#ifndef ALIKALMANTRACK_H #define ALIKALMANTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // Class AliKalmanTrack // fixed the interface for the derived reconstructed track classes // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- #include class AliCluster; class AliKalmanTrack : public TObject { public: AliKalmanTrack(); AliKalmanTrack(const AliKalmanTrack &t); virtual ~AliKalmanTrack(){}; void SetLabel(Int_t lab) {fLab=lab;} void SetFakeRatio(Float_t ratio) {fFakeRatio=ratio;} Bool_t IsSortable() const {return kTRUE;} Int_t GetLabel() const {return fLab;} Float_t GetFakeRatio() const {return fFakeRatio;} Double_t GetChi2() const {return fChi2;} Double_t GetMass() const {return fMass;} Int_t GetNumberOfClusters() const {return fN;} virtual Int_t GetClusterIndex(Int_t) const { //reserved for AliTracker Warning("GetClusterIndex(Int_t)","Method must be overloaded !\n"); return 0; } virtual Double_t GetPIDsignal() const { Warning("GetPIDsignal()","Method must be overloaded !\n"); return 0.; } virtual Double_t GetDCA(const AliKalmanTrack *p,Double_t &xthis,Double_t &xp) const; virtual Double_t PropagateToDCA(AliKalmanTrack *p, Double_t d=0., Double_t x0=0.); virtual Double_t GetAlpha() const { Warning("GetAlpha()","Method must be overloaded !\n"); return 0.; } virtual Double_t GetSigmaY2() const { Warning("GetSigmaY2()","Method must be overloaded !\n"); return 0.; } virtual Double_t GetSigmaZ2() const { Warning("GetSigmaZ2()","Method must be overloaded !\n"); return 0.; } virtual Int_t Compare(const TObject *) const {return 0;} virtual void GetExternalParameters(Double_t &/*xr*/, Double_t /*x*/[5]) const {} virtual void GetExternalCovariance(Double_t /*cov*/[15]) const {} virtual Double_t GetX() const; virtual Double_t GetdEdx() const; virtual Double_t GetY() const; virtual Double_t GetZ() const; virtual Double_t GetSnp() const; virtual Double_t GetTgl() const; virtual Double_t Get1Pt() const; virtual Double_t Phi() const; virtual Double_t SigmaPhi() const; virtual Double_t Theta() const; virtual Double_t SigmaTheta() const; virtual Double_t Eta() const; virtual Double_t Px() const; virtual Double_t Py() const; virtual Double_t Pz() const; virtual Double_t Pt() const; virtual Double_t SigmaPt() const; virtual Double_t P() const; virtual Double_t GetPredictedChi2(const AliCluster *) const {return 0.;} virtual Int_t PropagateTo(Double_t /*xr*/, Double_t /*x0*/, Double_t /*rho*/) {return 0;} virtual Int_t PropagateToVertex(Double_t /*d*/=0., Double_t /*x0*/=0.) {return 0;} virtual Int_t Update(const AliCluster*, Double_t /*chi2*/, UInt_t) {return 0;} static void SetConvConst(Double_t cc) {fgConvConst=cc;} static Double_t GetConvConst() {return fgConvConst;} static void SetMagneticField(Double_t f) {// f - Magnetic field in T fgConvConst=100/0.299792458/f; } Double_t GetMagneticField() const {return 100/0.299792458/fgConvConst;} // Time integration (S.Radomski@gsi.de) void StartTimeIntegral(); void SetIntegratedLength(Double_t l) {fIntegratedLength=l;} void SetIntegratedTimes(const Double_t *times); Bool_t IsStartedTimeIntegral() const {return fStartTimeIntegral;} void AddTimeStep(Double_t length); void GetIntegratedTimes(Double_t *times) const; Double_t GetIntegratedTime(Int_t pdg) const; Double_t GetIntegratedLength() const {return fIntegratedLength;} void PrintTime() const; protected: void SetChi2(Double_t chi2) {fChi2=chi2;} void SetMass(Double_t mass) {fMass=mass;} void SetNumberOfClusters(Int_t n) {fN=n;} Int_t fLab; // track label Float_t fFakeRatio; // fake ratio Double_t fChi2; // total chi2 value for this track Double_t fMass; // mass hypothesis Int_t fN; // number of associated clusters private: static Double_t fgConvConst; //conversion constant cm -> GeV/c // variables for time integration (S.Radomski@gsi.de) static const Int_t fgkTypes = 5; // Number of track types (e,mu,pi,k,p) Bool_t fStartTimeIntegral; // indicator wether integrate time Double_t fIntegratedTime[5]; // integrated time Double_t fIntegratedLength; // integrated length ClassDef(AliKalmanTrack,3) // Reconstructed track }; #endif