/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ */ //////////////////////////////////////////////////////// // Manager and hits classes for set:RICH version 0 // ///////////////////////////////////////////////////////// #include #include #include #include "AliRICHv0.h" #include "AliRun.h" #include "AliMC.h" #include "iostream.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliPDG.h" #include "TGeant3.h" ClassImp(AliRICHv0) //___________________________________________ AliRICHv0::AliRICHv0() : AliRICH() { //fChambers = 0; } //___________________________________________ AliRICHv0::AliRICHv0(const char *name, const char *title) : AliRICH(name,title) { fCkov_number=0; fFreon_prod=0; fChambers = new TObjArray(7); for (Int_t i=0; i<7; i++) { (*fChambers)[i] = new AliRICHChamber(); } } //___________________________________________ void AliRICHv0::CreateGeometry() { // // Create the geometry for RICH version 1 // // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); AliRICHSegmentation* segmentation; AliRICHGeometry* geometry; AliRICHChamber* iChamber; iChamber = &(RICH->Chamber(0)); segmentation=iChamber->GetSegmentationModel(0); geometry=iChamber->GetGeometryModel(); Int_t *idtmed = fIdtmed->GetArray()-999; Int_t i; Float_t zs; Int_t idrotm[1099]; Float_t par[3]; // --- Define the RICH detector // External aluminium box par[0] = 71.1; par[1] = 11.5; //Original Settings par[2] = 73.15; /*par[0] = 73.15; par[1] = 11.5; par[2] = 71.1;*/ gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3); // Sensitive part of the whole RICH par[0] = 64.8; par[1] = 11.5; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = 11.5; par[2] = 64.8;*/ gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3); // Honeycomb par[0] = 63.1; par[1] = .188; //Original Settings par[2] = 66.55; /*par[0] = 66.55; par[1] = .188; par[2] = 63.1;*/ gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3); // Aluminium sheet par[0] = 63.1; par[1] = .025; //Original Settings par[2] = 66.55; /*par[0] = 66.5; par[1] = .025; par[2] = 63.1;*/ gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3); // Quartz par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2; /*par[0] = 63.1; par[1] = .25; //Original Settings par[2] = 65.5;*/ /*par[0] = geometry->GetQuartzWidth()/2; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetQuartzLength()/2;*/ //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]); gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3); // Spacers (cylinders) par[0] = 0.; par[1] = .5; par[2] = geometry->GetFreonThickness()/2; gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3); // Opaque quartz par[0] = 61.95; par[1] = .2; //Original Settings par[2] = 66.5; /*par[0] = 66.5; par[1] = .2; par[2] = 61.95;*/ gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3); // Frame of opaque quartz par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2 + 1; /*par[0] = 20.65; par[1] = .5; //Original Settings par[2] = 66.5;*/ /*par[0] = 66.5; par[1] = .5; par[2] = 20.65;*/ gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 + 1; gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3); // Little bar of opaque quartz par[0] = .275; par[1] = geometry->GetQuartzThickness()/2; par[2] = geometry->GetInnerFreonLength()/2 - 2.4; /*par[0] = .275; par[1] = .25; //Original Settings par[2] = 63.1;*/ /*par[0] = 63.1; par[1] = .25; par[2] = .275;*/ gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3); // Freon par[0] = geometry->GetOuterFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetOuterFreonLength()/2; /*par[0] = 20.15; par[1] = .5; //Original Settings par[2] = 65.5;*/ /*par[0] = 65.5; par[1] = .5; par[2] = 20.15;*/ gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3); par[0] = geometry->GetInnerFreonWidth()/2; par[1] = geometry->GetFreonThickness()/2; par[2] = geometry->GetInnerFreonLength()/2; gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3); // Methane par[0] = 64.8; par[1] = geometry->GetGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3); // Methane gap par[0] = 64.8; par[1] = geometry->GetProximityGapThickness()/2; //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]); par[2] = 64.8; gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3); // CsI photocathode par[0] = 64.8; par[1] = .25; par[2] = 64.8; gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3); // Anode grid par[0] = 0.; par[1] = .001; par[2] = 20.; gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3); // --- Places the detectors defined with GSVOLU // Place material inside RICH gMC->Gspos("SRIC", 1, "RICH", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .376 -.025, 0., 0, "ONLY"); gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .188, 0., 0, "ONLY"); gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .025, 0., 0, "ONLY"); gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY"); AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.); Int_t nspacers = (Int_t)(TMath::Abs(geometry->GetInnerFreonLength()/14.4)); //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i <= nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (14 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE1", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE1", zs, 0., -6.7, idrotm[1019], "ONLY"); } //for (i = 1; i <= 9; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = 0; i <= nspacers; i++) { zs = (TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", 6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., 6.7, idrotm[1019], "ONLY"); } //for (i = 10; i <= 18; ++i) { //zs = (5 - i) * 14.4; //Original settings for (i = nspacers; i < nspacers*2; ++i) { zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4; gMC->Gspos("SPAC", i, "FRE2", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings //gMC->Gspos("SPAC", i, "FRE2", zs, 0., -6.7, idrotm[1019], "ONLY"); } /*gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", 31.3, -4.724, 41.3, 0, "ONLY"); gMC->Gspos("OQF2", 2, "SRIC", 0., -4.724, 0., 0, "ONLY"); gMC->Gspos("OQF1", 3, "SRIC", -31.3, -4.724, -41.3, 0, "ONLY"); gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., -3.974, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., 4.8, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 6.526, 0., 0, "ONLY");*/ gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY"); gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3) gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2), 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (-31.3) gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY"); //Original settings gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY"); gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2+ geometry->GetProximityGapThickness()/2, 0., 0, "ONLY"); gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY"); gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + geometry->GetProximityGapThickness() + .25, 0., 0, "ONLY"); // Place RICH inside ALICE apparatus AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.); AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.); AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.); AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.); AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.); AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.); AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.); gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26, idrotm[1000], "ONLY"); gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0., idrotm[1001], "ONLY"); gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0., idrotm[1002], "ONLY"); gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0., idrotm[1003], "ONLY"); gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3, idrotm[1004], "ONLY"); gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3, idrotm[1005], "ONLY"); gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY"); } //___________________________________________ void AliRICHv0::CreateMaterials() { // // *** DEFINITION OF AVAILABLE RICH MATERIALS *** // ORIGIN : NICK VAN EIJNDHOVEN // Modified by: N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) // R.A. Fini (INFN - BARI, Rosanna.Fini@ba.infn.it) // R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) // Int_t ISXFLD = gAlice->Field()->Integ(); Float_t SXMGMX = gAlice->Field()->Max(); Int_t i; /************************************Antonnelo's Values (14-vectors)*****************************************/ /* Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9, 6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 }; Float_t rindex_quarz[14] = { 1.528309,1.533333, 1.538243,1.544223,1.550568,1.55777, 1.565463,1.574765,1.584831,1.597027, 1.611858,1.6277,1.6472,1.6724 }; Float_t rindex_quarzo[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rindex_methane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t rindex_gri[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t absco_freon[14] = { 179.0987,179.0987, 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. }; //Float_t absco_freon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, // 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t absco_quarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52, 14.177,9.282,4.0925,1.149,.3627,.10857 }; Float_t absco_quarzo[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5, 1e-5,1e-5,1e-5,1e-5,1e-5 }; Float_t absco_csi[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t absco_methane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6, 1e6,1e6,1e6 }; Float_t absco_gri[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4, 1e-4,1e-4,1e-4,1e-4 }; Float_t effic_all[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; Float_t effic_csi[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575, .17425,.1785,.1836,.1904,.1938,.221 }; Float_t effic_gri[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. }; */ /**********************************End of Antonnelo's Values**********************************/ /**********************************Values from rich_media.f (31-vectors)**********************************/ //Photons energy intervals Float_t ppckov[26]; for (i=0;i<26;i++) { ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9; //printf ("Energy intervals: %e\n",ppckov[i]); } //Refraction index for quarz Float_t rindex_quarz[26]; Float_t e1= 10.666; Float_t e2= 18.125; Float_t f1= 46.411; Float_t f2= 228.71; for (i=0;i<26;i++) { Float_t ene=ppckov[i]*1e9; Float_t a=f1/(e1*e1 - ene*ene); Float_t b=f2/(e2*e2 - ene*ene); rindex_quarz[i] = TMath::Sqrt(1. + a + b ); //printf ("Rindex_quarz: %e\n",rindex_quarz[i]); } //Refraction index for opaque quarz, methane and grid Float_t rindex_quarzo[26]; Float_t rindex_methane[26]; Float_t rindex_gri[26]; for (i=0;i<26;i++) { rindex_quarzo[i]=1; rindex_methane[i]=1.000444; rindex_gri[i]=1; //printf ("Rindex_quarzo , etc: %e, %e, %e\n",rindex_quarzo[i], rindex_methane[i], rindex_gri[i]=1); } //Absorption index for freon Float_t absco_freon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 7.069031, 4.461292, 2.028366, 1.293013, .577267, .40746, .334964, 0., 0., 0.}; //Absorption index for quarz /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902, .906,.907,.907,.907}; Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0, 215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0}; Float_t absco_quarz[31]; for (Int_t i=0;i<31;i++) { Float_t Xlam = 1237.79 / (ppckov[i]*1e9); if (Xlam <= 160) absco_quarz[i] = 0; if (Xlam > 250) absco_quarz[i] = 1; else { for (Int_t j=0;j<21;j++) { //printf ("Passed\n"); if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1]) { Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]); Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]); absco_quarz[i] = -5.0/(TMath::Log(Abso)); } } } printf ("Absco_quarz: %e Absco_freon: %e for energy: %e\n",absco_quarz[i],absco_freon[i],ppckov[i]); }*/ /*Float_t absco_quarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 , 39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 17.94531, 11.88753, 5.99128, 3.83503, 2.36661, 1.53155, 1.30582, 1.08574, .8779708, .675275, 0., 0., 0.}; for (Int_t i=0;i<31;i++) { absco_quarz[i] = absco_quarz[i]/10; }*/ Float_t absco_quarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004, 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627, .192, .1497, .10857}; //Absorption index for methane Float_t absco_methane[26]; for (i=0;i<26;i++) { absco_methane[i]=AbsoCH4(ppckov[i]*1e9); //printf("Absco_methane: %e for energy: %e\n", absco_methane[i],ppckov[i]*1e9); } //Absorption index for opaque quarz, csi and grid, efficiency for all and grid Float_t absco_quarzo[26]; Float_t absco_csi[26]; Float_t absco_gri[26]; Float_t effic_all[26]; Float_t effic_gri[26]; for (i=0;i<26;i++) { absco_quarzo[i]=1e-5; absco_csi[i]=1e-4; absco_gri[i]=1e-4; effic_all[i]=1; effic_gri[i]=1; //printf ("All must be 1: %e, %e, %e, %e, %e\n",absco_quarzo[i],absco_csi[i],absco_gri[i],effic_all[i],effic_gri[i]); } //Efficiency for csi Float_t effic_csi[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125, 0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999, 0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592, 0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987}; //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND //UNPOLARIZED PHOTONS for (i=0;i<26;i++) { effic_csi[i] = effic_csi[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9); } /*******************************************End of rich_media.f***************************************/ Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, zmet[2], zqua[2]; Int_t nlmatfre; Float_t densquao; Int_t nlmatmet, nlmatqua; Float_t wmatquao[2], rindex_freon[26]; Float_t aquao[2], epsil, stmin, zquao[2]; Int_t nlmatquao; Float_t radlal, densal, tmaxfd, deemax, stemax; Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2]; Int_t *idtmed = fIdtmed->GetArray()-999; TGeant3 *geant3 = (TGeant3*) gMC; // --- Photon energy (GeV) // --- Refraction indexes for (i = 0; i < 26; ++i) { rindex_freon[i] = ppckov[i] * .0172 * 1e9 + 1.177; //printf ("Rindex_freon: %e \n Effic_csi: %e for energy: %e\n",rindex_freon[i], effic_csi[i], ppckov[i]); } // --- Detection efficiencies (quantum efficiency for CsI) // --- Define parameters for honeycomb. // Used carbon of equivalent rad. lenght ahon = 12.01; zhon = 6.; denshon = 2.265; radlhon = 18.8; // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) aqua[0] = 28.09; aqua[1] = 16.; zqua[0] = 14.; zqua[1] = 8.; densqua = 2.64; nlmatqua = -2; wmatqua[0] = 1.; wmatqua[1] = 2.; // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) aquao[0] = 28.09; aquao[1] = 16.; zquao[0] = 14.; zquao[1] = 8.; densquao = 2.64; nlmatquao = -2; wmatquao[0] = 1.; wmatquao[1] = 2.; // --- Parameters to include in GSMIXT, relative to Freon (C6F14) afre[0] = 12.; afre[1] = 19.; zfre[0] = 6.; zfre[1] = 9.; densfre = 1.7; nlmatfre = -2; wmatfre[0] = 6.; wmatfre[1] = 14.; // --- Parameters to include in GSMIXT, relative to methane (CH4) amet[0] = 12.01; amet[1] = 1.; zmet[0] = 6.; zmet[1] = 1.; densmet = 7.17e-4; nlmatmet = -2; wmatmet[0] = 1.; wmatmet[1] = 4.; // --- Parameters to include in GSMIXT, relative to anode grid (Cu) agri = 63.54; zgri = 29.; densgri = 8.96; radlgri = 1.43; // --- Parameters to include in GSMATE related to aluminium sheet aal = 26.98; zal = 13.; densal = 2.7; radlal = 8.9; AliMaterial(1, "Air $", 14.61, 7.3, .001205, 30420., 67500); AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0); AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0); AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua); AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao); AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre); AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet); AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet); AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0); AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0); tmaxfd = -10.; stemax = -.1; deemax = -.2; epsil = .001; stmin = -.001; AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(2, "HONEYCOMB$", 6, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(3, "QUARZO$", 20, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(4, "FREON$", 30, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(5, "METANO$", 40, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(6, "CSI$", 16, 1, ISXFLD, SXMGMX,tmaxfd, stemax, deemax, epsil, stmin); AliMedium(7, "GRIGLIA$", 11, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "QUARZOO$", 21, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(9, "GAP$", 41, 1, ISXFLD, SXMGMX,tmaxfd, .1, -deemax, epsil, -stmin); AliMedium(10, "ALUMINUM$", 50, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin); geant3->Gsckov(idtmed[1000], 26, ppckov, absco_methane, effic_all, rindex_methane); geant3->Gsckov(idtmed[1001], 26, ppckov, absco_methane, effic_all, rindex_methane); geant3->Gsckov(idtmed[1002], 26, ppckov, absco_quarz, effic_all,rindex_quarz); geant3->Gsckov(idtmed[1003], 26, ppckov, absco_freon, effic_all,rindex_freon); geant3->Gsckov(idtmed[1004], 26, ppckov, absco_methane, effic_all, rindex_methane); geant3->Gsckov(idtmed[1005], 26, ppckov, absco_csi, effic_csi, rindex_methane); geant3->Gsckov(idtmed[1006], 26, ppckov, absco_gri, effic_gri, rindex_gri); geant3->Gsckov(idtmed[1007], 26, ppckov, absco_quarzo, effic_all, rindex_quarzo); geant3->Gsckov(idtmed[1008], 26, ppckov, absco_methane, effic_all, rindex_methane); geant3->Gsckov(idtmed[1009], 26, ppckov, absco_gri, effic_gri, rindex_gri); } //___________________________________________ Float_t AliRICHv0::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt(1-pdoti*pdoti); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return(fresn); } //__________________________________________ Float_t AliRICHv0::AbsoCH4(Float_t x) { //LOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31) Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.}; //MB X 10^22 //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145}; Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55}; const Float_t losch=2.686763E19; // LOSCHMIDT NUMBER IN CM-3 const Float_t igas1=100, igas2=0, oxy=10., wat=5., pre=750.,tem=283.; Float_t pn=pre/760.; Float_t tn=tem/273.16; // ------- METHANE CROSS SECTION ----------------- // ASTROPH. J. 214, L47 (1978) Float_t sm=0; if (x<7.75) sm=.06e-22; if(x>=7.75 && x<=8.1) { Float_t c0=-1.655279e-1; Float_t c1=6.307392e-2; Float_t c2=-8.011441e-3; Float_t c3=3.392126e-4; sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18; } if (x> 8.1) { Int_t j=0; while (x<=em[j] && x>=em[j+1]) { j++; Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]); sm=(sch4[j]+a*(x-em[j]))*1e-22; } } Float_t dm=(igas1/100.)*(1.-((oxy+wat)/1.e6))*losch*pn/tn; Float_t abslm=1./sm/dm; // ------- ISOBUTHANE CROSS SECTION -------------- // i-C4H10 (ai) abs. length from curves in // Lu-McDonald paper for BARI RICH workshop . // ----------------------------------------------------------- Float_t ai; Float_t absli; if (igas2 != 0) { if (x<7.25) ai=100000000.; if(x>=7.25 && x<7.375) ai=24.3; if(x>=7.375) ai=.0000000001; Float_t si = 1./(ai*losch*273.16/293.); // ISOB. CRO.SEC.IN CM2 Float_t di=(igas2/100.)*(1.-((oxy+wat)/1.e6))*losch*pn/tn; absli =1./si/di; } else absli=1.e18; // --------------------------------------------------------- // // transmission of O2 // // y= path in cm, x=energy in eV // so= cross section for UV absorption in cm2 // do= O2 molecular density in cm-3 // --------------------------------------------------------- Float_t abslo; Float_t so=0; if(x>=6.0) { if(x>=6.0 && x<6.5) { so=3.392709e-13 * TMath::Exp(2.864104 *x); so=so*1e-18; } if(x>=6.5 && x<7.0) { so=2.910039e-34 * TMath::Exp(10.3337*x); so=so*1e-18; } if (x>=7.0) { Float_t a0=-73770.76; Float_t a1=46190.69; Float_t a2=-11475.44; Float_t a3=1412.611; Float_t a4=-86.07027; Float_t a5=2.074234; so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x); so=so*1e-18; } Float_t dox=(oxy/1e6)*losch*pn/tn; abslo=1./so/dox; } else abslo=1.e18; // --------------------------------------------------------- // // transmission of H2O // // y= path in cm, x=energy in eV // sw= cross section for UV absorption in cm2 // dw= H2O molecular density in cm-3 // --------------------------------------------------------- Float_t abslw; Float_t b0=29231.65; Float_t b1=-15807.74; Float_t b2=3192.926; Float_t b3=-285.4809; Float_t b4=9.533944; if(x>6.75) { Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x); sw=sw*1e-18; Float_t dw=(wat/1e6)*losch*pn/tn; abslw=1./sw/dw; } else abslw=1.e18; // --------------------------------------------------------- Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw); return (alength); } //___________________________________________ void AliRICHv0::Init() { printf("\n\n\n Start Init for version 0 - CPC chamber type \n\n\n"); // // Initialize Tracking Chambers // for (Int_t i=1; i<7; i++) { //printf ("i:%d",i); ( (AliRICHChamber*) (*fChambers)[i])->Init(); } // // Set the chamber (sensitive region) GEANT identifier ((AliRICHChamber*)(*fChambers)[0])->SetGid(1); ((AliRICHChamber*)(*fChambers)[1])->SetGid(2); ((AliRICHChamber*)(*fChambers)[2])->SetGid(3); ((AliRICHChamber*)(*fChambers)[3])->SetGid(4); ((AliRICHChamber*)(*fChambers)[4])->SetGid(5); ((AliRICHChamber*)(*fChambers)[5])->SetGid(6); ((AliRICHChamber*)(*fChambers)[6])->SetGid(7); Float_t pos1[3]={0,471.8999,165.2599}; Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2],new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90)); Float_t pos2[3]={171,470,0}; Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2],new TRotMatrix("rot994","rot994",90,-20,90,70,0,0)); Float_t pos3[3]={0,500,0}; Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2],new TRotMatrix("rot995","rot995",90,0,90,90,0,0)); Float_t pos4[3]={-171,470,0}; Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], new TRotMatrix("rot996","rot996",90,20,90,110,0,0)); Float_t pos5[3]={161.3999,443.3999,-165.3}; Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2],new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70)); Float_t pos6[3]={0., 471.9, -165.3,}; Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2],new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90)); Float_t pos7[3]={-161.399,443.3999,-165.3}; Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2],new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110)); printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); } //___________________________________________ void AliRICHv0::StepManager() { Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; static Float_t hits[16]; static Float_t Ckov_data[16]; TLorentzVector Position; TLorentzVector Momentum; Float_t pos[3]; Float_t mom[4]; Float_t Localpos[3]; Float_t Localmom[4]; Float_t Localtheta,Localphi; Float_t theta,phi; Float_t destep, step; Float_t ranf[2]; static Float_t eloss, xhit, yhit, tlength; const Float_t big=1.e10; TClonesArray &lhits = *fHits; TGeant3 *geant3 = (TGeant3*) gMC; TParticle *current = (TParticle*)(*gAlice->Particles())[gAlice->CurrentTrack()]; //if (current->Energy()>1) //{ // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); Float_t cherenkov_loss=0; //gAlice->KeepTrack(gAlice->CurrentTrack()); gMC->TrackPosition(Position); pos[0]=Position(0); pos[1]=Position(1); pos[2]=Position(2); Ckov_data[1] = pos[0]; // X-position for hit Ckov_data[2] = pos[1]; // Y-position for hit Ckov_data[3] = pos[2]; // Z-position for hit //Ckov_data[11] = gAlice->CurrentTrack(); /********************Store production parameters for Cerenkov photons************************/ //is it a Cerenkov photon? if (gMC->TrackPid() == 50000050) { //if (gMC->VolId("GAP ")==gMC->CurrentVolID(copy)) Float_t Ckov_energy = current->Energy(); //energy interval for tracking if (Ckov_energy > 5.6e-09 && Ckov_energy < 7.8e-09 ) //if (Ckov_energy > 0) { if (gMC->IsTrackEntering()){ //is track entering? if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { //is it in freo? if (geant3->Gctrak()->nstep<1){ //is it the first step? Int_t mother = current->GetFirstMother(); //printf("Second Mother:%d\n",current->GetSecondMother()); Ckov_data[10] = mother; Ckov_data[11] = gAlice->CurrentTrack(); Ckov_data[12] = 1; //Media where photon was produced 1->Freon, 2->Quarz fCkov_number++; fFreon_prod=1; //printf("Index: %d\n",fCkov_number); } //first step question } //freo question if (geant3->Gctrak()->nstep<1){ //is it first step? if (gMC->VolId("QUAR")==gMC->CurrentVolID(copy)) //is it in quarz? { Ckov_data[12] = 2; } //quarz question } //first step question //printf("Before %d\n",fFreon_prod); } //track entering question if (Ckov_data[12] == 1) //was it produced in Freon? //if (fFreon_prod == 1) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Got in"); if (gMC->VolId("META")==gMC->CurrentVolID(copy)) //is it in gap? { //printf("Got in\n"); gMC->TrackMomentum(Momentum); mom[0]=Momentum(0); mom[1]=Momentum(1); mom[2]=Momentum(2); mom[3]=Momentum(3); // Z-position for hit /**************** Photons lost in second grid have to be calculated by hand************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = (1. - .025 / cophi) * (1. - .05 / cophi); gMC->Rndm(ranf, 1); //printf("grid calculation:%f\n",t); if (ranf[0] > t) { geant3->StopTrack(); Ckov_data[13] = 5; AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); //printf("Lost one in grid\n"); } /**********************************************************************************/ } //gap if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) //is it in csi? { gMC->TrackMomentum(Momentum); mom[0]=Momentum(0); mom[1]=Momentum(1); mom[2]=Momentum(2); mom[3]=Momentum(3); /********* Photons lost by Fresnel reflection have to be calculated by hand********/ /***********************Cerenkov phtons (always polarised)*************************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = Fresnel(Ckov_energy*1e9,cophi,1); gMC->Rndm(ranf, 1); if (ranf[0] < t) { geant3->StopTrack(); Ckov_data[13] = 6; AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); //printf("Lost by Fresnel\n"); } /**********************************************************************************/ } } //track entering? /********************Evaluation of losses************************/ /******************still in the old fashion**********************/ Int_t i1 = geant3->Gctrak()->nmec; //number of physics mechanisms acting on the particle for (Int_t i = 0; i < i1; ++i) { // Reflection loss if (geant3->Gctrak()->lmec[i] == 106) { //was it reflected Ckov_data[13]=10; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) Ckov_data[13]=1; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) Ckov_data[13]=2; geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); } //reflection question // Absorption loss else if (geant3->Gctrak()->lmec[i] == 101) { //was it absorbed? Ckov_data[13]=20; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) Ckov_data[13]=11; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) Ckov_data[13]=12; if (gMC->CurrentVolID(copy) == gMC->VolId("META")) Ckov_data[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("GAP ")) Ckov_data[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("SRIC")) Ckov_data[13]=15; // CsI inefficiency if (gMC->CurrentVolID(copy) == gMC->VolId("CSI ")) { Ckov_data[13]=16; } geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); //printf("Added cerenkov %d\n",fCkov_number); } //absorption question // Photon goes out of tracking scope else if (geant3->Gctrak()->lmec[i] == 30) { //is it below energy treshold? Ckov_data[13]=21; geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); } // energy treshold question } //number of mechanisms cycle /**********************End of evaluation************************/ } //freon production question } //energy interval question } //cerenkov photon question /**************************************End of Production Parameters Storing*********************/ /*******************************Treat photons that hit the CsI (Ckovs and Feedbacks)************/ if (gMC->TrackPid() == 50000050 || gMC->TrackPid() == 50000051) { if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) { if (gMC->Edep() > 0.){ gMC->TrackPosition(Position); gMC->TrackMomentum(Momentum); pos[0]=Position(0); pos[1]=Position(1); pos[2]=Position(2); mom[0]=Momentum(0); mom[1]=Momentum(1); mom[2]=Momentum(2); mom[3]=Momentum(3); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; gMC->Gmtod(pos,Localpos,1); gMC->Gmtod(mom,Localmom,2); gMC->CurrentVolOffID(2,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(Localpos[0], Localpos[2]); //printf("Sector:%d\n",sector); /*if (gMC->TrackPid() == 50000051){ fFeedbacks++; printf("Feedbacks:%d\n",fFeedbacks); }*/ ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]); if(idvol<7) { Ckov_data[0] = gMC->TrackPid(); // particle type Ckov_data[1] = pos[0]; // X-position for hit Ckov_data[2] = pos[1]; // Y-position for hit Ckov_data[3] = pos[2]; // Z-position for hit Ckov_data[4] = theta; // theta angle of incidence Ckov_data[5] = phi; // phi angle of incidence Ckov_data[8] = (Float_t) fNPadHits; // first padhit Ckov_data[9] = -1; // last pad hit Ckov_data[13] = 4; // photon was detected Ckov_data[14] = mom[0]; Ckov_data[15] = mom[1]; Ckov_data[16] = mom[2]; destep = gMC->Edep(); gMC->SetMaxStep(big); cherenkov_loss += destep; Ckov_data[7]=cherenkov_loss; MakePadHits(Localpos[0],Localpos[2],cherenkov_loss,idvol,cerenkov); if (fNPadHits > (Int_t)Ckov_data[8]) { Ckov_data[8]= Ckov_data[8]+1; Ckov_data[9]= (Float_t) fNPadHits; } //if (sector != -1) //{ AddHit(gAlice->CurrentTrack(),vol,Ckov_data); AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data); //} } } } } /***********************************************End of photon hits*********************************************/ /**********************************************Charged particles treatment*************************************/ //else if (gMC->TrackCharge()) else if (1 == 1) { //If MIP /*if (gMC->IsTrackEntering()) { hits[13]=20;//is track entering? }*/ if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { fFreon_prod=1; } if (gMC->VolId("GAP ")== gMC->CurrentVolID(copy)) { // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->CurrentVolOffID(3,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(Localpos[0], Localpos[2]); //printf("Sector:%d\n",sector); gMC->TrackPosition(Position); gMC->TrackMomentum(Momentum); pos[0]=Position(0); pos[1]=Position(1); pos[2]=Position(2); mom[0]=Momentum(0); mom[1]=Momentum(1); mom[2]=Momentum(2); mom[3]=Momentum(3); gMC->Gmtod(pos,Localpos,1); gMC->Gmtod(mom,Localmom,2); ipart = gMC->TrackPid(); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { // gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; Double_t Localtc = Localmom[0]*Localmom[0]+Localmom[2]*Localmom[2]; Double_t Localrt = TMath::Sqrt(Localtc); Localtheta = Float_t(TMath::ATan2(Localrt,Double_t(Localmom[1])))*kRaddeg; Localphi = Float_t(TMath::ATan2(Double_t(Localmom[2]),Double_t(Localmom[0])))*kRaddeg; hits[0] = Float_t(ipart); // particle type hits[1] = Localpos[0]; // X-position for hit hits[2] = Localpos[1]; // Y-position for hit hits[3] = Localpos[2]; // Z-position for hit hits[4] = Localtheta; // theta angle of incidence hits[5] = Localphi; // phi angle of incidence hits[8] = (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit hits[13] = fFreon_prod; // did id hit the freon? hits[14] = mom[0]; hits[15] = mom[1]; hits[16] = mom[2]; tlength = 0; eloss = 0; fFreon_prod = 0; Chamber(idvol).LocaltoGlobal(Localpos,hits+1); //To make chamber coordinates x-y had to pass LocalPos[0], LocalPos[2] xhit = Localpos[0]; yhit = Localpos[2]; // Only if not trigger chamber if(idvol<7) { // // Initialize hit position (cursor) in the segmentation model ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]); } } // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(big); eloss += destep; tlength += step; // Only if not trigger chamber if(idvol<7) { if (eloss > 0) MakePadHits(xhit,yhit,eloss,idvol,mip); } hits[6]=tlength; hits[7]=eloss; if (fNPadHits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNPadHits; } //if(sector !=-1) new(lhits[fNhits++]) AliRICHHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) } else if (((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenCond(Localpos[0], Localpos[2], Localpos[1])) { ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]); if (eloss > 0) MakePadHits(xhit,yhit,eloss,idvol,mip); xhit = Localpos[0]; yhit = Localpos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } } } /*************************************************End of MIP treatment**************************************/ //} } //___________________________________________ void AliRICH::MakePadHits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, Response_t res) { // // Calls the charge disintegration method of the current chamber and adds // the simulated cluster to the root treee // Int_t clhits[7]; Float_t newclust[6][500]; Int_t nnew; // // Integrated pulse height on chamber clhits[0]=fNhits+1; ((AliRICHChamber*) (*fChambers)[idvol])->DisIntegration(eloss, xhit, yhit, nnew, newclust, res); Int_t ic=0; // // Add new clusters for (Int_t i=0; i 0) { ic++; // Cathode plane clhits[1] = Int_t(newclust[5][i]); // Cluster Charge clhits[2] = Int_t(newclust[0][i]); // Pad: ix clhits[3] = Int_t(newclust[1][i]); // Pad: iy clhits[4] = Int_t(newclust[2][i]); // Pad: charge clhits[5] = Int_t(newclust[3][i]); // Pad: chamber sector clhits[6] = Int_t(newclust[4][i]); AddPadHit(clhits); } } }