/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.4 2000/06/13 13:13:40 jbarbosa Correcting previous correction... Revision 1.3 2000/06/13 13:06:38 jbarbosa Fixed compiling error for HP (multiple declaration) Revision 1.2 2000/06/12 15:36:16 jbarbosa Cleaned up version. Revision 1.1 2000/06/09 15:00:31 jbarbosa New full version. All parameters configurable. Revision 1.9 2000/05/31 08:19:38 jbarbosa Fixed bug in StepManager Revision 1.8 2000/05/26 17:30:08 jbarbosa Cerenkov angle now stored within cerenkov data structure. Revision 1.7 2000/05/18 10:31:36 jbarbosa Fixed positioning of spacers inside freon. Fixed positioning of proximity gap inside methane. Fixed cut on neutral particles in the StepManager. Revision 1.6 2000/04/28 11:51:58 morsch Dimensions of arrays hits and Ckov_data corrected. Revision 1.5 2000/04/19 13:28:46 morsch Major changes in geometry (parametrised), materials (updated) and step manager (diagnostics) (JB, AM) */ ////////////////////////////////////////////////////////// // Manager and hits classes for set: RICH full version // ////////////////////////////////////////////////////////// #include #include #include #include #include "AliRICHv1.h" #include "AliRICHHit.h" #include "AliRICHSegmentation.h" #include "AliRICHResponse.h" #include "AliRICHSegmentationV0.h" #include "AliRICHResponseV0.h" #include "AliRICHGeometry.h" #include "AliRun.h" #include "AliMC.h" #include "iostream.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliPDG.h" #include "TGeant3.h" ClassImp(AliRICHv1) //___________________________________________ AliRICHv1::AliRICHv1() : AliRICHv0() { // Default constructor fo AliRICHvv1 (full version) //fChambers = 0; } //___________________________________________ AliRICHv1::AliRICHv1(const char *name, const char *title) : AliRICHv0(name,title) { // Full version of RICH with hits and diagnostics // Version 0 // Default Segmentation, no hits AliRICHSegmentationV0* segmentationV0 = new AliRICHSegmentationV0; // // Segmentation parameters segmentationV0->SetPadSize(0.84,0.80); segmentationV0->SetDAnod(0.84/2); // // Geometry parameters AliRICHGeometry* geometry = new AliRICHGeometry; geometry->SetGapThickness(8); geometry->SetProximityGapThickness(.4); geometry->SetQuartzLength(131); geometry->SetQuartzWidth(126.2); geometry->SetQuartzThickness(.5); geometry->SetOuterFreonLength(131); geometry->SetOuterFreonWidth(40.3); geometry->SetInnerFreonLength(131); geometry->SetInnerFreonWidth(40.3); geometry->SetFreonThickness(1); // // Response parameters AliRICHResponseV0* responseV0 = new AliRICHResponseV0; responseV0->SetSigmaIntegration(5.); responseV0->SetChargeSlope(40.); responseV0->SetChargeSpread(0.18, 0.18); responseV0->SetMaxAdc(1024); responseV0->SetAlphaFeedback(0.05); responseV0->SetEIonisation(26.e-9); responseV0->SetSqrtKx3(0.77459667); responseV0->SetKx2(0.962); responseV0->SetKx4(0.379); responseV0->SetSqrtKy3(0.77459667); responseV0->SetKy2(0.962); responseV0->SetKy4(0.379); responseV0->SetPitch(0.25); // // // AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); fCkovNumber=0; fFreonProd=0; Int_t i=0; fChambers = new TObjArray(kNCH); for (i=0; iInit(); } // // Set the chamber (sensitive region) GEANT identifier ((AliRICHChamber*)(*fChambers)[0])->SetGid(1); ((AliRICHChamber*)(*fChambers)[1])->SetGid(2); ((AliRICHChamber*)(*fChambers)[2])->SetGid(3); ((AliRICHChamber*)(*fChambers)[3])->SetGid(4); ((AliRICHChamber*)(*fChambers)[4])->SetGid(5); ((AliRICHChamber*)(*fChambers)[5])->SetGid(6); ((AliRICHChamber*)(*fChambers)[6])->SetGid(7); Float_t pos1[3]={0,471.8999,165.2599}; Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2],new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90)); Float_t pos2[3]={171,470,0}; Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2],new TRotMatrix("rot994","rot994",90,-20,90,70,0,0)); Float_t pos3[3]={0,500,0}; Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2],new TRotMatrix("rot995","rot995",90,0,90,90,0,0)); Float_t pos4[3]={-171,470,0}; Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], new TRotMatrix("rot996","rot996",90,20,90,110,0,0)); Float_t pos5[3]={161.3999,443.3999,-165.3}; Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2],new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70)); Float_t pos6[3]={0., 471.9, -165.3,}; Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2],new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90)); Float_t pos7[3]={-161.399,443.3999,-165.3}; Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2],new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110)); segmentation=Chamber(0).GetSegmentationModel(0); geometry=Chamber(0).GetGeometryModel(); response=Chamber(0).GetResponseModel(); printf("* Pads : %3dx%3d *\n",segmentation->Npx(),segmentation->Npy()); printf("* Pad size : %5.2f x%5.2f mm2 *\n",segmentation->Dpx(),segmentation->Dpy()); printf("* Gap Thickness : %5.1f cm *\n",geometry->GetGapThickness()); printf("* Radiator Width : %5.1f cm *\n",geometry->GetQuartzWidth()); printf("* Radiator Length : %5.1f cm *\n",geometry->GetQuartzLength()); printf("* Freon Thickness : %5.1f cm *\n",geometry->GetFreonThickness()); printf("* Charge Slope : %5.1f ADC *\n",response->ChargeSlope()); printf("* Feedback Prob. : %5.2f %% *\n",response->AlphaFeedback()*100); printf("* Debug Level : %3d *\n",GetDebugLevel()); printf("* *\n"); printf("* Success! *\n"); printf("* *\n"); printf("*********************************************************************************\n"); } //___________________________________________ void AliRICHv1::StepManager() { // Full Step Manager Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; static Float_t hits[18]; static Float_t ckovData[19]; TLorentzVector position; TLorentzVector momentum; Float_t pos[3]; Float_t mom[4]; Float_t localPos[3]; Float_t localMom[4]; Float_t localTheta,localPhi; Float_t theta,phi; Float_t destep, step; Float_t ranf[2]; Int_t nPads; Float_t coscerenkov; static Float_t eloss, xhit, yhit, tlength; const Float_t kBig=1.e10; TClonesArray &lhits = *fHits; TGeant3 *geant3 = (TGeant3*) gMC; TParticle *current = (TParticle*)(*gAlice->Particles())[gAlice->CurrentTrack()]; //if (current->Energy()>1) //{ // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); Float_t cherenkovLoss=0; //gAlice->KeepTrack(gAlice->CurrentTrack()); gMC->TrackPosition(position); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit //ckovData[11] = gAlice->CurrentTrack(); //AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); /********************Store production parameters for Cerenkov photons************************/ //is it a Cerenkov photon? if (gMC->TrackPid() == 50000050) { //if (gMC->VolId("GAP ")==gMC->CurrentVolID(copy)) //{ Float_t ckovEnergy = current->Energy(); //energy interval for tracking if (ckovEnergy > 5.6e-09 && ckovEnergy < 7.8e-09 ) //if (ckovEnergy > 0) { if (gMC->IsTrackEntering()){ //is track entering? if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { //is it in freo? if (geant3->Gctrak()->nstep<1){ //is it the first step? Int_t mother = current->GetFirstMother(); //printf("Second Mother:%d\n",current->GetSecondMother()); ckovData[10] = mother; ckovData[11] = gAlice->CurrentTrack(); ckovData[12] = 1; //Media where photon was produced 1->Freon, 2->Quarz fCkovNumber++; fFreonProd=1; //printf("Index: %d\n",fCkovNumber); } //first step question } //freo question if (geant3->Gctrak()->nstep<1){ //is it first step? if (gMC->VolId("QUAR")==gMC->CurrentVolID(copy)) //is it in quarz? { ckovData[12] = 2; } //quarz question } //first step question //printf("Before %d\n",fFreonProd); } //track entering question if (ckovData[12] == 1) //was it produced in Freon? //if (fFreonProd == 1) { if (gMC->IsTrackEntering()){ //is track entering? //printf("Got in"); if (gMC->VolId("META")==gMC->CurrentVolID(copy)) //is it in gap? { //printf("Got in\n"); gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); // Z-position for hit /**************** Photons lost in second grid have to be calculated by hand************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = (1. - .025 / cophi) * (1. - .05 / cophi); gMC->Rndm(ranf, 1); //printf("grid calculation:%f\n",t); if (ranf[0] > t) { //geant3->StopTrack(); ckovData[13] = 5; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Lost one in grid\n"); } /**********************************************************************************/ } //gap if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) //is it in csi? { gMC->TrackMomentum(momentum); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); /********* Photons lost by Fresnel reflection have to be calculated by hand********/ /***********************Cerenkov phtons (always polarised)*************************/ Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1])); Float_t t = Fresnel(ckovEnergy*1e9,cophi,1); gMC->Rndm(ranf, 1); if (ranf[0] < t) { //geant3->StopTrack(); ckovData[13] = 6; AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Lost by Fresnel\n"); } /**********************************************************************************/ } } //track entering? /********************Evaluation of losses************************/ /******************still in the old fashion**********************/ Int_t i1 = geant3->Gctrak()->nmec; //number of physics mechanisms acting on the particle for (Int_t i = 0; i < i1; ++i) { // Reflection loss if (geant3->Gctrak()->lmec[i] == 106) { //was it reflected ckovData[13]=10; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=1; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=2; //geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); } //reflection question // Absorption loss else if (geant3->Gctrak()->lmec[i] == 101) { //was it absorbed? ckovData[13]=20; if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) ckovData[13]=11; if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) ckovData[13]=12; if (gMC->CurrentVolID(copy) == gMC->VolId("META")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("GAP ")) ckovData[13]=13; if (gMC->CurrentVolID(copy) == gMC->VolId("SRIC")) ckovData[13]=15; // CsI inefficiency if (gMC->CurrentVolID(copy) == gMC->VolId("CSI ")) { ckovData[13]=16; } //geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //printf("Added cerenkov %d\n",fCkovNumber); } //absorption question // Photon goes out of tracking scope else if (geant3->Gctrak()->lmec[i] == 30) { //is it below energy treshold? ckovData[13]=21; //geant3->StopTrack(); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); } // energy treshold question } //number of mechanisms cycle /**********************End of evaluation************************/ } //freon production question } //energy interval question //}//inside the proximity gap question } //cerenkov photon question /**************************************End of Production Parameters Storing*********************/ /*******************************Treat photons that hit the CsI (Ckovs and Feedbacks)************/ if (gMC->TrackPid() == 50000050 || gMC->TrackPid() == 50000051) { //printf("Cerenkov\n"); if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy)) { if (gMC->Edep() > 0.){ gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); gMC->CurrentVolOffID(2,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); /*if (gMC->TrackPid() == 50000051){ fFeedbacks++; printf("Feedbacks:%d\n",fFeedbacks); }*/ ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if(idvolTrackPid(); // particle type ckovData[1] = pos[0]; // X-position for hit ckovData[2] = pos[1]; // Y-position for hit ckovData[3] = pos[2]; // Z-position for hit ckovData[4] = theta; // theta angle of incidence ckovData[5] = phi; // phi angle of incidence ckovData[8] = (Float_t) fNPadHits; // first padhit ckovData[9] = -1; // last pad hit ckovData[13] = 4; // photon was detected ckovData[14] = mom[0]; ckovData[15] = mom[1]; ckovData[16] = mom[2]; destep = gMC->Edep(); gMC->SetMaxStep(kBig); cherenkovLoss += destep; ckovData[7]=cherenkovLoss; nPads = MakePadHits(localPos[0],localPos[2],cherenkovLoss,idvol,kCerenkov); if (fNPadHits > (Int_t)ckovData[8]) { ckovData[8]= ckovData[8]+1; ckovData[9]= (Float_t) fNPadHits; } ckovData[17] = nPads; //printf("nPads:%d",nPads); //TClonesArray *Hits = RICH->Hits(); AliRICHHit *mipHit = (AliRICHHit*) (fHits->UncheckedAt(0)); if (mipHit) { mom[0] = current->Px(); mom[1] = current->Py(); mom[2] = current->Pz(); Float_t mipPx = mipHit->fMomX; Float_t mipPy = mipHit->fMomY; Float_t mipPz = mipHit->fMomZ; Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2]; Float_t rt = TMath::Sqrt(r); Float_t mipR = mipPx*mipPx + mipPy*mipPy + mipPz*mipPz; Float_t mipRt = TMath::Sqrt(mipR); if ((rt*mipRt) > 0) { coscerenkov = (mom[0]*mipPx + mom[1]*mipPy + mom[2]*mipPz)/(rt*mipRt); } else { coscerenkov = 0; } Float_t cherenkov = TMath::ACos(coscerenkov); ckovData[18]=cherenkov; } //if (sector != -1) //{ AddHit(gAlice->CurrentTrack(),vol,ckovData); AddCerenkov(gAlice->CurrentTrack(),vol,ckovData); //} } } } } /***********************************************End of photon hits*********************************************/ /**********************************************Charged particles treatment*************************************/ else if (gMC->TrackCharge()) //else if (1 == 1) { //If MIP /*if (gMC->IsTrackEntering()) { hits[13]=20;//is track entering? }*/ if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) { fFreonProd=1; } if (gMC->VolId("GAP ")== gMC->CurrentVolID(copy)) { // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->CurrentVolOffID(3,copy); vol[0]=copy; idvol=vol[0]-1; //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol]) //->Sector(localPos[0], localPos[2]); //printf("Sector:%d\n",sector); gMC->TrackPosition(position); gMC->TrackMomentum(momentum); pos[0]=position(0); pos[1]=position(1); pos[2]=position(2); mom[0]=momentum(0); mom[1]=momentum(1); mom[2]=momentum(2); mom[3]=momentum(3); gMC->Gmtod(pos,localPos,1); gMC->Gmtod(mom,localMom,2); ipart = gMC->TrackPid(); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { // gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2]; Double_t localRt = TMath::Sqrt(localTc); localTheta = Float_t(TMath::ATan2(localRt,Double_t(localMom[1])))*kRaddeg; localPhi = Float_t(TMath::ATan2(Double_t(localMom[2]),Double_t(localMom[0])))*kRaddeg; hits[0] = Float_t(ipart); // particle type hits[1] = localPos[0]; // X-position for hit hits[2] = localPos[1]; // Y-position for hit hits[3] = localPos[2]; // Z-position for hit hits[4] = localTheta; // theta angle of incidence hits[5] = localPhi; // phi angle of incidence hits[8] = (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit hits[13] = fFreonProd; // did id hit the freon? hits[14] = mom[0]; hits[15] = mom[1]; hits[16] = mom[2]; tlength = 0; eloss = 0; fFreonProd = 0; Chamber(idvol).LocaltoGlobal(localPos,hits+1); //To make chamber coordinates x-y had to pass localPos[0], localPos[2] xhit = localPos[0]; yhit = localPos[2]; // Only if not trigger chamber if(idvolSigGenInit(localPos[0], localPos[2], localPos[1]); } } // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; // Only if not trigger chamber if(idvol 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = MakePadHits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("nPads:%d",nPads); } } hits[6]=tlength; hits[7]=eloss; if (fNPadHits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNPadHits; } //if(sector !=-1) new(lhits[fNhits++]) AliRICHHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) } else if (((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenCond(localPos[0], localPos[2], localPos[1])) { ((AliRICHChamber*) (*fChambers)[idvol]) ->SigGenInit(localPos[0], localPos[2], localPos[1]); if (eloss > 0) { if(gMC->TrackPid() == kNeutron) printf("\n\n\n\n\n Neutron Making Pad Hit!!! \n\n\n\n"); nPads = MakePadHits(xhit,yhit,eloss,idvol,kMip); hits[17] = nPads; //printf("Npads:%d",NPads); } xhit = localPos[0]; yhit = localPos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } } } /*************************************************End of MIP treatment**************************************/ //} }