#ifndef AliAODTrack_H #define AliAODTrack_H /* Copyright(c) 1998-2007, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // AOD track implementation of AliVTrack // Author: Markus Oldenburg, CERN //------------------------------------------------------------------------- #include #include #include "AliVTrack.h" #include "AliAODVertex.h" #include "AliAODRedCov.h" #include "AliAODPid.h" class AliVVertex; class AliAODTrack : public AliVTrack { public: enum AODTrk_t {kUndef = -1, kPrimary, kSecondary, kOrphan}; enum AODTrkBits_t { kIsDCA=BIT(14), // set if fPosition is the DCA and not the position of the first point kUsedForVtxFit=BIT(15), // set if this track was used to fit the vertex it is attached to kUsedForPrimVtxFit=BIT(16) // set if this track was used to fit the primary vertex }; enum AODTrkPID_t { kElectron = 0, kMuon = 1, kPion = 2, kKaon = 3, kProton = 4, kDeuteron = 5, kTriton = 6, kHelium3 = 7, kAlpha = 8, kUnknown = 9, kMostProbable = -1 }; AliAODTrack(); AliAODTrack(Short_t id, Int_t label, Double_t p[3], Bool_t cartesian, Double_t x[3], Bool_t dca, Double_t covMatrix[21], Short_t q, UChar_t itsClusMap, Double_t pid[10], AliAODVertex *prodVertex, Bool_t usedForVtxFit, Bool_t usedForPrimVtxFit, AODTrk_t ttype=kUndef, UInt_t selectInfo=0, Float_t chi2perNDF = -999.); AliAODTrack(Short_t id, Int_t label, Float_t p[3], Bool_t cartesian, Float_t x[3], Bool_t dca, Float_t covMatrix[21], Short_t q, UChar_t itsClusMap, Float_t pid[10], AliAODVertex *prodVertex, Bool_t usedForVtxFit, Bool_t usedForPrimVtxFit, AODTrk_t ttype=kUndef, UInt_t selectInfo=0, Float_t chi2perNDF = -999.); virtual ~AliAODTrack(); AliAODTrack(const AliAODTrack& trk); AliAODTrack& operator=(const AliAODTrack& trk); // kinematics virtual Double_t OneOverPt() const { return (fMomentum[0] != 0.) ? 1./fMomentum[0] : -999.; } virtual Double_t Phi() const { return fMomentum[1]; } virtual Double_t Theta() const { return fMomentum[2]; } virtual Double_t Px() const { return fMomentum[0] * TMath::Cos(fMomentum[1]); } virtual Double_t Py() const { return fMomentum[0] * TMath::Sin(fMomentum[1]); } virtual Double_t Pz() const { return fMomentum[0] / TMath::Tan(fMomentum[2]); } virtual Double_t Pt() const { return fMomentum[0]; } virtual Double_t P() const { return TMath::Sqrt(Pt()*Pt()+Pz()*Pz()); } virtual Bool_t PxPyPz(Double_t p[3]) const { p[0] = Px(); p[1] = Py(); p[2] = Pz(); return kTRUE; } virtual Double_t Xv() const { return GetProdVertex() ? GetProdVertex()->GetX() : -999.; } virtual Double_t Yv() const { return GetProdVertex() ? GetProdVertex()->GetY() : -999.; } virtual Double_t Zv() const { return GetProdVertex() ? GetProdVertex()->GetZ() : -999.; } virtual Bool_t XvYvZv(Double_t x[3]) const { x[0] = Xv(); x[1] = Yv(); x[2] = Zv(); return kTRUE; } Double_t Chi2perNDF() const { return fChi2perNDF; } UShort_t GetTPCNcls() const { return fTPCClusterMap.CountBits();} virtual Double_t M() const { return M(GetMostProbablePID()); } Double_t M(AODTrkPID_t pid) const; virtual Double_t E() const { return E(GetMostProbablePID()); } Double_t E(AODTrkPID_t pid) const; Double_t E(Double_t m) const { return TMath::Sqrt(P()*P() + m*m); } virtual Double_t Y() const { return Y(GetMostProbablePID()); } Double_t Y(AODTrkPID_t pid) const; Double_t Y(Double_t m) const; virtual Double_t Eta() const { return -TMath::Log(TMath::Tan(0.5 * fMomentum[2])); } virtual Short_t Charge() const {return fCharge; } virtual Bool_t PropagateToDCA(const AliVVertex *vtx, Double_t b, Double_t maxd, Double_t dz[2], Double_t covar[3]); // PID virtual const Double_t *PID() const { return fPID; } AODTrkPID_t GetMostProbablePID() const; void ConvertAliPIDtoAODPID(); void SetDetPID(AliAODPid *aodpid) {fDetPid = aodpid;} template void GetPID(T *pid) const { for(Int_t i=0; i<10; ++i) pid[i]=fPID[i];} template void SetPID(const T *pid) { if(pid) for(Int_t i=0; i<10; ++i) fPID[i]=pid[i]; else {for(Int_t i=0; i<10; fPID[i++]=0.) ; fPID[AliAODTrack::kUnknown]=1.;}} Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;} ULong_t GetStatus() const { return GetFlags(); } ULong_t GetFlags() const { return fFlags; } Int_t GetID() const { return (Int_t)fID; } Int_t GetLabel() const { return fLabel; } Char_t GetType() const { return fType;} Bool_t IsPrimaryCandidate() const; Bool_t GetUsedForVtxFit() const { return TestBit(kUsedForVtxFit); } Bool_t GetUsedForPrimVtxFit() const { return TestBit(kUsedForPrimVtxFit); } template void GetP(T *p) const { p[0]=fMomentum[0]; p[1]=fMomentum[1]; p[2]=fMomentum[2];} // template void GetPxPyPz(T *p) const { // p[0] = Px(); p[1] = Py(); p[2] = Pz();} Bool_t GetPxPyPz(Double_t *p) const; template Bool_t GetPosition(T *x) const { x[0]=fPosition[0]; x[1]=fPosition[1]; x[2]=fPosition[2]; return TestBit(kIsDCA);} template void SetCovMatrix(const T *covMatrix) { if(!fCovMatrix) fCovMatrix=new AliAODRedCov<6>(); fCovMatrix->SetCovMatrix(covMatrix);} template Bool_t GetCovMatrix(T *covMatrix) const { if(!fCovMatrix) return kFALSE; fCovMatrix->GetCovMatrix(covMatrix); return kTRUE;} Bool_t GetXYZ(Double_t *p) const { return GetPosition(p); } Bool_t GetCovarianceXYZPxPyPz(Double_t cv[21]) const { return GetCovMatrix(cv);} void RemoveCovMatrix() {delete fCovMatrix; fCovMatrix=NULL;} Double_t XAtDCA() const { return fPositionAtDCA[0]; } Double_t YAtDCA() const { return fPositionAtDCA[1]; } Double_t ZAtDCA() const { if (IsMuonTrack()) return fPosition[2]; else if (TestBit(kIsDCA)) return fPosition[1]; else return -999.; } Bool_t XYZAtDCA(Double_t x[3]) const { x[0] = XAtDCA(); x[1] = YAtDCA(); x[2] = ZAtDCA(); return kTRUE; } Double_t DCA() const { if (IsMuonTrack()) return TMath::Sqrt(XAtDCA()*XAtDCA() + YAtDCA()*YAtDCA()); else if (TestBit(kIsDCA)) return fPosition[0]; else return -999.; } Double_t PxAtDCA() const { return fMomentumAtDCA[0]; } Double_t PyAtDCA() const { return fMomentumAtDCA[1]; } Double_t PzAtDCA() const { return fMomentumAtDCA[2]; } Double_t PAtDCA() const { return TMath::Sqrt(PxAtDCA()*PxAtDCA() + PyAtDCA()*PyAtDCA() + PzAtDCA()*PzAtDCA()); } Bool_t PxPyPzAtDCA(Double_t p[3]) const { p[0] = PxAtDCA(); p[1] = PyAtDCA(); p[2] = PzAtDCA(); return kTRUE; } Double_t GetRAtAbsorberEnd() const { return fRAtAbsorberEnd; } UChar_t GetITSClusterMap() const { return (UChar_t)(fITSMuonClusterMap&0xff); } Int_t GetITSNcls() const; Bool_t HasPointOnITSLayer(Int_t i) const { return TESTBIT(GetITSClusterMap(),i); } UShort_t GetHitsPatternInTrigCh() const { return (UShort_t)((fITSMuonClusterMap&0xff00)>>8); } UInt_t GetMUONClusterMap() const { return (fITSMuonClusterMap&0x3ff0000)>>16; } UInt_t GetITSMUONClusterMap() const { return fITSMuonClusterMap; } Bool_t TestFilterBit(UInt_t filterBit) const {return (Bool_t) ((filterBit & fFilterMap) != 0);} Bool_t TestFilterMask(UInt_t filterMask) const {return (Bool_t) ((filterMask & fFilterMap) == filterMask);} void SetFilterMap(UInt_t i){fFilterMap = i;} UInt_t GetFilterMap(){return fFilterMap;} const TBits& GetTPCClusterMap() const {return fTPCClusterMap;} const TBits& GetTPCSharedMap() const {return fTPCSharedMap;} void SetTPCClusterMap(const TBits amap) {fTPCClusterMap = amap;} void SetTPCSharedMap(const TBits amap) {fTPCSharedMap = amap;} AliAODPid *GetDetPid() const { return fDetPid; } AliAODVertex *GetProdVertex() const { return (AliAODVertex*)fProdVertex.GetObject(); } // print void Print(const Option_t *opt = "") const; // setters void SetFlags(ULong_t flags) { fFlags = flags; } void SetStatus(ULong_t flags) { fFlags|=flags; } void ResetStatus(ULong_t flags) { fFlags&=~flags; } void SetID(Short_t id) { fID = id; } void SetLabel(Int_t label) { fLabel = label; } template void SetPosition(const T *x, Bool_t isDCA = kFALSE); void SetDCA(Double_t d, Double_t z); void SetUsedForVtxFit(Bool_t used = kTRUE) { used ? SetBit(kUsedForVtxFit) : ResetBit(kUsedForVtxFit); } void SetUsedForPrimVtxFit(Bool_t used = kTRUE) { used ? SetBit(kUsedForPrimVtxFit) : ResetBit(kUsedForPrimVtxFit); } void SetOneOverPt(Double_t oneOverPt) { fMomentum[0] = 1. / oneOverPt; } void SetPt(Double_t pt) { fMomentum[0] = pt; }; void SetPhi(Double_t phi) { fMomentum[1] = phi; } void SetTheta(Double_t theta) { fMomentum[2] = theta; } template void SetP(const T *p, Bool_t cartesian = kTRUE); void SetP() {fMomentum[0]=fMomentum[1]=fMomentum[2]=-999.;} void SetXYAtDCA(Double_t x, Double_t y) {fPositionAtDCA[0] = x; fPositionAtDCA[1] = y;} void SetPxPyPzAtDCA(Double_t pX, Double_t pY, Double_t pZ) {fMomentumAtDCA[0] = pX; fMomentumAtDCA[1] = pY; fMomentumAtDCA[2] = pZ;} void SetRAtAbsorberEnd(Double_t r) { fRAtAbsorberEnd = r; } void SetCharge(Short_t q) { fCharge = q; } void SetChi2perNDF(Double_t chi2perNDF) { fChi2perNDF = chi2perNDF; } void SetITSClusterMap(UChar_t itsClusMap) { fITSMuonClusterMap = (fITSMuonClusterMap&0xffffff00)|(((UInt_t)itsClusMap)&0xff); } void SetHitsPatternInTrigCh(UShort_t hitsPatternInTrigCh) { fITSMuonClusterMap = (fITSMuonClusterMap&0xffff00ff)|((((UInt_t)hitsPatternInTrigCh)&0xff)<<8); } void SetMuonClusterMap(UInt_t muonClusMap) { fITSMuonClusterMap = (fITSMuonClusterMap&0xfc00ffff)|((muonClusMap&0x3ff)<<16); } void SetITSMuonClusterMap(UInt_t itsMuonClusMap) { fITSMuonClusterMap = itsMuonClusMap; } Int_t GetMatchTrigger() const {return fITSMuonClusterMap>>30;} // 0 Muon track does not match trigger // 1 Muon track match but does not pass pt cut // 2 Muon track match Low pt cut // 3 Muon track match High pt cut void SetMatchTrigger(Int_t MatchTrigger); Bool_t MatchTrigger() const { return (GetMatchTrigger()>0); } // Muon track matches trigger track Bool_t MatchTriggerLowPt() const { return (GetMatchTrigger()>1); } // Muon track matches trigger track and passes Low pt cut Bool_t MatchTriggerHighPt() const { return (GetMatchTrigger()>2); } // Muon track matches trigger track and passes High pt cut Bool_t MatchTriggerDigits() const; // Muon track matches trigger digits Double_t GetChi2MatchTrigger() const { return fChi2MatchTrigger;} void SetChi2MatchTrigger(Double_t Chi2MatchTrigger) {fChi2MatchTrigger = Chi2MatchTrigger; } Bool_t HitsMuonChamber(Int_t MuonChamber, Int_t cathode = -1) const; // Check if track hits Muon chambers Bool_t IsMuonTrack() const { return (GetMUONClusterMap()>0) ? kTRUE : kFALSE; } void Connected(Bool_t flag) {flag ? SETBIT(fITSMuonClusterMap,26) : CLRBIT(fITSMuonClusterMap,26);} Bool_t IsConnected() const {return TESTBIT(fITSMuonClusterMap,26);} void SetProdVertex(TObject *vertex) { fProdVertex = vertex; } void SetType(AODTrk_t ttype) { fType=ttype; } // Dummy Int_t PdgCode() const {return 0;} private : // Momentum & position Double32_t fMomentum[3]; // momemtum stored in pt, phi, theta Double32_t fPosition[3]; // position of first point on track or dca Double32_t fMomentumAtDCA[3]; // momentum (px,py,pz) at DCA Double32_t fPositionAtDCA[2]; // trasverse position (x,y) at DCA Double32_t fRAtAbsorberEnd; // transverse position r at the end of the muon absorber Double32_t fChi2perNDF; // chi2/NDF of momentum fit Double32_t fChi2MatchTrigger; // chi2 of trigger/track matching Double32_t fPID[10]; // [0.,1.,8] pointer to PID object ULong_t fFlags; // reconstruction status flags Int_t fLabel; // track label, points back to MC track UInt_t fITSMuonClusterMap; // map of ITS and muon clusters, one bit per layer // (ITS: bit 1-8, muon trigger: bit 9-16, muon tracker: bit 17-26, muon match trigger: bit 31-32) UInt_t fFilterMap; // filter information, one bit per set of cuts TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow TBits fTPCSharedMap; // Map of clusters, one bit per padrow; 1 if has a shared cluster on given padrow Short_t fID; // unique track ID, points back to the ESD track Char_t fCharge; // particle charge Char_t fType; // Track Type AliAODRedCov<6> *fCovMatrix; // covariance matrix (x, y, z, px, py, pz) AliAODPid *fDetPid; // more detailed or detector specific pid information TRef fProdVertex; // vertex of origin ClassDef(AliAODTrack, 11); }; inline Bool_t AliAODTrack::IsPrimaryCandidate() const { // True of track passes primary particle selection (independent of type) // if (fFilterMap) { return kTRUE; } else { return kFALSE; } } inline Int_t AliAODTrack::GetITSNcls() const { // Number of points in ITS Int_t n=0; for(Int_t i=0;i<6;i++) if(HasPointOnITSLayer(i)) n++; return n; } #endif