#ifndef ALIESDTRACK_H #define ALIESDTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // Class AliESDtrack // This is the class to deal with during the physics analysis of data // // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- /***************************************************************************** * Use GetExternalParameters() and GetExternalCovariance() to access the * * track information regardless of its internal representation. * * This formation is now fixed in the following way: * * external param0: local Y-coordinate of a track (cm) * * external param1: local Z-coordinate of a track (cm) * * external param2: local sine of the track momentum azimuthal angle * * external param3: tangent of the track momentum dip angle * * external param4: 1/pt (1/(GeV/c)) * *****************************************************************************/ #include #include "AliExternalTrackParam.h" #include "AliPID.h" #include "AliESDfriendTrack.h" class TParticle; class AliESDVertex; class AliKalmanTrack; class AliTrackPointArray; class AliESDtrack : public AliExternalTrackParam { public: AliESDtrack(); AliESDtrack(const AliESDtrack& track); AliESDtrack(TParticle * part); virtual ~AliESDtrack(); const AliESDfriendTrack *GetFriendTrack() const {return fFriendTrack;} void SetFriendTrack(const AliESDfriendTrack *t) { delete fFriendTrack; fFriendTrack=new AliESDfriendTrack(*t); } void AddCalibObject(TObject * object); // add calib object to the list TObject * GetCalibObject(Int_t index); // return calib objct at given position void MakeMiniESDtrack(); void SetID(Int_t id) { fID =id;} Int_t GetID() const { return fID;} void SetStatus(ULong_t flags) {fFlags|=flags;} void ResetStatus(ULong_t flags) {fFlags&=~flags;} Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags); void SetIntegratedLength(Double_t l) {fTrackLength=l;} void SetIntegratedTimes(const Double_t *times); void SetESDpid(const Double_t *p); void GetESDpid(Double_t *p) const; Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;} ULong_t GetStatus() const {return fFlags;} Int_t GetLabel() const {return fLabel;} void SetLabel(Int_t label) {fLabel = label;} void GetExternalParameters(Double_t &x, Double_t p[5]) const; void GetExternalCovariance(Double_t cov[15]) const; Double_t GetIntegratedLength() const {return fTrackLength;} void GetIntegratedTimes(Double_t *times) const; Double_t GetMass() const; Bool_t GetConstrainedPxPyPz(Double_t *p) const { if (!fCp) return kFALSE; return fCp->GetPxPyPz(p); } Bool_t GetConstrainedXYZ(Double_t *r) const { if (!fCp) return kFALSE; return fCp->GetXYZ(r); } const AliExternalTrackParam *GetConstrainedParam() const {return fCp;} Bool_t GetConstrainedExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetConstrainedExternalCovariance(Double_t cov[15]) const; Double_t GetConstrainedChi2() const {return fCchi2;} Bool_t GetInnerPxPyPz(Double_t *p) const { if (!fIp) return kFALSE; return fIp->GetPxPyPz(p); } const AliExternalTrackParam * GetInnerParam() const { return fIp;} Bool_t GetInnerXYZ(Double_t *r) const { if (!fIp) return kFALSE; return fIp->GetXYZ(r); } Bool_t GetInnerExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetInnerExternalCovariance(Double_t cov[15]) const; const AliExternalTrackParam * GetOuterParam() const { return fOp;} Bool_t GetOuterPxPyPz(Double_t *p) const { if (!fOp) return kFALSE; return fOp->GetPxPyPz(p); } Bool_t GetOuterXYZ(Double_t *r) const { if (!fOp) return kFALSE; return fOp->GetXYZ(r); } Bool_t GetOuterExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetOuterExternalCovariance(Double_t cov[15]) const; Int_t GetNcls(Int_t idet) const; Int_t GetClusters(Int_t idet, Int_t *idx) const; void SetITSpid(const Double_t *p); void GetITSpid(Double_t *p) const; Float_t GetITSsignal() const {return fITSsignal;} Float_t GetITSchi2() const {return fITSchi2;} Int_t GetITSclusters(Int_t *idx) const; UChar_t GetITSClusterMap() const {return fITSClusterMap;} Int_t GetITSLabel() const {return fITSLabel;} void SetITStrack(AliKalmanTrack * track){ fFriendTrack->SetITStrack(track); } AliKalmanTrack *GetITStrack(){ return fFriendTrack->GetITStrack(); } void SetTPCpid(const Double_t *p); void GetTPCpid(Double_t *p) const; void SetTPCPoints(Float_t points[4]){ for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i]; } void SetTPCPointsF(UChar_t findable){fTPCnclsF = findable;} Int_t GetTPCNcls() const { return fTPCncls;} Int_t GetTPCNclsF() const { return fTPCnclsF;} Float_t GetTPCPoints(Int_t i) const {return fTPCPoints[i];} void SetKinkIndexes(Int_t points[3]) { for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i]; } void SetV0Indexes(Int_t points[3]) { for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i]; } void SetTPCsignal(Float_t signal, Float_t sigma, UChar_t npoints){ fTPCsignal = signal; fTPCsignalS = sigma; fTPCsignalN = npoints; } Float_t GetTPCsignal() const {return fTPCsignal;} Float_t GetTPCsignalSigma() const {return fTPCsignalS;} UShort_t GetTPCsignalN() const {return fTPCsignalN;} Float_t GetTPCchi2() const {return fTPCchi2;} Int_t GetTPCclusters(Int_t *idx) const; Float_t GetTPCdensity(Int_t row0, Int_t row1) const; Int_t GetTPCLabel() const {return fTPCLabel;} Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];} Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];} const TBits& GetTPCClusterMap() const {return fTPCClusterMap;} void SetTRDpid(const Double_t *p); void SetTRDQuality(Float_t quality){fTRDQuality=quality;} Float_t GetTRDQuality()const {return fTRDQuality;} void SetTRDBudget(Float_t budget){fTRDBudget=budget;} Float_t GetTRDBudget()const {return fTRDBudget;} void SetTRDsignals(Float_t dedx, Int_t i, Int_t j) {fTRDsignals[i][j]=dedx;} void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;} void GetTRDpid(Double_t *p) const; Float_t GetTRDsignal() const {return fTRDsignal;} Float_t GetTRDsignals(Int_t iPlane, Int_t iSlice=-1) const { if (iSlice == -1) return (fTRDsignals[iPlane][0] + fTRDsignals[iPlane][1] + fTRDsignals[iPlane][2])/3.0; return fTRDsignals[iPlane][iSlice]; } Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];} Float_t GetTRDchi2() const {return fTRDchi2;} Int_t GetTRDclusters(Int_t *idx) const; Int_t GetTRDncls() const {return fTRDncls;} void SetTRDpid(Int_t iSpecies, Float_t p); Float_t GetTRDpid(Int_t iSpecies) const; Int_t GetTRDLabel() const {return fTRDLabel;} void SetTRDtrack(AliKalmanTrack * track){ fFriendTrack->SetTRDtrack(track); } AliKalmanTrack *GetTRDtrack(){ return fFriendTrack->GetTRDtrack(); } void SetTOFsignal(Double_t tof) {fTOFsignal=tof;} Float_t GetTOFsignal() const {return fTOFsignal;} void SetTOFsignalToT(Double_t ToT) {fTOFsignalToT=ToT;} Float_t GetTOFsignalToT() const {return fTOFsignalToT;} Float_t GetTOFchi2() const {return fTOFchi2;} void SetTOFpid(const Double_t *p); void SetTOFLabel(const Int_t *p); void GetTOFpid(Double_t *p) const; void GetTOFLabel(Int_t *p) const; void GetTOFInfo(Float_t *info) const; void SetTOFInfo(Float_t *info); Int_t GetTOFCalChannel() const {return fTOFCalChannel;} Int_t GetTOFcluster() const {return fTOFindex;} void SetTOFcluster(Int_t index) {fTOFindex=index;} void SetTOFCalChannel(Int_t index) {fTOFCalChannel=index;} // HMPID methodes +++++++++++++++++++++++++++++++++ (kir) void SetHMPIDsignal(Double_t theta) {fHMPIDsignal=theta;} Float_t GetHMPIDsignal() const {return fHMPIDsignal;} void SetHMPIDpid(const Double_t *p); void GetHMPIDpid(Double_t *p) const; void SetHMPIDchi2(Double_t chi2) {fHMPIDchi2=chi2;} Float_t GetHMPIDchi2() const {return fHMPIDchi2;} void SetHMPIDcluster(Int_t index) {fHMPIDcluIdx=index;} Int_t GetHMPIDcluster() const {return fHMPIDcluIdx;} void SetHMPIDcluIdx(Int_t ch,Int_t idx) {fHMPIDcluIdx=ch*1000000+idx;} Int_t GetHMPIDcluIdx() const {return fHMPIDcluIdx;} void SetHMPIDtrk(Float_t x, Float_t y, Float_t th, Float_t ph) { fHMPIDtrkX=x; fHMPIDtrkY=y; fHMPIDtrkTheta=th; fHMPIDtrkPhi=ph; } void GetHMPIDtrk(Float_t &x, Float_t &y, Float_t &th, Float_t &ph) const { x=fHMPIDtrkX; y=fHMPIDtrkY; th=fHMPIDtrkTheta; ph=fHMPIDtrkPhi; } void SetHMPIDmip(Float_t x, Float_t y, Int_t q, Int_t nph=0) { fHMPIDmipX=x; fHMPIDmipY=y; fHMPIDqn=100000*q+nph; } void GetHMPIDmip(Float_t &x,Float_t &y,Int_t &q,Int_t &nph) const { x=fHMPIDmipX; y=fHMPIDmipY; q=fHMPIDqn/1000000; nph=fHMPIDqn%1000000; } Bool_t IsHMPID() const {return fFlags&kHMPIDpid;} Int_t GetEMCALcluster() {return fEMCALindex;} void SetEMCALcluster(Int_t index) {fEMCALindex=index;} Bool_t IsEMCAL() const {return fFlags&kEMCALmatch;} void SetTrackPointArray(AliTrackPointArray *points) { fFriendTrack->SetTrackPointArray(points); } const AliTrackPointArray *GetTrackPointArray() const { return fFriendTrack->GetTrackPointArray(); } Bool_t RelateToVertex(const AliESDVertex *vtx, Double_t b, Double_t maxd); void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;} void GetImpactParameters(Float_t p[2], Float_t cov[3]) const { p[0]=fD; p[1]=fZ; cov[0]=fCdd; cov[1]=fCdz; cov[2]=fCzz; } virtual void Print(Option_t * opt) const ; //MI Bool_t PropagateTo(Double_t x, Double_t b, Double_t mass, Double_t maxStep, Bool_t rotateTo=kTRUE, Double_t maxSnp=0.8); enum { kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008, kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080, kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800, kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000, kHMPIDpid=0x20000, kEMCALmatch=0x40000, kTRDbackup=0x80000, kTRDStop=0x20000000, kESDpid=0x40000000, kTIME=0x80000000 }; enum { kNPlane = 6, kNSlice = 3, kEMCALNoMatch = -999999999 }; protected: ULong_t fFlags; // Reconstruction status flags Int_t fLabel; // Track label Int_t fID; // Unique ID of the track Float_t fTrackLength; // Track length Float_t fD; // Impact parameter in XY plane Float_t fZ; // Impact parameter in Z Float_t fCdd,fCdz,fCzz; // Covariance matrix of the impact parameters Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking Float_t fR[AliPID::kSPECIES]; // combined "detector response probability" Int_t fStopVertex; // Index of the stop vertex AliExternalTrackParam *fCp; // Track parameters constrained to the primary vertex Double_t fCchi2; // chi2 at the primary vertex AliExternalTrackParam *fIp; // Track parameters at the first measured point (TPC) AliExternalTrackParam *fOp; // Track parameters at the last measured point (TPC or TRD) // ITS related track information Float_t fITSchi2; // chi2 in the ITS Int_t fITSncls; // number of clusters assigned in the ITS UChar_t fITSClusterMap; // map of clusters, one bit per a layer Float_t fITSsignal; // detector's PID signal Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fITSLabel; // label according TPC // TPC related track information Float_t fTPCchi2; // chi2 in the TPC Int_t fTPCncls; // number of clusters assigned in the TPC UShort_t fTPCnclsF; // number of findable clusters in the TPC TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow Float_t fTPCsignal; // detector's PID signal UShort_t fTPCsignalN; // number of points used for dEdx Float_t fTPCsignalS; // RMS of dEdx measurement Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTPCLabel; // label according TPC Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density Int_t fKinkIndexes[3];// array of indexes of posible kink candidates Int_t fV0Indexes[3]; // array of indexes of posible kink candidates // TRD related track information Float_t fTRDchi2; // chi2 in the TRD Int_t fTRDncls; // number of clusters assigned in the TRD Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross Float_t fTRDsignal; // detector's PID signal Float_t fTRDsignals[kNPlane][kNSlice]; // TRD signals from all six planes in 3 slices each Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTRDLabel; // label according TRD Float_t fTRDQuality; // trd quality factor for TOF Float_t fTRDBudget; // trd material budget // TOF related track information Float_t fTOFchi2; // chi2 in the TOF Int_t fTOFindex; // index of the assigned TOF cluster Int_t fTOFCalChannel; // Channel Index of the TOF Signal Float_t fTOFsignal; // detector's PID signal Float_t fTOFsignalToT; // detector's ToT signal Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID) Int_t fTOFLabel[3]; // TOF label Float_t fTOFInfo[10]; //! TOF informations // HMPID related track information (kir) Float_t fHMPIDchi2; // chi2 in the HMPID Int_t fHMPIDqn; // 1000000*QDC + number of photon clusters Int_t fHMPIDcluIdx; // 1000000*chamber id + cluster idx of the assigned MIP cluster Float_t fHMPIDsignal; // HMPID PID signal (Theta ckov, rad) Float_t fHMPIDr[AliPID::kSPECIES];// "detector response probabilities" (for the PID) Float_t fHMPIDtrkTheta; // theta of the track extrapolated to the HMPID, LORS Float_t fHMPIDtrkPhi; // phi of the track extrapolated to the HMPID, LORS Float_t fHMPIDtrkX; // x of the track impact, LORS Float_t fHMPIDtrkY; // y of the track impact, LORS Float_t fHMPIDmipX; // x of the MIP in LORS Float_t fHMPIDmipY; // y of the MIP in LORS // EMCAL related track information Int_t fEMCALindex; // index of associated EMCAL cluster (AliESDCaloCluster) AliESDfriendTrack *fFriendTrack; //! All the complementary information private: AliESDtrack & operator=(const AliESDtrack & ) {return *this;} ClassDef(AliESDtrack,34) //ESDtrack }; #endif