/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------- // Implementation of the AliKalmanTrack class // that is the base for AliTPCtrack, AliITStrackV2 and AliTRDtrack // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- #include "AliKalmanTrack.h" #include "AliPDG.h" #include "TPDGCode.h" #include "TDatabasePDG.h" ClassImp(AliKalmanTrack) Double_t AliKalmanTrack::fgConvConst; //_______________________________________________________________________ AliKalmanTrack::AliKalmanTrack(): fLab(-3141593), fChi2(0), fMass(0.13957), fN(0) { // // Default constructor // if (fgConvConst==0) { Fatal("AliKalmanTrack()", "The magnetic field has not been set!"); } fStartTimeIntegral = kFALSE; fIntegratedLength = 0; for(Int_t i=0; i<5; i++) fIntegratedTime[i] = 0; } //_______________________________________________________________________ AliKalmanTrack::AliKalmanTrack(const AliKalmanTrack &t): TObject(t), fLab(t.fLab), fChi2(t.fChi2), fMass(t.fMass), fN(t.fN) { // // Copy constructor // if (fgConvConst==0) { Fatal("AliKalmanTrack(const AliKalmanTrack&)", "The magnetic field has not been set!"); } fStartTimeIntegral = t.fStartTimeIntegral; fIntegratedLength = t.fIntegratedLength; for (Int_t i=0; i<5; i++) fIntegratedTime[i] = t.fIntegratedTime[i]; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetX() const { // Returns the X coordinate of the current track position Warning("GetX()","Method must be overloaded !\n"); return 0.; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetdEdx() const { // Returns the dE/dx of the track Warning("GetdEdx()","Method must be overloaded !\n"); return 0.; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetY() const { // Returns the Y coordinate of the current track position Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[0]; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetZ() const { // Returns the Z coordinate of the current track position Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[1]; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetSnp() const { // Returns the Sin(phi), where phi is the angle between the transverse // momentum (in xOy plane) and the X axis Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[2]; } //_______________________________________________________________________ Double_t AliKalmanTrack::GetTgl() const { // Returns the Tan(lambda), where lambda is the dip angle (between // the bending plane (xOy) and the momentum of the track Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[3]; } //_______________________________________________________________________ Double_t AliKalmanTrack::Get1Pt() const { // Returns 1/pT Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[4]; } //_______________________________________________________________________ Double_t AliKalmanTrack::Phi() const { // return global phi of track Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); if (par[2] > 1.) par[2] = 1.; if (par[2] < -1.) par[2] = -1.; Double_t phi = TMath::ASin(par[2]) + GetAlpha(); while (phi < 0) phi += TMath::TwoPi(); while (phi > TMath::TwoPi()) phi -= TMath::TwoPi(); return phi; } //_______________________________________________________________________ Double_t AliKalmanTrack::SigmaPhi() const { // return error of global phi of track Double_t par[5]; Double_t cov[15]; Double_t localX = GetX(); GetExternalParameters(localX, par); GetExternalCovariance(cov); return TMath::Sqrt(TMath::Abs(cov[5] / (1. - par[2]*par[2]))); } //_______________________________________________________________________ Double_t AliKalmanTrack::Theta() const { // return global theta of track Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return TMath::Pi()/2. - TMath::ATan(par[3]); } //_______________________________________________________________________ Double_t AliKalmanTrack::SigmaTheta() const { // return error of global theta of track Double_t par[5]; Double_t cov[15]; Double_t localX = GetX(); GetExternalParameters(localX, par); GetExternalCovariance(cov); return TMath::Sqrt(TMath::Abs(cov[5])) / (1. + par[3]*par[3]); } //_______________________________________________________________________ Double_t AliKalmanTrack::Eta() const { // return global eta of track return -TMath::Log(TMath::Tan(Theta()/2.)); } //_______________________________________________________________________ Double_t AliKalmanTrack::Px() const { // return x component of track momentum Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); Double_t phi = TMath::ASin(par[2]) + GetAlpha(); return TMath::Cos(phi) / TMath::Abs(par[4]); } //_______________________________________________________________________ Double_t AliKalmanTrack::Py() const { // return y component of track momentum Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); Double_t phi = TMath::ASin(par[2]) + GetAlpha(); return TMath::Sin(phi) / TMath::Abs(par[4]); } //_______________________________________________________________________ Double_t AliKalmanTrack::Pz() const { // return z component of track momentum Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return par[3] / TMath::Abs(par[4]); } //_______________________________________________________________________ Double_t AliKalmanTrack::Pt() const { // return transverse component of track momentum Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return 1. / TMath::Abs(par[4]); } //_______________________________________________________________________ Double_t AliKalmanTrack::SigmaPt() const { // return error of transverse component of track momentum Double_t par[5]; Double_t cov[15]; Double_t localX = GetX(); GetExternalParameters(localX, par); GetExternalCovariance(cov); return TMath::Sqrt(cov[14]) / TMath::Abs(par[4]); } //_______________________________________________________________________ Double_t AliKalmanTrack::P() const { // return total track momentum Double_t par[5]; Double_t localX = GetX(); GetExternalParameters(localX, par); return 1. / TMath::Abs(par[4] * TMath::Cos(TMath::ATan(par[3]))); } //_______________________________________________________________________ void AliKalmanTrack::StartTimeIntegral() { // Sylwester Radomski, GSI // S.Radomski@gsi.de // // Start time integration // To be called at Vertex by ITS tracker // //if (fStartTimeIntegral) // Warning("StartTimeIntegral", "Reseting Recorded Time."); fStartTimeIntegral = kTRUE; for(Int_t i=0; i 100) return; for (Int_t i=0; iGetParticle(pdgCode[i])->Mass(); Double_t correction = TMath::Sqrt( pt*pt * (1 + tgl*tgl) + mass * mass ) / p; Double_t time = length * correction / kcc; fIntegratedTime[i] += time; } } //_______________________________________________________________________ Double_t AliKalmanTrack::GetIntegratedTime(Int_t pdg) const { // Sylwester Radomski, GSI // S.Radomski@gsi.de // // Return integrated time hypothesis for a given particle // type assumption. // // Input parameter: // pdg - Pdg code of a particle type // if (!fStartTimeIntegral) { Warning("GetIntegratedTime","Time integration not started"); return 0.; } static Int_t pdgCode[fgkTypes] = {kElectron, kMuonMinus, kPiPlus, kKPlus, kProton}; for (Int_t i=0; i helix parameters //-------------------------------------------------------------------- Double_t alpha,x,cs,sn; t->GetExternalParameters(x,helix); alpha=t->GetAlpha(); cs=TMath::Cos(alpha); sn=TMath::Sin(alpha); helix[5]=x*cs - helix[0]*sn; // x0 helix[0]=x*sn + helix[0]*cs; // y0 //helix[1]= // z0 helix[2]=TMath::ASin(helix[2]) + alpha; // phi0 //helix[3]= // tgl helix[4]=helix[4]/t->GetConvConst(); // C } static void Evaluate(const Double_t *h, Double_t t, Double_t r[3], //radius vector Double_t g[3], //first defivatives Double_t gg[3]) //second derivatives { //-------------------------------------------------------------------- // Calculate position of a point on a track and some derivatives //-------------------------------------------------------------------- Double_t phase=h[4]*t+h[2]; Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase); r[0] = h[5] + (sn - h[6])/h[4]; r[1] = h[0] - (cs - h[7])/h[4]; r[2] = h[1] + h[3]*t; g[0] = cs; g[1]=sn; g[2]=h[3]; gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.; } Double_t AliKalmanTrack:: GetDCA(const AliKalmanTrack *p, Double_t &xthis, Double_t &xp) const { //------------------------------------------------------------ // Returns the (weighed !) distance of closest approach between // this track and the track passed as the argument. // Other returned values: // xthis, xt - coordinates of tracks' reference planes at the DCA //----------------------------------------------------------- Double_t dy2=GetSigmaY2() + p->GetSigmaY2(); Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2(); Double_t dx2=dy2; //dx2=dy2=dz2=1.; Double_t p1[8]; External2Helix(this,p1); p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]); Double_t p2[8]; External2Helix(p,p2); p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]); Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.; Evaluate(p1,t1,r1,g1,gg1); Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.; Evaluate(p2,t2,r2,g2,gg2); Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2]; Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2; Int_t max=27; while (max--) { Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2); Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2); Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 + (g1[1]*g1[1] - dy*gg1[1])/dy2 + (g1[2]*g1[2] - dz*gg1[2])/dz2; Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 + (g2[1]*g2[1] + dy*gg2[1])/dy2 + (g2[2]*g2[2] + dz*gg2[2])/dz2; Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2); Double_t det=h11*h22-h12*h12; Double_t dt1,dt2; if (TMath::Abs(det)<1.e-33) { //(quasi)singular Hessian dt1=-gt1; dt2=-gt2; } else { dt1=-(gt1*h22 - gt2*h12)/det; dt2=-(h11*gt2 - h12*gt1)/det; } if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;} //check delta(phase1) ? //check delta(phase2) ? if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4) if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) { if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2) Warning("GetDCA"," stopped at not a stationary point !\n"); Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det); if (lmb < 0.) Warning("GetDCA"," stopped at not a minimum !\n"); break; } Double_t dd=dm; for (Int_t div=1 ; ; div*=2) { Evaluate(p1,t1+dt1,r1,g1,gg1); Evaluate(p2,t2+dt2,r2,g2,gg2); dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2]; dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2; if (dd512) { Warning("GetDCA"," overshoot !\n"); break; } } dm=dd; t1+=dt1; t2+=dt2; } if (max<=0) Warning("GetDCA"," too many iterations !\n"); Double_t cs=TMath::Cos(GetAlpha()); Double_t sn=TMath::Sin(GetAlpha()); xthis=r1[0]*cs + r1[1]*sn; cs=TMath::Cos(p->GetAlpha()); sn=TMath::Sin(p->GetAlpha()); xp=r2[0]*cs + r2[1]*sn; return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2)); } Double_t AliKalmanTrack:: PropagateToDCA(AliKalmanTrack *p, Double_t d, Double_t x0) { //-------------------------------------------------------------- // Propagates this track and the argument track to the position of the // distance of closest approach. // Returns the (weighed !) distance of closest approach. //-------------------------------------------------------------- Double_t xthis,xp; Double_t dca=GetDCA(p,xthis,xp); if (!PropagateTo(xthis,d,x0)) { //Warning("PropagateToDCA"," propagation failed !\n"); return 1e+33; } if (!p->PropagateTo(xp,d,x0)) { //Warning("PropagateToDCA"," propagation failed !\n"; return 1e+33; } return dca; }