/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------- // // Implementation of the ESD V0MI vertex class // This class is part of the Event Data Summary // set of classes and contains information about // V0 kind vertexes generated by a neutral particle // Numerical part - AliHelix functionality used // // Likelihoods for Point angle, DCA and Causality defined => can be used as cut parameters // HIGHLY recomended // // Quality information can be used as additional cut variables // // Origin: Marian Ivanov marian.ivanov@cern.ch //------------------------------------------------------------------------- #include #include #include "AliESDV0MI.h" #include "AliHelix.h" ClassImp(AliESDV0MI) AliESDV0MIParams AliESDV0MI::fgkParams; AliESDV0MI::AliESDV0MI() : AliESDv0(), fParamP(), fParamM(), fID(0), fDist1(-1), fDist2(-1), fRr(-1), fStatus(0), fRow0(-1), fDistNorm(0), fDistSigma(0), fChi2Before(0), fNBefore(0), fChi2After(0), fNAfter(0), fPointAngleFi(0), fPointAngleTh(0), fPointAngle(0) { // //Dafault constructor // for (Int_t i=0;i<5;i++){ fRP[i]=fRM[i]=0; } fLab[0]=fLab[1]=-1; fIndex[0]=fIndex[1]=-1; for (Int_t i=0;i<6;i++){fClusters[0][i]=0; fClusters[1][i]=0;} fNormDCAPrim[0]=fNormDCAPrim[1]=0; for (Int_t i=0;i<3;i++){fPP[i]=fPM[i]=fXr[i]=fAngle[i]=0;} for (Int_t i=0;i<3;i++){fOrder[i]=0;} for (Int_t i=0;i<4;i++){fCausality[i]=0;} } Double_t AliESDV0MI::GetSigmaY(){ // // return sigmay in y at vertex position using covariance matrix // const Double_t * cp = fParamP.GetCovariance(); const Double_t * cm = fParamM.GetCovariance(); Double_t sigmay = cp[0]+cm[0]+ cp[5]*(fParamP.GetX()-fRr)*(fParamP.GetX()-fRr)+ cm[5]*(fParamM.GetX()-fRr)*(fParamM.GetX()-fRr); return (sigmay>0) ? TMath::Sqrt(sigmay):100; } Double_t AliESDV0MI::GetSigmaZ(){ // // return sigmay in y at vertex position using covariance matrix // const Double_t * cp = fParamP.GetCovariance(); const Double_t * cm = fParamM.GetCovariance(); Double_t sigmaz = cp[2]+cm[2]+ cp[9]*(fParamP.GetX()-fRr)*(fParamP.GetX()-fRr)+ cm[9]*(fParamM.GetX()-fRr)*(fParamM.GetX()-fRr); return (sigmaz>0) ? TMath::Sqrt(sigmaz):100; } Double_t AliESDV0MI::GetSigmaD0(){ // // Sigma parameterization using covariance matrix // // sigma of distance between two tracks in vertex position // sigma of DCA is proportianal to sigmaD0 // factor 2 difference is explained by the fact that the DCA is calculated at the position // where the tracks as closest together ( not exact position of the vertex) // const Double_t * cp = fParamP.GetCovariance(); const Double_t * cm = fParamM.GetCovariance(); Double_t sigmaD0 = cp[0]+cm[0]+cp[2]+cm[2]+fgkParams.fPSigmaOffsetD0*fgkParams.fPSigmaOffsetD0; sigmaD0 += ((fParamP.GetX()-fRr)*(fParamP.GetX()-fRr))*(cp[5]+cp[9]); sigmaD0 += ((fParamM.GetX()-fRr)*(fParamM.GetX()-fRr))*(cm[5]+cm[9]); return (sigmaD0>0)? TMath::Sqrt(sigmaD0):100; } Double_t AliESDV0MI::GetSigmaAP0(){ // //Sigma parameterization using covariance matrices // Double_t prec = TMath::Sqrt((fPM[0]+fPP[0])*(fPM[0]+fPP[0]) +(fPM[1]+fPP[1])*(fPM[1]+fPP[1]) +(fPM[2]+fPP[2])*(fPM[2]+fPP[2])); Double_t normp = TMath::Sqrt(fPP[0]*fPP[0]+fPP[1]*fPP[1]+fPP[2]*fPP[2])/prec; // fraction of the momenta Double_t normm = TMath::Sqrt(fPM[0]*fPM[0]+fPM[1]*fPM[1]+fPM[2]*fPM[2])/prec; const Double_t * cp = fParamP.GetCovariance(); const Double_t * cm = fParamM.GetCovariance(); Double_t sigmaAP0 = fgkParams.fPSigmaOffsetAP0*fgkParams.fPSigmaOffsetAP0; // minimal part sigmaAP0 += (cp[5]+cp[9])*(normp*normp)+(cm[5]+cm[9])*(normm*normm); // angular resolution part Double_t sigmaAP1 = GetSigmaD0()/(TMath::Abs(fRr)+0.01); // vertex position part sigmaAP0 += 0.5*sigmaAP1*sigmaAP1; return (sigmaAP0>0)? TMath::Sqrt(sigmaAP0):100; } Double_t AliESDV0MI::GetEffectiveSigmaD0(){ // // minimax - effective Sigma parameterization // p12 effective curvature and v0 radius postion used as parameters // Double_t p12 = TMath::Sqrt(fParamP.GetParameter()[4]*fParamP.GetParameter()[4]+ fParamM.GetParameter()[4]*fParamM.GetParameter()[4]); Double_t sigmaED0= TMath::Max(TMath::Sqrt(fRr)-fgkParams.fPSigmaRminDE,0.0)*fgkParams.fPSigmaCoefDE*p12*p12; sigmaED0*= sigmaED0; sigmaED0*= sigmaED0; sigmaED0 = TMath::Sqrt(sigmaED0+fgkParams.fPSigmaOffsetDE*fgkParams.fPSigmaOffsetDE); return (sigmaED0fTree->SetAlias("SigmaAP2","max(min((SigmaAP0+SigmaAPE0)*0.5,1.5*SigmaAPE0),0.5*SigmaAPE0+0.003)"); Double_t effectiveSigma = GetEffectiveSigmaAP0(); Double_t sigmaMMAP = 0.5*(GetSigmaAP0()+effectiveSigma); sigmaMMAP = TMath::Min(sigmaMMAP, fgkParams.fPMaxFractionAP0*effectiveSigma); sigmaMMAP = TMath::Max(sigmaMMAP, fgkParams.fPMinFractionAP0*effectiveSigma+fgkParams.fPMinAP0); return sigmaMMAP; } Double_t AliESDV0MI::GetMinimaxSigmaD0(){ // // calculate mini-max sigma of dca resolution // //compv0->fTree->SetAlias("SigmaD2","max(min((SigmaD0+SigmaDE0)*0.5,1.5*SigmaDE0),0.5*SigmaDE0)"); Double_t effectiveSigma = GetEffectiveSigmaD0(); Double_t sigmaMMD0 = 0.5*(GetSigmaD0()+effectiveSigma); sigmaMMD0 = TMath::Min(sigmaMMD0, fgkParams.fPMaxFractionD0*effectiveSigma); sigmaMMD0 = TMath::Max(sigmaMMD0, fgkParams.fPMinFractionD0*effectiveSigma+fgkParams.fPMinD0); return sigmaMMD0; } Double_t AliESDV0MI::GetLikelihoodAP(Int_t mode0, Int_t mode1){ // // get likelihood for point angle // Double_t sigmaAP = 0.007; //default sigma switch (mode0){ case 0: sigmaAP = GetSigmaAP0(); // mode 0 - covariance matrix estimates used break; case 1: sigmaAP = GetEffectiveSigmaAP0(); // mode 1 - effective sigma used break; case 2: sigmaAP = GetMinimaxSigmaAP0(); // mode 2 - minimax sigma break; } Double_t apNorm = TMath::Min(TMath::ACos(fPointAngle)/sigmaAP,50.); //normalized point angle, restricted - because of overflow problems in Exp Double_t likelihood = 0; switch(mode1){ case 0: likelihood = TMath::Exp(-0.5*apNorm*apNorm); // one component break; case 1: likelihood = (TMath::Exp(-0.5*apNorm*apNorm)+0.5* TMath::Exp(-0.25*apNorm*apNorm))/1.5; // two components break; case 2: likelihood = (TMath::Exp(-0.5*apNorm*apNorm)+0.5* TMath::Exp(-0.25*apNorm*apNorm)+0.25*TMath::Exp(-0.125*apNorm*apNorm))/1.75; // three components break; } return likelihood; } Double_t AliESDV0MI::GetLikelihoodD(Int_t mode0, Int_t mode1){ // // get likelihood for DCA // Double_t sigmaD = 0.03; //default sigma switch (mode0){ case 0: sigmaD = GetSigmaD0(); // mode 0 - covariance matrix estimates used break; case 1: sigmaD = GetEffectiveSigmaD0(); // mode 1 - effective sigma used break; case 2: sigmaD = GetMinimaxSigmaD0(); // mode 2 - minimax sigma break; } Double_t dNorm = TMath::Min(fDist2/sigmaD,50.); //normalized point angle, restricted - because of overflow problems in Exp Double_t likelihood = 0; switch(mode1){ case 0: likelihood = TMath::Exp(-2.*dNorm); // one component break; case 1: likelihood = (TMath::Exp(-2.*dNorm)+0.5* TMath::Exp(-dNorm))/1.5; // two components break; case 2: likelihood = (TMath::Exp(-2.*dNorm)+0.5* TMath::Exp(-dNorm)+0.25*TMath::Exp(-0.5*dNorm))/1.75; // three components break; } return likelihood; } Double_t AliESDV0MI::GetLikelihoodC(Int_t mode0, Int_t /*mode1*/){ // // get likelihood for Causality // !!! Causality variables defined in AliITStrackerMI !!! // when more information was available // Double_t likelihood = 0.5; Double_t minCausal = TMath::Min(fCausality[0],fCausality[1]); Double_t maxCausal = TMath::Max(fCausality[0],fCausality[1]); // minCausal = TMath::Max(minCausal,0.5*maxCausal); //compv0->fTree->SetAlias("LCausal","(1.05-(2*(0.8-exp(-max(RC.fV0rec.fCausality[0],RC.fV0rec.fCausality[1])))+2*(0.8-exp(-min(RC.fV0rec.fCausality[0],RC.fV0rec.fCausality[1]))))/2)**4"); switch(mode0){ case 0: //normalization likelihood = TMath::Power((1.05-2*(0.8-TMath::Exp(-maxCausal))),4.); break; case 1: likelihood = TMath::Power(1.05-(2*(0.8-TMath::Exp(-maxCausal))+(2*(0.8-TMath::Exp(-minCausal))))*0.5,4.); break; } return likelihood; } void AliESDV0MI::SetCausality(Float_t pb0, Float_t pb1, Float_t pa0, Float_t pa1) { // // set probabilities // fCausality[0] = pb0; // probability - track 0 exist before vertex fCausality[1] = pb1; // probability - track 1 exist before vertex fCausality[2] = pa0; // probability - track 0 exist close after vertex fCausality[3] = pa1; // probability - track 1 exist close after vertex } void AliESDV0MI::SetClusters(Int_t *clp, Int_t *clm) { // // Set its clusters indexes // for (Int_t i=0;i<6;i++) fClusters[0][i] = clp[i]; for (Int_t i=0;i<6;i++) fClusters[1][i] = clm[i]; } void AliESDV0MI::SetP(const AliExternalTrackParam & paramp) { // // set track + // fParamP = paramp; } void AliESDV0MI::SetM(const AliExternalTrackParam & paramm){ // //set track - // fParamM = paramm; } void AliESDV0MI::SetRp(const Double_t *rp){ // // set pid + // for (Int_t i=0;i<5;i++) fRP[i]=rp[i]; } void AliESDV0MI::SetRm(const Double_t *rm){ // // set pid - // for (Int_t i=0;i<5;i++) fRM[i]=rm[i]; } void AliESDV0MI::UpdatePID(Double_t pidp[5], Double_t pidm[5]) { // // set PID hypothesy // // norm PID to 1 Float_t sump =0; Float_t summ =0; for (Int_t i=0;i<5;i++){ fRP[i]=pidp[i]; sump+=fRP[i]; fRM[i]=pidm[i]; summ+=fRM[i]; } for (Int_t i=0;i<5;i++){ fRP[i]/=sump; fRM[i]/=summ; } } Float_t AliESDV0MI::GetProb(UInt_t p1, UInt_t p2){ // // // // return TMath::Max(fRP[p1]+fRM[p2], fRP[p2]+fRM[p1]); } Float_t AliESDV0MI::GetEffMass(UInt_t p1, UInt_t p2){ // // calculate effective mass // const Float_t kpmass[5] = {5.10000000000000037e-04,1.05660000000000004e-01,1.39570000000000000e-01, 4.93599999999999983e-01, 9.38270000000000048e-01}; if (p1>4) return -1; if (p2>4) return -1; Float_t mass1 = kpmass[p1]; Float_t mass2 = kpmass[p2]; Double_t *m1 = fPP; Double_t *m2 = fPM; // //if (fRP[p1]+fRM[p2]0){ phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); } if (points==2){ phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); } distance1 = TMath::Min(delta1,delta2); */ // //find intersection parabolic // points = phelix.GetRPHIintersections(mhelix, phase, radius); delta1=10000,delta2=10000; Double_t d1=1000.,d2=10000.; Double_t err[3],angles[3]; if (points<=0) return; if (points>0){ phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1); if (TMath::Abs(fParamP.GetX()-TMath::Sqrt(radius[0])<3) && TMath::Abs(fParamM.GetX()-TMath::Sqrt(radius[0])<3)){ // if we are close to vertex use error parama // err[1] = fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]+0.05*0.05 +0.3*(fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]); err[2] = fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]+0.05*0.05 +0.3*(fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]); phelix.GetAngle(phase[0][0],mhelix,phase[0][1],angles); Double_t tfi = TMath::Abs(TMath::Tan(angles[0])); Double_t tlam = TMath::Abs(TMath::Tan(angles[1])); err[0] = err[1]/((0.2+tfi)*(0.2+tfi))+err[2]/((0.2+tlam)*(0.2+tlam)); err[0] = ((err[1]*err[2]/((0.2+tfi)*(0.2+tfi)*(0.2+tlam)*(0.2+tlam))))/err[0]; phelix.ParabolicDCA2(mhelix,phase[0][0],phase[0][1],radius[0],delta1,err); } Double_t xd[3],xm[3]; phelix.Evaluate(phase[0][0],xd); mhelix.Evaluate(phase[0][1],xm); d1 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]); } if (points==2){ phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2); if (TMath::Abs(fParamP.GetX()-TMath::Sqrt(radius[1])<3) && TMath::Abs(fParamM.GetX()-TMath::Sqrt(radius[1])<3)){ // if we are close to vertex use error paramatrization // err[1] = fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]+0.05*0.05 +0.3*(fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]); err[2] = fParamP.GetCovariance()[2]+fParamM.GetCovariance()[2]+0.05*0.05 +0.3*(fParamP.GetCovariance()[0]+fParamM.GetCovariance()[0]); phelix.GetAngle(phase[1][0],mhelix,phase[1][1],angles); Double_t tfi = TMath::Abs(TMath::Tan(angles[0])); Double_t tlam = TMath::Abs(TMath::Tan(angles[1])); err[0] = err[1]/((0.2+tfi)*(0.2+tfi))+err[2]/((0.2+tlam)*(0.2+tlam)); err[0] = ((err[1]*err[2]/((0.2+tfi)*(0.2+tfi)*(0.2+tlam)*(0.2+tlam))))/err[0]; phelix.ParabolicDCA2(mhelix,phase[1][0],phase[1][1],radius[1],delta2,err); } Double_t xd[3],xm[3]; phelix.Evaluate(phase[1][0],xd); mhelix.Evaluate(phase[1][1],xm); d2 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]); } // distance2 = TMath::Min(delta1,delta2); if (delta1100000) return; Double_t vnorm3 = TMath::Sqrt(TMath::Abs(v[2]*v[2]+vnorm2)); vnorm2 = TMath::Sqrt(vnorm2); Double_t pnorm2 = p[0]*p[0]+p[1]*p[1]; Double_t pnorm3 = TMath::Sqrt(p[2]*p[2]+pnorm2); pnorm2 = TMath::Sqrt(pnorm2); fPointAngleFi = (v[0]*p[0]+v[1]*p[1])/(vnorm2*pnorm2); fPointAngleTh = (v[2]*p[2]+vnorm2*pnorm2)/(vnorm3*pnorm3); fPointAngle = (v[0]*p[0]+v[1]*p[1]+v[2]*p[2])/(vnorm3*pnorm3); // }