#ifndef ALIESDTRACK_H #define ALIESDTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // Class AliESDtrack // This is the class to deal with during the physics analysis of data // // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- /***************************************************************************** * Use GetExternalParameters() and GetExternalCovariance() to access the * * track information regardless of its internal representation. * * This formation is now fixed in the following way: * * external param0: local Y-coordinate of a track (cm) * * external param1: local Z-coordinate of a track (cm) * * external param2: local sine of the track momentum azimuthal angle * * external param3: tangent of the track momentum dip angle * * external param4: 1/pt (1/(GeV/c)) * *****************************************************************************/ #include #include "AliExternalTrackParam.h" #include "AliPID.h" #include class AliESDVertex; class AliKalmanTrack; class AliTrackPointArray; const Int_t kNPlane = 6; class AliESDtrack : public AliExternalTrackParam { public: AliESDtrack(); AliESDtrack(const AliESDtrack& track); virtual ~AliESDtrack(); void MakeMiniESDtrack(); void SetID(Int_t id) { fID =id;} Int_t GetID(){ return fID;} void SetStatus(ULong_t flags) {fFlags|=flags;} void ResetStatus(ULong_t flags) {fFlags&=~flags;} Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags); void SetIntegratedLength(Double_t l) {fTrackLength=l;} void SetIntegratedTimes(const Double_t *times); void SetESDpid(const Double_t *p); void GetESDpid(Double_t *p) const; ULong_t GetStatus() const {return fFlags;} Int_t GetLabel() const {return fLabel;} void SetLabel(Int_t label) {fLabel = label;} void GetExternalParameters(Double_t &x, Double_t p[5]) const; void GetExternalCovariance(Double_t cov[15]) const; Double_t GetIntegratedLength() const {return fTrackLength;} void GetIntegratedTimes(Double_t *times) const; Double_t GetMass() const; TVector3 P3() const {Double_t p[3]; GetPxPyPz(p); return TVector3(p[0],p[1],p[2]);} //running track momentum TVector3 X3() const {Double_t x[3]; GetXYZ(x); return TVector3(x[0],x[1],x[2]);} //running track position Bool_t GetConstrainedPxPyPz(Double_t *p) const { if (!fCp) return kFALSE; return fCp->GetPxPyPz(p); } Bool_t GetConstrainedXYZ(Double_t *r) const { if (!fCp) return kFALSE; return fCp->GetXYZ(r); } Bool_t GetConstrainedExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetConstrainedExternalCovariance(Double_t cov[15]) const; Double_t GetConstrainedChi2() const {return fCchi2;} Bool_t GetInnerPxPyPz(Double_t *p) const { if (!fIp) return kFALSE; return fIp->GetPxPyPz(p); } Bool_t GetInnerXYZ(Double_t *r) const { if (!fIp) return kFALSE; return fIp->GetXYZ(r); } Bool_t GetInnerExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetInnerExternalCovariance(Double_t cov[15]) const; Bool_t GetOuterPxPyPz(Double_t *p) const { if (!fOp) return kFALSE; return fOp->GetPxPyPz(p); } Bool_t GetOuterXYZ(Double_t *r) const { if (!fOp) return kFALSE; return fOp->GetXYZ(r); } Bool_t GetOuterExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetOuterExternalCovariance(Double_t cov[15]) const; Int_t GetNcls(Int_t idet) const; Int_t GetClusters(Int_t idet, UInt_t *idx) const; void SetITSpid(const Double_t *p); void SetITSChi2MIP(const Float_t *chi2mip); void SetITStrack(AliKalmanTrack * track){fITStrack=track;} void GetITSpid(Double_t *p) const; Float_t GetITSsignal() const {return fITSsignal;} Float_t GetITSchi2() const {return fITSchi2;} Int_t GetITSclusters(UInt_t *idx) const; Int_t GetITSLabel() const {return fITSLabel;} Float_t GetITSFakeRatio() const {return fITSFakeRatio;} AliKalmanTrack * GetITStrack(){return fITStrack;} void SetTPCpid(const Double_t *p); void GetTPCpid(Double_t *p) const; void SetTPCPoints(Float_t points[4]){for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];} void SetTPCPointsF(UChar_t findable){fTPCnclsF = findable;} Float_t GetTPCPoints(Int_t i){return fTPCPoints[i];} void SetKinkIndexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];} void SetV0Indexes(Int_t points[3]) {for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];} void SetTPCsignal(Float_t signal, Float_t sigma, UChar_t npoints){ fTPCsignal = signal; fTPCsignalS = sigma; fTPCsignalN = npoints;} Float_t GetTPCsignal() const {return fTPCsignal;} Float_t GetTPCchi2() const {return fTPCchi2;} Int_t GetTPCclusters(Int_t *idx) const; Float_t GetTPCdensity(Int_t row0, Int_t row1) const; Int_t GetTPCLabel() const {return fTPCLabel;} Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];} Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];} const TBits& GetTPCClusterMap() const {return fTPCClusterMap;} void SetTRDpid(const Double_t *p); void SetTRDQuality(Float_t quality){fTRDQuality=quality;} Float_t GetTRDQuality()const {return fTRDQuality;} void SetTRDBudget(Float_t budget){fTRDBudget=budget;} Float_t GetTRDBudget()const {return fTRDBudget;} void SetTRDtrack(AliKalmanTrack * track){fTRDtrack=track;} void SetTRDsignals(Float_t dedx, Int_t i) {fTRDsignals[i]=dedx;} void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;} void GetTRDpid(Double_t *p) const; Float_t GetTRDsignal() const {return fTRDsignal;} Float_t GetTRDsignals(Int_t i) const {return fTRDsignals[i];} Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];} Float_t GetTRDchi2() const {return fTRDchi2;} Int_t GetTRDclusters(UInt_t *idx) const; Int_t GetTRDncls() const {return fTRDncls;} void SetTRDpid(Int_t iSpecies, Float_t p); Float_t GetTRDpid(Int_t iSpecies) const; Int_t GetTRDLabel() const {return fTRDLabel;} AliKalmanTrack * GetTRDtrack(){return fTRDtrack;} void SetTOFsignal(Double_t tof) {fTOFsignal=tof;} Float_t GetTOFsignal() const {return fTOFsignal;} Float_t GetTOFchi2() const {return fTOFchi2;} void SetTOFpid(const Double_t *p); void SetTOFLabel(const Int_t *p); void GetTOFpid(Double_t *p) const; void GetTOFLabel(Int_t *p) const; void GetTOFInfo(Float_t *info) const; void SetTOFInfo(Float_t *info); UInt_t GetTOFcluster() const {return fTOFindex;} void SetTOFcluster(UInt_t index) {fTOFindex=index;} void SetRICHsignal(Double_t beta) {fRICHsignal=beta;} Float_t GetRICHsignal() const {return fRICHsignal;} void SetRICHpid(const Double_t *p); void GetRICHpid(Double_t *p) const; void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;} Float_t GetRICHchi2() const {return fRICHchi2;} void SetRICHcluster(UInt_t index) {fRICHindex=index;} UInt_t GetRICHcluster() const {return fRICHindex;} void SetRICHnclusters(Int_t n) {fRICHncls=n;} Int_t GetRICHnclusters() const {return fRICHncls;} void SetRICHthetaPhi(Double_t theta, Double_t phi) { fRICHtheta=theta; fRICHphi=phi; } void GetRICHthetaPhi(Double_t &theta, Double_t &phi) const { theta=fRICHtheta; phi=fRICHphi; } void SetRICHdxdy(Double_t dx, Double_t dy) { fRICHdx=dx; fRICHdy=dy; } void GetRICHdxdy(Double_t &dx, Double_t &dy) const { dx=fRICHdx; dy=fRICHdy; } void SetPHOSposition(const Double_t *pos) { fPHOSpos[0] = pos[0]; fPHOSpos[1]=pos[1]; fPHOSpos[2]=pos[2]; } void SetPHOSsignal(Double_t ene) {fPHOSsignal = ene; } void SetPHOSpid(const Double_t *p); void GetPHOSposition(Double_t *pos) const { pos[0]=fPHOSpos[0]; pos[1]=fPHOSpos[1]; pos[2]=fPHOSpos[2]; } Float_t GetPHOSsignal() const {return fPHOSsignal;} void GetPHOSpid(Double_t *p) const; void SetEMCALposition(const Double_t *pos) { fEMCALpos[0] = pos[0]; fEMCALpos[1]=pos[1]; fEMCALpos[2]=pos[2]; } void SetEMCALsignal(Double_t ene) {fEMCALsignal = ene; } void SetEMCALpid(const Double_t *p); void GetEMCALposition(Double_t *pos) const { pos[0]=fEMCALpos[0]; pos[1]=fEMCALpos[1]; pos[2]=fEMCALpos[2]; } Float_t GetEMCALsignal() const {return fEMCALsignal;} void GetEMCALpid(Double_t *p) const; Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;} Bool_t IsRICH() const {return fFlags&kRICHpid;} Bool_t IsPHOS() const {return fFlags&kPHOSpid;} Bool_t IsEMCAL() const {return fFlags&kEMCALpid;} void SetTrackPointArray(AliTrackPointArray *points) { fPoints = points; } AliTrackPointArray *GetTrackPointArray() const { return fPoints; } Bool_t RelateToVertex(const AliESDVertex *vtx, Double_t b, Double_t maxd); void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;} void GetImpactParameters(Float_t p[2], Float_t cov[3]) const { p[0]=fD; p[1]=fZ; cov[0]=fCdd; cov[1]=fCdz; cov[2]=fCzz; } virtual void Print(Option_t * opt) const ; enum { kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008, kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080, kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800, kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000, kPHOSpid=0x10000, kRICHpid=0x20000, kEMCALpid=0x40000, kTRDbackup=0x80000, kTRDStop=0x20000000, kESDpid=0x40000000, kTIME=0x80000000 }; protected: //AliESDtrack & operator=(const AliESDtrack & ); ULong_t fFlags; // Reconstruction status flags Int_t fLabel; // Track label Int_t fID; // Unique ID of the track Float_t fTrackLength; // Track length Float_t fD; // Impact parameter in XY plane Float_t fZ; // Impact parameter in Z Float_t fCdd,fCdz,fCzz; // Covariance matrix of the impact parameters Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking Float_t fR[AliPID::kSPECIES]; // combined "detector response probability" Int_t fStopVertex; // Index of the stop vertex //Track parameters constrained to the primary vertex AliExternalTrackParam *fCp; Double_t fCchi2; //chi2 at the primary vertex //Track parameters at the inner wall of the TPC AliExternalTrackParam *fIp; //Track parameters at the inner wall of the TRD AliExternalTrackParam *fOp; // ITS related track information Float_t fITSchi2; // chi2 in the ITS Float_t fITSchi2MIP[12]; // chi2s in the ITS Int_t fITSncls; // number of clusters assigned in the ITS UInt_t fITSindex[6]; //! indices of the assigned ITS clusters Float_t fITSsignal; // detector's PID signal Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fITSLabel; // label according TPC Float_t fITSFakeRatio; // ration of fake tracks AliKalmanTrack * fITStrack; //! OWNER: pointer to the ITS track -- currently for debug purpose // TPC related track information Float_t fTPCchi2; // chi2 in the TPC Int_t fTPCncls; // number of clusters assigned in the TPC UShort_t fTPCnclsF; // number of findable clusters in the TPC Int_t fTPCindex[180]; //! indices of the assigned TPC clusters TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow Float_t fTPCsignal; // detector's PID signal UShort_t fTPCsignalN; // number of points used for dEdx Float_t fTPCsignalS; // RMS of dEdx measurement Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTPCLabel; // label according TPC Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates Int_t fV0Indexes[3]; // array of indexes of posible kink candidates // TRD related track information Float_t fTRDchi2; // chi2 in the TRD Int_t fTRDncls; // number of clusters assigned in the TRD Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross UInt_t fTRDindex[180]; //! indices of the assigned TRD clusters Float_t fTRDsignal; // detector's PID signal Float_t fTRDsignals[kNPlane]; // TRD signals from all six planes Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTRDLabel; // label according TRD Float_t fTRDQuality; //trd quality factor for TOF Float_t fTRDBudget; //trd material budget AliKalmanTrack * fTRDtrack; //! OWNER: pointer to the TRD track -- currently for debug purpose // TOF related track information Float_t fTOFchi2; // chi2 in the TOF UInt_t fTOFindex; // index of the assigned TOF cluster Float_t fTOFsignal; // detector's PID signal Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTOFLabel[3]; // TOF label Float_t fTOFInfo[10]; //! TOF informations // PHOS related track information Float_t fPHOSpos[3]; // position localised by PHOS in global coordinate system Float_t fPHOSsignal; // energy measured by PHOS Float_t fPHOSr[AliPID::kSPECIESN]; // PID information from PHOS // EMCAL related track information Float_t fEMCALpos[3]; //position localised by EMCAL in global coordinate system Float_t fEMCALsignal; // energy measured by EMCAL Float_t fEMCALr[AliPID::kSPECIESN]; // PID information from EMCAL // HMPID related track information Float_t fRICHchi2; // chi2 in the RICH Int_t fRICHncls; // number of photon clusters UInt_t fRICHindex; // index of the assigned MIP cluster Float_t fRICHsignal; // RICH PID signal Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID) Float_t fRICHtheta; // theta of the track extrapolated to the RICH Float_t fRICHphi; // phi of the track extrapolated to the RICH Float_t fRICHdx; // x of the track impact minus x of the MIP Float_t fRICHdy; // y of the track impact minus y of the MIP AliTrackPointArray *fPoints; // Array which contains the track space points in the global frame ClassDef(AliESDtrack,22) //ESDtrack }; #endif