/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------- // Implementation of the AliKalmanTrack class // that is the base for AliTPCtrack, AliITStrackV2 and AliTRDtrack // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- #include "AliKalmanTrack.h" #include "TGeoManager.h" ClassImp(AliKalmanTrack) const AliMagF *AliKalmanTrack::fgkFieldMap=0; Double_t AliKalmanTrack::fgConvConst=0.; //_______________________________________________________________________ AliKalmanTrack::AliKalmanTrack(): fLab(-3141593), fFakeRatio(0), fChi2(0), fMass(AliPID::ParticleMass(AliPID::kPion)), fN(0), fLocalConvConst(0), fStartTimeIntegral(kFALSE), fIntegratedLength(0) { // // Default constructor // if (fgkFieldMap==0) { AliFatal("The magnetic field has not been set!"); } for(Int_t i=0; i 100) return; for (Int_t i=0; i helix parameters //-------------------------------------------------------------------- Double_t alpha,x,cs,sn; GetExternalParameters(x,helix); alpha=GetAlpha(); cs=TMath::Cos(alpha); sn=TMath::Sin(alpha); helix[5]=x*cs - helix[0]*sn; // x0 helix[0]=x*sn + helix[0]*cs; // y0 //helix[1]= // z0 helix[2]=TMath::ASin(helix[2]) + alpha; // phi0 //helix[3]= // tgl helix[4]=helix[4]/GetLocalConvConst(); // C } static void Evaluate(const Double_t *h, Double_t t, Double_t r[3], //radius vector Double_t g[3], //first defivatives Double_t gg[3]) //second derivatives { //-------------------------------------------------------------------- // Calculate position of a point on a track and some derivatives //-------------------------------------------------------------------- Double_t phase=h[4]*t+h[2]; Double_t sn=TMath::Sin(phase), cs=TMath::Cos(phase); r[0] = h[5] + (sn - h[6])/h[4]; r[1] = h[0] - (cs - h[7])/h[4]; r[2] = h[1] + h[3]*t; g[0] = cs; g[1]=sn; g[2]=h[3]; gg[0]=-h[4]*sn; gg[1]=h[4]*cs; gg[2]=0.; } Double_t AliKalmanTrack:: GetDCA(const AliKalmanTrack *p, Double_t &xthis, Double_t &xp) const { //------------------------------------------------------------ // Returns the (weighed !) distance of closest approach between // this track and the track passed as the argument. // Other returned values: // xthis, xt - coordinates of tracks' reference planes at the DCA //----------------------------------------------------------- Double_t dy2=GetSigmaY2() + p->GetSigmaY2(); Double_t dz2=GetSigmaZ2() + p->GetSigmaZ2(); Double_t dx2=dy2; //dx2=dy2=dz2=1.; Double_t p1[8]; External2Helix(p1); p1[6]=TMath::Sin(p1[2]); p1[7]=TMath::Cos(p1[2]); Double_t p2[8]; p->External2Helix(p2); p2[6]=TMath::Sin(p2[2]); p2[7]=TMath::Cos(p2[2]); Double_t r1[3],g1[3],gg1[3]; Double_t t1=0.; Evaluate(p1,t1,r1,g1,gg1); Double_t r2[3],g2[3],gg2[3]; Double_t t2=0.; Evaluate(p2,t2,r2,g2,gg2); Double_t dx=r2[0]-r1[0], dy=r2[1]-r1[1], dz=r2[2]-r1[2]; Double_t dm=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2; Int_t max=27; while (max--) { Double_t gt1=-(dx*g1[0]/dx2 + dy*g1[1]/dy2 + dz*g1[2]/dz2); Double_t gt2=+(dx*g2[0]/dx2 + dy*g2[1]/dy2 + dz*g2[2]/dz2); Double_t h11=(g1[0]*g1[0] - dx*gg1[0])/dx2 + (g1[1]*g1[1] - dy*gg1[1])/dy2 + (g1[2]*g1[2] - dz*gg1[2])/dz2; Double_t h22=(g2[0]*g2[0] + dx*gg2[0])/dx2 + (g2[1]*g2[1] + dy*gg2[1])/dy2 + (g2[2]*g2[2] + dz*gg2[2])/dz2; Double_t h12=-(g1[0]*g2[0]/dx2 + g1[1]*g2[1]/dy2 + g1[2]*g2[2]/dz2); Double_t det=h11*h22-h12*h12; Double_t dt1,dt2; if (TMath::Abs(det)<1.e-33) { //(quasi)singular Hessian dt1=-gt1; dt2=-gt2; } else { dt1=-(gt1*h22 - gt2*h12)/det; dt2=-(h11*gt2 - h12*gt1)/det; } if ((dt1*gt1+dt2*gt2)>0) {dt1=-dt1; dt2=-dt2;} //check delta(phase1) ? //check delta(phase2) ? if (TMath::Abs(dt1)/(TMath::Abs(t1)+1.e-3) < 1.e-4) if (TMath::Abs(dt2)/(TMath::Abs(t2)+1.e-3) < 1.e-4) { if ((gt1*gt1+gt2*gt2) > 1.e-4/dy2/dy2) AliWarning(" stopped at not a stationary point !"); Double_t lmb=h11+h22; lmb=lmb-TMath::Sqrt(lmb*lmb-4*det); if (lmb < 0.) AliWarning(" stopped at not a minimum !"); break; } Double_t dd=dm; for (Int_t div=1 ; ; div*=2) { Evaluate(p1,t1+dt1,r1,g1,gg1); Evaluate(p2,t2+dt2,r2,g2,gg2); dx=r2[0]-r1[0]; dy=r2[1]-r1[1]; dz=r2[2]-r1[2]; dd=dx*dx/dx2 + dy*dy/dy2 + dz*dz/dz2; if (dd512) { AliWarning(" overshoot !"); break; } } dm=dd; t1+=dt1; t2+=dt2; } if (max<=0) AliWarning(" too many iterations !"); Double_t cs=TMath::Cos(GetAlpha()); Double_t sn=TMath::Sin(GetAlpha()); xthis=r1[0]*cs + r1[1]*sn; cs=TMath::Cos(p->GetAlpha()); sn=TMath::Sin(p->GetAlpha()); xp=r2[0]*cs + r2[1]*sn; return TMath::Sqrt(dm*TMath::Sqrt(dy2*dz2)); } Double_t AliKalmanTrack:: PropagateToDCA(AliKalmanTrack *p, Double_t d, Double_t x0) { //-------------------------------------------------------------- // Propagates this track and the argument track to the position of the // distance of closest approach. // Returns the (weighed !) distance of closest approach. //-------------------------------------------------------------- Double_t xthis,xp; Double_t dca=GetDCA(p,xthis,xp); if (!PropagateTo(xthis,d,x0)) { //AliWarning(" propagation failed !"); return 1e+33; } if (!p->PropagateTo(xp,d,x0)) { //AliWarning(" propagation failed !"; return 1e+33; } return dca; } Double_t AliKalmanTrack::MeanMaterialBudget(Double_t *start, Double_t *end, Double_t *mparam) { // // calculate mean material budget and material properties beween point start and end // mparam - returns parameters used for dEdx and multiple scatering // // mparam[0] - density mean // mparam[1] - rad length // mparam[2] - A mean // mparam[3] - Z mean // mparam[4] - length // mparam[5] - Z/A mean // mparam[6] - number of boundary crosses // mparam[0]=0; mparam[1]=1; mparam[2] =0; mparam[3] =0, mparam[4]=0, mparam[5]=0; mparam[6]=0; // Double_t bparam[6], lparam[6]; // bparam - total param - lparam - local parameters for (Int_t i=0;i<6;i++) bparam[i]=0; // if (!gGeoManager) { printf("ERROR: no TGeo\n"); return 0.; } // Double_t length; Double_t dir[3]; length = TMath::Sqrt((end[0]-start[0])*(end[0]-start[0])+ (end[1]-start[1])*(end[1]-start[1])+ (end[2]-start[2])*(end[2]-start[2])); mparam[4]=length; if (lengthInitTrack(start, dir); // printf("%s length=%f\n",gGeoManager->GetPath(),length); if (!startnode) { printf("ERROR: start point out of geometry\n"); return 0.0; } TGeoMaterial *material = startnode->GetVolume()->GetMedium()->GetMaterial(); lparam[0] = material->GetDensity(); lparam[1] = material->GetRadLen(); lparam[2] = material->GetA(); lparam[3] = material->GetZ(); lparam[5] = lparam[3]/lparam[2]; if (material->IsMixture()) { lparam[1]*=lparam[0]; // different normalization in the modeler for mixture TGeoMixture * mixture = (TGeoMixture*)material; lparam[5] =0; Double_t sum =0; for (Int_t iel=0;ielGetNelements();iel++){ sum += mixture->GetWmixt()[iel]; lparam[5]+= mixture->GetZmixt()[iel]*mixture->GetWmixt()[iel]/mixture->GetAmixt()[iel]; } lparam[5]/=sum; } gGeoManager->FindNextBoundary(length); Double_t snext = gGeoManager->GetStep(); Double_t step = 0.0; // If no boundary within proposed length, return current density if (snext>=length) { for (Int_t ip=0;ip<5;ip++) mparam[ip] = lparam[ip]; return lparam[0]; } // Try to cross the boundary and see what is next while (length>TGeoShape::Tolerance()) { mparam[6]+=1.; currentnode = gGeoManager->Step(); step += snext+1.E-6; bparam[1] += snext*lparam[1]; bparam[2] += snext*lparam[2]; bparam[3] += snext*lparam[3]; bparam[5] += snext*lparam[5]; bparam[0] += snext*lparam[0]; if (snext>=length) break; if (!currentnode) break; // printf("%s snext=%f density=%f bparam[0]=%f\n", gGeoManager->GetPath(),snext,density,bparam[0]); if (!gGeoManager->IsEntering()) { gGeoManager->SetStep(1.E-3); currentnode = gGeoManager->Step(); if (!gGeoManager->IsEntering() || !currentnode) { // printf("ERROR: cannot cross boundary\n"); mparam[0] = bparam[0]/step; mparam[1] = bparam[1]/step; mparam[2] = bparam[2]/step; mparam[3] = bparam[3]/step; mparam[5] = bparam[5]/step; mparam[4] = step; mparam[0] = 0.; // if crash of navigation take mean density 0 mparam[1] = 1000000; // and infinite rad length return bparam[0]/step; } step += 1.E-3; snext += 1.E-3; bparam[0] += lparam[0]*1.E-3; bparam[1] += lparam[1]*1.E-3; bparam[2] += lparam[2]*1.E-3; bparam[3] += lparam[3]*1.E-3; bparam[5] += lparam[5]*1.E-3; } length -= snext; material = currentnode->GetVolume()->GetMedium()->GetMaterial(); lparam[0] = material->GetDensity(); lparam[1] = material->GetRadLen(); lparam[2] = material->GetA(); lparam[3] = material->GetZ(); lparam[5] = lparam[3]/lparam[2]; if (material->IsMixture()) { lparam[1]*=lparam[0]; TGeoMixture * mixture = (TGeoMixture*)material; lparam[5]=0; Double_t sum =0; for (Int_t iel=0;ielGetNelements();iel++){ sum+= mixture->GetWmixt()[iel]; lparam[5]+= mixture->GetZmixt()[iel]*mixture->GetWmixt()[iel]/mixture->GetAmixt()[iel]; } lparam[5]/=sum; } gGeoManager->FindNextBoundary(length); snext = gGeoManager->GetStep(); } mparam[0] = bparam[0]/step; mparam[1] = bparam[1]/step; mparam[2] = bparam[2]/step; mparam[3] = bparam[3]/step; mparam[5] = bparam[5]/step; return bparam[0]/step; }