#ifndef ALIKALMANTRACK_H #define ALIKALMANTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // Class AliKalmanTrack // fixed the interface for the derived reconstructed track classes // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- #include #include "AliLog.h" #include "AliPID.h" #include "AliMagF.h" class AliCluster; class AliKalmanTrack : public TObject { public: AliKalmanTrack(); AliKalmanTrack(const AliKalmanTrack &t); virtual ~AliKalmanTrack(){}; void SetLabel(Int_t lab) {fLab=lab;} void SetFakeRatio(Float_t ratio) {fFakeRatio=ratio;} Bool_t IsSortable() const {return kTRUE;} Int_t GetLabel() const {return fLab;} Float_t GetFakeRatio() const {return fFakeRatio;} Double_t GetChi2() const {return fChi2;} Double_t GetMass() const {return fMass;} Int_t GetNumberOfClusters() const {return fN;} virtual Int_t GetClusterIndex(Int_t) const { //reserved for AliTracker AliWarning("Method must be overloaded !\n"); return 0; } virtual Double_t GetPIDsignal() const { AliWarning("Method must be overloaded !\n"); return 0.; } virtual Double_t GetDCA(const AliKalmanTrack *p,Double_t &xthis,Double_t &xp) const; virtual Double_t PropagateToDCA(AliKalmanTrack *p, Double_t d=0., Double_t x0=0.); virtual Double_t GetAlpha() const { AliWarning("Method must be overloaded !\n"); return 0.; } virtual Double_t GetSigmaY2() const { AliWarning("Method must be overloaded !\n"); return 0.; } virtual Double_t GetSigmaZ2() const { AliWarning("Method must be overloaded !\n"); return 0.; } virtual Int_t Compare(const TObject *) const {return 0;} virtual void GetExternalParameters(Double_t&/*xr*/,Double_t/*x*/[5]) const=0; virtual void GetExternalCovariance(Double_t /*cov*/[15]) const = 0; virtual Double_t GetPredictedChi2(const AliCluster *) const = 0; virtual Int_t PropagateTo(Double_t/*xr*/,Double_t/*x0*/,Double_t/*rho*/) = 0; //virtual Int_t PropagateToVertex(Double_t /*d*/=0., Double_t /*x0*/=0.) = 0; virtual Int_t Update(const AliCluster*, Double_t /*chi2*/, UInt_t) = 0; static void SetFieldMap(const AliMagF *map) { fgkFieldMap=map; } static const AliMagF *GetFieldMap() { return fgkFieldMap; } static void SetUniformFieldTracking() { if (fgkFieldMap==0) { printf("AliKalmanTrack: Field map has not been set !\n"); exit(1); } fgConvConst=1000/0.299792458/(fgkFieldMap->SolenoidField()+1e-13); } static void SetNonuniformFieldTracking() { fgConvConst=0.; } static Double_t GetConvConst(); static Double_t MeanMaterialBudget(Double_t *start, Double_t *end, Double_t *mparam); // Time integration (S.Radomski@gsi.de) void StartTimeIntegral(); void SetIntegratedLength(Double_t l) {fIntegratedLength=l;} void SetIntegratedTimes(const Double_t *times); Bool_t IsStartedTimeIntegral() const {return fStartTimeIntegral;} void AddTimeStep(Double_t length); void GetIntegratedTimes(Double_t *times) const; Double_t GetIntegratedTime(Int_t pdg) const; Double_t GetIntegratedLength() const {return fIntegratedLength;} void PrintTime() const; protected: virtual void GetXYZ(Float_t r[3]) const = 0; void SaveLocalConvConst(); Double_t GetLocalConvConst() const; void External2Helix(Double_t helix[6]) const; void SetChi2(Double_t chi2) {fChi2=chi2;} void SetMass(Double_t mass) {fMass=mass;} void SetNumberOfClusters(Int_t n) {fN=n;} Int_t fLab; // track label Float_t fFakeRatio; // fake ratio Double_t fChi2; // total chi2 value for this track Double_t fMass; // mass hypothesis Int_t fN; // number of associated clusters private: static const AliMagF *fgkFieldMap;//pointer to the magnetic field map static Double_t fgConvConst; //conversion "curvature(1/cm) -> pt(GeV/c)" Double_t fLocalConvConst; //local conversion "curvature(1/cm) -> pt(GeV/c)" // variables for time integration (S.Radomski@gsi.de) Bool_t fStartTimeIntegral; // indicator wether integrate time Double_t fIntegratedTime[AliPID::kSPECIES]; // integrated time Double_t fIntegratedLength; // integrated length ClassDef(AliKalmanTrack,4) // Reconstructed track }; inline Double_t AliKalmanTrack::GetConvConst() { // // For backward compatibility only ! // if (fgConvConst > 0 || fgConvConst < 0) return fgConvConst; return 1000/0.299792458/(fgkFieldMap->SolenoidField()+1e-13); } inline void AliKalmanTrack::SaveLocalConvConst() { //--------------------------------------------------------------------- // Saves local conversion constant "curvature (1/cm) -> pt (GeV/c)" //--------------------------------------------------------------------- if (fgConvConst > 0 || fgConvConst < 0) return; //uniform field tracking Float_t r[3]={0.,0.,0.}; GetXYZ(r); Float_t b[3]; fgkFieldMap->Field(r,b); fLocalConvConst=1000/0.299792458/(1e-13 - b[2]); } inline Double_t AliKalmanTrack::GetLocalConvConst() const { //--------------------------------------------------------------------- // Returns conversion constant "curvature (1/cm) -> pt (GeV/c)" //--------------------------------------------------------------------- if (fgConvConst > 0 || fgConvConst < 0) return fgConvConst; //uniform field tracking return fLocalConvConst; } #endif