/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.17 2001/08/29 14:28:33 morsch Use visibility flags -1 and 3 instead of 0 and 1. Revision 1.16 2001/05/16 14:57:22 alibrary New files for folders and Stack Revision 1.15 2001/03/20 06:36:28 alibrary 100 parameters now allowed for geant shapes Revision 1.14 2001/01/26 19:58:48 hristov Major upgrade of AliRoot code Revision 1.13 2000/11/30 07:12:49 alibrary Introducing new Rndm and QA classes Revision 1.12 2000/10/02 21:28:14 fca Removal of useless dependecies via forward declarations Revision 1.11 2000/07/12 08:56:25 fca Coding convention correction and warning removal Revision 1.10 2000/07/11 18:24:59 fca Coding convention corrections + few minor bug fixes Revision 1.9 2000/05/16 08:45:08 fca Correct dtor, thanks to J.Belikov Revision 1.8 2000/02/23 16:25:22 fca AliVMC and AliGeant3 classes introduced ReadEuclid moved from AliRun to AliModule Revision 1.7 1999/09/29 09:24:29 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Base class for ALICE modules. Both sensitive modules (Modules) and // // non-sensitive ones are described by this base class. This class // // supports the hit and digit trees produced by the simulation and also // // the objects produced by the reconstruction. // // // // This class is also responsible for building the geometry of the // // Modules. // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include "TSystem.h" #include "AliModule.h" #include "AliRun.h" #include "AliMagF.h" #include "AliMC.h" #include "AliConfig.h" ClassImp(AliModule) //_____________________________________________________________________________ AliModule::AliModule() { // // Default constructor for the AliModule class // fHistograms = 0; fNodes = 0; fIdtmed = 0; fIdmate = 0; fDebug = 0; fEnable = 1; } //_____________________________________________________________________________ AliModule::AliModule(const char* name,const char *title):TNamed(name,title) { // // Normal constructor invoked by all Modules. // Create the list for Module specific histograms // Add this Module to the global list of Modules in Run. // // // Initialises the histogram list fHistograms = new TList(); // // Initialises the list of ROOT TNodes fNodes = new TList(); // // Get the Module numeric ID Int_t id = gAlice->GetModuleID(name); if (id>=0) { // Module already added ! Warning("Ctor","Module: %s already present at %d\n",name,id); return; } // // Add this Module to the list of Modules gAlice->Modules()->Add(this); // // SetMarkerColor(3); // // Allocate space for tracking media and material indexes fIdtmed = new TArrayI(100); fIdmate = new TArrayI(100); for(Int_t i=0;i<100;i++) (*fIdmate)[i]=(*fIdtmed)[i]=0; // // Prepare to find the tracking media range fLoMedium = 65536; fHiMedium = 0; AliConfig::Instance()->Add(this); SetDebug(gAlice->GetDebug()); fEnable = 1; } //_____________________________________________________________________________ AliModule::AliModule(const AliModule &mod) { // // Copy constructor // mod.Copy(*this); } //_____________________________________________________________________________ AliModule::~AliModule() { // // Destructor // fHistograms = 0; // // Delete ROOT geometry if(fNodes) { fNodes->Clear(); delete fNodes; } // // Delete TArray objects delete fIdtmed; delete fIdmate; } //_____________________________________________________________________________ void AliModule::Copy(AliModule & /* mod */) const { // // Copy *this onto mod, not implemented for AliModule // Fatal("Copy","Not implemented!\n"); } //_____________________________________________________________________________ void AliModule::Disable() { // // Disable Module on viewer // fActive = kFALSE; TIter next(fNodes); TNode *node; // // Loop through geometry to disable all // nodes for this Module while((node = (TNode*)next())) { node->SetVisibility(-1); } } //_____________________________________________________________________________ Int_t AliModule::DistancetoPrimitive(Int_t, Int_t) { // // Return distance from mouse pointer to object // Dummy routine for the moment // return 9999; } //_____________________________________________________________________________ void AliModule::Enable() { // // Enable Module on the viewver // fActive = kTRUE; TIter next(fNodes); TNode *node; // // Loop through geometry to enable all // nodes for this Module while((node = (TNode*)next())) { node->SetVisibility(3); } } //_____________________________________________________________________________ void AliModule::AliMaterial(Int_t imat, const char* name, Float_t a, Float_t z, Float_t dens, Float_t radl, Float_t absl, Float_t *buf, Int_t nwbuf) const { // // Store the parameters for a material // // imat the material index will be stored in (*fIdmate)[imat] // name material name // a atomic mass // z atomic number // dens density // radl radiation length // absl absorbtion length // buf adress of an array user words // nwbuf number of user words // Int_t kmat; gMC->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); (*fIdmate)[imat]=kmat; } //_____________________________________________________________________________ void AliModule::AliGetMaterial(Int_t imat, char* name, Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl) { // // Store the parameters for a material // // imat the material index will be stored in (*fIdmate)[imat] // name material name // a atomic mass // z atomic number // dens density // radl radiation length // absl absorbtion length // buf adress of an array user words // nwbuf number of user words // Float_t buf[10]; Int_t nwbuf, kmat; kmat=(*fIdmate)[imat]; gMC->Gfmate(kmat, name, a, z, dens, radl, absl, buf, nwbuf); } //_____________________________________________________________________________ void AliModule::AliMixture(Int_t imat, const char *name, Float_t *a, Float_t *z, Float_t dens, Int_t nlmat, Float_t *wmat) const { // // Defines mixture or compound imat as composed by // nlmat materials defined by arrays a, z and wmat // // If nlmat > 0 wmat contains the proportion by // weights of each basic material in the mixture // // If nlmat < 0 wmat contains the number of atoms // of eack kind in the molecule of the compound // In this case, wmat is changed on output to the relative weigths. // // imat the material index will be stored in (*fIdmate)[imat] // name material name // a array of atomic masses // z array of atomic numbers // dens density // nlmat number of components // wmat array of concentrations // Int_t kmat; gMC->Mixture(kmat, name, a, z, dens, nlmat, wmat); (*fIdmate)[imat]=kmat; } //_____________________________________________________________________________ void AliModule::AliMedium(Int_t numed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Float_t fieldm, Float_t tmaxfd, Float_t stemax, Float_t deemax, Float_t epsil, Float_t stmin, Float_t *ubuf, Int_t nbuf) const { // // Store the parameters of a tracking medium // // numed the medium number is stored into (*fIdtmed)[numed] // name medium name // nmat the material number is stored into (*fIdmate)[nmat] // isvol sensitive volume if isvol!=0 // ifield magnetic field flag (see below) // fieldm maximum magnetic field // tmaxfd maximum deflection angle due to magnetic field // stemax maximum step allowed // deemax maximum fractional energy loss in one step // epsil tracking precision in cm // stmin minimum step due to continuous processes // // ifield = 0 no magnetic field // = -1 user decision in guswim // = 1 tracking performed with Runge Kutta // = 2 tracking performed with helix // = 3 constant magnetic field along z // Int_t kmed; gMC->Medium(kmed,name, (*fIdmate)[nmat], isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); (*fIdtmed)[numed]=kmed; } //_____________________________________________________________________________ void AliModule::AliMatrix(Int_t &nmat, Float_t theta1, Float_t phi1, Float_t theta2, Float_t phi2, Float_t theta3, Float_t phi3) const { // // Define a rotation matrix. Angles are in degrees. // // nmat on output contains the number assigned to the rotation matrix // theta1 polar angle for axis I // phi1 azimuthal angle for axis I // theta2 polar angle for axis II // phi2 azimuthal angle for axis II // theta3 polar angle for axis III // phi3 azimuthal angle for axis III // gMC->Matrix(nmat, theta1, phi1, theta2, phi2, theta3, phi3); } //_____________________________________________________________________________ AliModule& AliModule::operator=(const AliModule &mod) { mod.Copy(*this); return (*this); } //_____________________________________________________________________________ Float_t AliModule::ZMin() const { return -500; } //_____________________________________________________________________________ Float_t AliModule::ZMax() const { return 500; } //_____________________________________________________________________________ void AliModule::SetEuclidFile(char* material, char* geometry) { // // Sets the name of the Euclid file // fEuclidMaterial=material; if(geometry) { fEuclidGeometry=geometry; } else { char* name = new char[strlen(material)]; strcpy(name,material); strcpy(&name[strlen(name)-4],".euc"); fEuclidGeometry=name; delete [] name; } } //_____________________________________________________________________________ void AliModule::ReadEuclid(const char* filnam, char* topvol) { // // read in the geometry of the detector in euclid file format // // id_det : the detector identification (2=its,...) // topvol : return parameter describing the name of the top // volume of geometry. // // author : m. maire // // 28.07.98 // several changes have been made by miroslav helbich // subroutine is rewrited to follow the new established way of memory // booking for tracking medias and rotation matrices. // all used tracking media have to be defined first, for this you can use // subroutine greutmed. // top volume is searched as only volume not positioned into another // Int_t i, nvol, iret, itmed, irot, numed, npar, ndiv, iaxe; Int_t ndvmx, nr, flag; char key[5], card[77], natmed[21]; char name[5], mother[5], shape[5], konly[5], volst[7000][5]; char *filtmp; Float_t par[100]; Float_t teta1, phi1, teta2, phi2, teta3, phi3, orig, step; Float_t xo, yo, zo; const Int_t kMaxRot=5000; Int_t idrot[kMaxRot],istop[7000]; FILE *lun; // // *** The input filnam name will be with extension '.euc' filtmp=gSystem->ExpandPathName(filnam); lun=fopen(filtmp,"r"); delete [] filtmp; if(!lun) { Error("ReadEuclid","Could not open file %s\n",filnam); return; } //* --- definition of rotation matrix 0 --- TArrayI &idtmed = *fIdtmed; for(i=1; i=100 ) { Error("ReadEuclid","TMED illegal medium number %d for %s\n",itmed,natmed); exit(1); } //Pad the string with blanks i=-1; while(natmed[++i]); while(i<20) natmed[i++]=' '; natmed[i]='\0'; // if( idtmed[itmed]<=0 ) { Error("ReadEuclid","TMED undefined medium number %d for %s\n",itmed,natmed); exit(1); } gMC->Gckmat(idtmed[itmed],natmed); //* } else if (!strcmp(key,"ROTM")) { sscanf(&card[4],"%d %f %f %f %f %f %f",&irot,&teta1,&phi1,&teta2,&phi2,&teta3,&phi3); if( irot<=0 || irot>=kMaxRot ) { Error("ReadEuclid","ROTM rotation matrix number %d illegal\n",irot); exit(1); } AliMatrix(idrot[irot],teta1,phi1,teta2,phi2,teta3,phi3); //* } else if (!strcmp(key,"VOLU")) { sscanf(&card[5],"'%[^']' '%[^']' %d %d", name, shape, &numed, &npar); if (npar>0) { for(i=0;iGsvolu( name, shape, idtmed[numed], par, npar); //* save the defined volumes strcpy(volst[++nvol],name); istop[nvol]=1; //* } else if (!strcmp(key,"DIVN")) { sscanf(&card[5],"'%[^']' '%[^']' %d %d", name, mother, &ndiv, &iaxe); gMC->Gsdvn ( name, mother, ndiv, iaxe ); //* } else if (!strcmp(key,"DVN2")) { sscanf(&card[5],"'%[^']' '%[^']' %d %d %f %d",name, mother, &ndiv, &iaxe, &orig, &numed); gMC->Gsdvn2( name, mother, ndiv, iaxe, orig,idtmed[numed]); //* } else if (!strcmp(key,"DIVT")) { sscanf(&card[5],"'%[^']' '%[^']' %f %d %d %d", name, mother, &step, &iaxe, &numed, &ndvmx); gMC->Gsdvt ( name, mother, step, iaxe, idtmed[numed], ndvmx); //* } else if (!strcmp(key,"DVT2")) { sscanf(&card[5],"'%[^']' '%[^']' %f %d %f %d %d", name, mother, &step, &iaxe, &orig, &numed, &ndvmx); gMC->Gsdvt2 ( name, mother, step, iaxe, orig, idtmed[numed], ndvmx ); //* } else if (!strcmp(key,"POSI")) { sscanf(&card[5],"'%[^']' %d '%[^']' %f %f %f %d '%[^']'", name, &nr, mother, &xo, &yo, &zo, &irot, konly); if( irot<0 || irot>=kMaxRot ) { Error("ReadEuclid","POSI %s#%d rotation matrix number %d illegal\n",name,nr,irot); exit(1); } if( idrot[irot] == -99) { Error("ReadEuclid","POSI %s#%d undefined matrix number %d\n",name,nr,irot); exit(1); } //*** volume name cannot be the top volume for(i=1;i<=nvol;i++) { if (!strcmp(volst[i],name)) istop[i]=0; } //* gMC->Gspos ( name, nr, mother, xo, yo, zo, idrot[irot], konly ); //* } else if (!strcmp(key,"POSP")) { sscanf(&card[5],"'%[^']' %d '%[^']' %f %f %f %d '%[^']' %d", name, &nr, mother, &xo, &yo, &zo, &irot, konly, &npar); if( irot<0 || irot>=kMaxRot ) { Error("ReadEuclid","POSP %s#%d rotation matrix number %d illegal\n",name,nr,irot); exit(1); } if( idrot[irot] == -99) { Error("ReadEuclid","POSP %s#%d undefined matrix number %d\n",name,nr,irot); exit(1); } if (npar > 0) { for(i=0;iGsposp ( name, nr, mother, xo,yo,zo, idrot[irot], konly, par, npar); } //* if (strcmp(key,"END")) goto L10; //* find top volume in the geometry flag=0; for(i=1;i<=nvol;i++) { if (istop[i] && flag) { Warning("ReadEuclid"," %s is another possible top volume\n",volst[i]); } if (istop[i] && !flag) { strcpy(topvol,volst[i]); if(fDebug) printf("%s::ReadEuclid: volume %s taken as a top volume\n",ClassName(),topvol); flag=1; } } if (!flag) { Warning("ReadEuclid","top volume not found\n"); } fclose (lun); //* //* commented out only for the not cernlib version if(fDebug) printf("%s::ReadEuclid: file: %s is now read in\n",ClassName(),filnam); // return; //* L20: Error("ReadEuclid","reading error or premature end of file\n"); } //_____________________________________________________________________________ void AliModule::ReadEuclidMedia(const char* filnam) { // // read in the materials and tracking media for the detector // in euclid file format // // filnam: name of the input file // id_det: id_det is the detector identification (2=its,...) // // author : miroslav helbich // Float_t sxmgmx = gAlice->Field()->Max(); Int_t isxfld = gAlice->Field()->Integ(); Int_t end, i, iret, itmed; char key[5], card[130], natmed[21], namate[21]; Float_t ubuf[50]; char* filtmp; FILE *lun; Int_t imate; Int_t nwbuf, isvol, ifield, nmat; Float_t a, z, dens, radl, absl, fieldm, tmaxfd, stemax, deemax, epsil, stmin; // end=strlen(filnam); for(i=0;iExpandPathName(filnam); lun=fopen(filtmp,"r"); delete [] filtmp; if(!lun) { Warning("ReadEuclidMedia","Could not open file %s\n",filnam); return; } // // Retrieve Mag Field parameters Int_t globField=gAlice->Field()->Integ(); Float_t globMaxField=gAlice->Field()->Max(); // TArrayI &idtmed = *fIdtmed; // L10: for(i=0;i<130;i++) card[i]=0; iret=fscanf(lun,"%4s %[^\n]",key,card); if(iret<=0) goto L20; fscanf(lun,"%*c"); //* //* read material if (!strcmp(key,"MATE")) { sscanf(card,"%d '%[^']' %f %f %f %f %f %d",&imate,namate,&a,&z,&dens,&radl,&absl,&nwbuf); if (nwbuf>0) for(i=0;i0) for(i=0;i