********************************\n"); printf("* *\n"); printf("* AliRICHv0 Default version started *\n"); printf("* *\n"); AliRICHSegmentation* segmentation; AliRICHGeometry* geometry; AliRICHResponse* response; // // Initialize Tracking Chambers // for (Int_t i=1; iInit(); } // // Set the chamber (sensitive region) GEANT identifier ((AliRICHChamber*)(*fChambers)[0])->SetGid(1); ((AliRICHChamber*)(*fChambers)[1])->SetGid(2); ((AliRICHChamber*)(*fChambers)[2])->SetGid(3); ((AliRICHChamber*)(*fChambers)[3])->SetGid(4); ((AliRICHChamber*)(*fChambers)[4])->SetGid(5); ((AliRICHChamber*)(*fChambers)[5])->SetGid(6); ((AliRICHChamber*)(*fChambers)[6])->SetGid(7); Float_t pos1[3]={0,471.8999,165.2599}; Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2],new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90)); Float_t pos2[3]={171,470,0}; Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2],new TRotMatrix("rot994","rot994",90,-20,90,70,0,0)); Float_t pos3[3]={0,500,0}; Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2],new TRotMatrix("rot995","rot995",90,0,90,90,0,0)); Float_t pos4[3]={-171,470,0}; Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], new TRotMatrix("rot996","rot996",90,20,90,110,0,0)); Float_t pos5[3]={161.3999,443.3999,-165.3}; Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2],new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70)); Float_t pos6[3]={0., 471.9, -165.3,}; Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2],new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90)); Float_t pos7[3]={-161.399,443.3999,-165.3}; Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2],new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110)); segmentation=Chamber(0).GetSegmentationModel(0); geometry=Chamber(0).GetGeometryModel(); response=Chamber(0).GetResponseModel(); printf("* Pads : %3dx%3d *\n",segmentation->Npx(),segmentation->Npy()); printf("* Pad size : %5.2f x%5.2f mm2 *\n",segmentation->Dpx(),segmentation->Dpy()); printf("* Gap Thickness : %5.1f mm *\n",geometry->GetGapThickness()); printf("* Radiator Width : %5.1f mm *\n",geometry->GetQuartzWidth()); printf("* Radiator Length : %5.1f mm *\n",geometry->GetQuartzLength()); printf("* Freon Thickness : %5.1f mm *\n",geometry->GetFreonThickness()); printf("* Charge Slope : %5.1f ADC *\n",response->ChargeSlope()); printf("* Feedback Prob. : %5.2f %% *\n",response->AlphaFeedback()); printf("* *\n"); printf("* Success! *\n"); printf("* *\n"); printf("*********************************************************************************\n"); } //___________________________________________ void AliRICHv0::StepManager() { //Dummy step manager } //___________________________________________