/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------- // Origin: Marian Ivanov marian.ivanov@cern.ch //------------------------------------------------------------------------- #include #include #include "AliESDV0MI.h" #include "AliHelix.h" ClassImp(AliESDV0MI) AliESDV0MI::AliESDV0MI() : AliESDv0(), fParamP(), fParamM(), fID(0), fDist1(-1), fDist2(-1), fRr(-1), fStatus(0), fRow0(-1), fDistNorm(0), fDistSigma(0), fChi2Before(0), fNBefore(0), fChi2After(0), fNAfter(0), fPointAngleFi(0), fPointAngleTh(0), fPointAngle(0) { // //Dafault constructor // for (Int_t i=0;i<4;i++){fCausality[i]=0;} for (Int_t i=0;i<6;i++){fClusters[0][i]=0; fClusters[1][i]=0;} for (Int_t i=0;i<2;i++){fNormDCAPrim[0]=0;fNormDCAPrim[1]=0;} } void AliESDV0MI::SetCausality(Float_t pb0, Float_t pb1, Float_t pa0, Float_t pa1) { // // set probabilities // fCausality[0] = pb0; // probability - track 0 exist before vertex fCausality[1] = pb1; // probability - track 1 exist before vertex fCausality[2] = pa0; // probability - track 0 exist close after vertex fCausality[3] = pa1; // probability - track 1 exist close after vertex } void AliESDV0MI::SetClusters(Int_t *clp, Int_t *clm) { // // Set its clusters indexes // for (Int_t i=0;i<6;i++) fClusters[0][i] = clp[i]; for (Int_t i=0;i<6;i++) fClusters[1][i] = clm[i]; } void AliESDV0MI::SetP(const AliExternalTrackParam & paramp) { // // set track + // fParamP = paramp; } void AliESDV0MI::SetM(const AliExternalTrackParam & paramm){ // //set track - // fParamM = paramm; } void AliESDV0MI::SetRp(const Double_t *rp){ // // set pid + // for (Int_t i=0;i<5;i++) fRP[i]=rp[i]; } void AliESDV0MI::SetRm(const Double_t *rm){ // // set pid - // for (Int_t i=0;i<5;i++) fRM[i]=rm[i]; } void AliESDV0MI::UpdatePID(Double_t pidp[5], Double_t pidm[5]) { // // set PID hypothesy // // norm PID to 1 Float_t sump =0; Float_t summ =0; for (Int_t i=0;i<5;i++){ fRP[i]=pidp[i]; sump+=fRP[i]; fRM[i]=pidm[i]; summ+=fRM[i]; } for (Int_t i=0;i<5;i++){ fRP[i]/=sump; fRM[i]/=summ; } } Float_t AliESDV0MI::GetProb(UInt_t p1, UInt_t p2){ // // // // return TMath::Max(fRP[p1]+fRM[p2], fRP[p2]+fRM[p1]); } Float_t AliESDV0MI::GetEffMass(UInt_t p1, UInt_t p2){ // // calculate effective mass // const Float_t kpmass[5] = {5.10000000000000037e-04,1.05660000000000004e-01,1.39570000000000000e-01, 4.93599999999999983e-01, 9.38270000000000048e-01}; if (p1>4) return -1; if (p2>4) return -1; Float_t mass1 = kpmass[p1]; Float_t mass2 = kpmass[p2]; Double_t *m1 = fPP; Double_t *m2 = fPM; // //if (fRP[p1]+fRM[p2]0){ phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); } if (points==2){ phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); } distance1 = TMath::Min(delta1,delta2); */ // //find intersection parabolic // points = phelix.GetRPHIintersections(mhelix, phase, radius); delta1=10000,delta2=10000; Double_t d1=1000.,d2=10000.; Double_t err[3],angles[3]; if (points<=0) return; if (points>0){ phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); if (TMath::Abs(fParamP.X()-TMath::Sqrt(radius[0])<3) && TMath::Abs(fParamM.X()-TMath::Sqrt(radius[0])<3)){ // if we are close to vertex use error parama // err[1] = fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]+0.05*0.05 +0.3*(fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]); err[2] = fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]+0.05*0.05 +0.3*(fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]); phelix.GetAngle(phase[0][0],mhelix,phase[0][1],angles); Double_t tfi = TMath::Abs(TMath::Tan(angles[0])); Double_t tlam = TMath::Abs(TMath::Tan(angles[1])); err[0] = err[1]/((0.2+tfi)*(0.2+tfi))+err[2]/((0.2+tlam)*(0.2+tlam)); err[0] = ((err[1]*err[2]/((0.2+tfi)*(0.2+tfi)*(0.2+tlam)*(0.2+tlam))))/err[0]; phelix.ParabolicDCA2(mhelix,phase[0][0],phase[0][1],radius[0],delta1,err); } Double_t xd[3],xm[3]; phelix.Evaluate(phase[0][0],xd); mhelix.Evaluate(phase[0][1],xm); d1 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]); } if (points==2){ phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); if (TMath::Abs(fParamP.X()-TMath::Sqrt(radius[1])<3) && TMath::Abs(fParamM.X()-TMath::Sqrt(radius[1])<3)){ // if we are close to vertex use error paramatrization // err[1] = fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]+0.05*0.05 +0.3*(fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]); err[2] = fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]+0.05*0.05 +0.3*(fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]); phelix.GetAngle(phase[1][0],mhelix,phase[1][1],angles); Double_t tfi = TMath::Abs(TMath::Tan(angles[0])); Double_t tlam = TMath::Abs(TMath::Tan(angles[1])); err[0] = err[1]/((0.2+tfi)*(0.2+tfi))+err[2]/((0.2+tlam)*(0.2+tlam)); err[0] = ((err[1]*err[2]/((0.2+tfi)*(0.2+tfi)*(0.2+tlam)*(0.2+tlam))))/err[0]; phelix.ParabolicDCA2(mhelix,phase[1][0],phase[1][1],radius[1],delta2,err); } Double_t xd[3],xm[3]; phelix.Evaluate(phase[1][0],xd); mhelix.Evaluate(phase[1][1],xm); d2 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]); } // distance2 = TMath::Min(delta1,delta2); if (delta1