/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.72 2001/07/03 08:10:57 hristov J.Chudoba's changes merged correctly with the HEAD Revision 1.70 2001/06/29 08:01:36 morsch Small correction to the previous. Revision 1.69 2001/06/28 16:27:50 morsch AliReco() with user control of event range. Revision 1.68 2001/06/11 13:14:40 morsch SetAliGenEventHeader() method added. Revision 1.67 2001/06/07 18:24:50 buncic Removed compilation warning in AliConfig initialisation. Revision 1.66 2001/05/22 14:32:40 hristov Weird inline removed Revision 1.65 2001/05/21 17:22:51 buncic Fixed problem with missing AliConfig while reading galice.root Revision 1.64 2001/05/16 14:57:22 alibrary New files for folders and Stack Revision 1.62 2001/04/06 11:12:33 morsch Clear fParticles after each event. (Ivana Hrivnacova) Revision 1.61 2001/03/30 07:04:10 morsch Call fGenerator->FinishRun() for final print-outs, cross-section and weight calculations. Revision 1.60 2001/03/21 18:22:30 hristov fParticleFileMap fix (I.Hrivnacova) Revision 1.59 2001/03/12 17:47:03 hristov Changes needed on Sun with CC 5.0 Revision 1.58 2001/03/09 14:27:26 morsch Fix for multiple events per file: inhibit decrease of size of fParticleFileMap. Revision 1.57 2001/02/23 17:40:23 buncic All trees needed for simulation created in RunMC(). TreeR and its branches are now created in new RunReco() method. Revision 1.56 2001/02/14 15:45:20 hristov Algorithmic way of getting entry index in fParticleMap. Protection of fParticleFileMap (I.Hrivnacova) Revision 1.55 2001/02/12 15:52:54 buncic Removed OpenBaseFile(). Revision 1.54 2001/02/07 10:39:05 hristov Remove default value for argument Revision 1.53 2001/02/06 11:02:26 hristov New SetTrack interface added, added check for unfilled particles in FinishEvent (I.Hrivnacova) Revision 1.52 2001/02/05 16:22:25 buncic Added TreeS to GetEvent(). Revision 1.51 2001/02/02 15:16:20 morsch SetHighWaterMark method added to mark last particle in event. Revision 1.50 2001/01/27 10:32:00 hristov Leave the loop when primaries are filled (I.Hrivnacova) Revision 1.49 2001/01/26 19:58:48 hristov Major upgrade of AliRoot code Revision 1.48 2001/01/17 10:50:50 hristov Corrections to destructors Revision 1.47 2000/12/18 10:44:01 morsch Possibility to set field map by passing pointer to objet of type AliMagF via SetField(). Example: gAlice->SetField(new AliMagFCM("Map2", "$(ALICE_ROOT)/data/field01.dat",2,1.,10.)); Revision 1.46 2000/12/14 19:29:27 fca galice.cuts was not read any more Revision 1.45 2000/11/30 07:12:49 alibrary Introducing new Rndm and QA classes Revision 1.44 2000/10/26 13:58:59 morsch Add possibility to choose the lego generator (of type AliGeneratorLego or derived) when running RunLego(). Default is the base class AliGeneratorLego. Revision 1.43 2000/10/09 09:43:17 fca Special remapping of hits for TPC and TRD. End-of-primary action introduced Revision 1.42 2000/10/02 21:28:14 fca Removal of useless dependecies via forward declarations Revision 1.41 2000/07/13 16:19:09 fca Mainly coding conventions + some small bug fixes Revision 1.40 2000/07/12 08:56:25 fca Coding convention correction and warning removal Revision 1.39 2000/07/11 18:24:59 fca Coding convention corrections + few minor bug fixes Revision 1.38 2000/06/20 13:05:45 fca Writing down the TREE headers before job starts Revision 1.37 2000/06/09 20:05:11 morsch Introduce possibility to chose magnetic field version 3: AliMagFDM + field02.dat Revision 1.36 2000/06/08 14:03:58 hristov Only one initializer for a default argument Revision 1.35 2000/06/07 10:13:14 hristov Delete only existent objects. Revision 1.34 2000/05/18 10:45:38 fca Delete Particle Factory properly Revision 1.33 2000/05/16 13:10:40 fca New method IsNewTrack and fix for a problem in Father-Daughter relations Revision 1.32 2000/04/27 10:38:21 fca Correct termination of Lego Run and introduce Lego getter in AliRun Revision 1.31 2000/04/26 10:17:32 fca Changes in Lego for G4 compatibility Revision 1.30 2000/04/18 19:11:40 fca Introduce variable Config.C function signature Revision 1.29 2000/04/07 11:12:34 fca G4 compatibility changes Revision 1.28 2000/04/05 06:51:06 fca Workaround for an HP compiler problem Revision 1.27 2000/03/22 18:08:07 fca Rationalisation of the virtual MC interfaces Revision 1.26 2000/03/22 13:42:26 fca SetGenerator does not replace an existing generator, ResetGenerator does Revision 1.25 2000/02/23 16:25:22 fca AliVMC and AliGeant3 classes introduced ReadEuclid moved from AliRun to AliModule Revision 1.24 2000/01/19 17:17:20 fca Introducing a list of lists of hits -- more hits allowed for detector now Revision 1.23 1999/12/03 11:14:31 fca Fixing previous wrong checking Revision 1.21 1999/11/25 10:40:08 fca Fixing daughters information also in primary tracks Revision 1.20 1999/10/04 18:08:49 fca Adding protection against inconsistent Euclid files Revision 1.19 1999/09/29 07:50:40 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Control class for Alice C++ // // Only one single instance of this class exists. // // The object is created in main program aliroot // // and is pointed by the global gAlice. // // // // -Supports the list of all Alice Detectors (fModules). // // -Supports the list of particles (fParticles). // // -Supports the Trees. // // -Supports the geometry. // // -Supports the event display. // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "TParticle.h" #include "AliRun.h" #include "AliDisplay.h" #include "AliMC.h" #include "AliLego.h" #include "AliMagFC.h" #include "AliMagFCM.h" #include "AliMagFDM.h" #include "AliHit.h" #include "TRandom3.h" #include "AliMCQA.h" #include "AliGenerator.h" #include "AliLegoGenerator.h" #include "AliConfig.h" #include "AliStack.h" #include "AliGenEventHeader.h" #include "AliHeader.h" #include "AliDetector.h" AliRun *gAlice; ClassImp(AliRun) //_____________________________________________________________________________ AliRun::AliRun() { // // Default constructor for AliRun // fHeader = 0; fRun = 0; fEvent = 0; fStack = 0; fModules = 0; fGenerator = 0; fTreeD = 0; fTreeH = 0; fTreeE = 0; fTreeR = 0; fTreeS = 0; fGeometry = 0; fDisplay = 0; fField = 0; fMC = 0; fNdets = 0; fImedia = 0; fTrRmax = 1.e10; fTrZmax = 1.e10; fInitDone = kFALSE; fLego = 0; fPDGDB = 0; //Particle factory object! fHitLists = 0; fConfigFunction = "\0"; fRandom = 0; fMCQA = 0; fTransParName = "\0"; fBaseFileName = ".\0"; fDebug = 0; } //_____________________________________________________________________________ AliRun::AliRun(const char *name, const char *title) : TNamed(name,title) { // // Constructor for the main processor. // Creates the geometry // Creates the list of Detectors. // Creates the list of particles. // Int_t i; gAlice = this; fTreeD = 0; fTreeH = 0; fTreeE = 0; fTreeR = 0; fTreeS = 0; fTrRmax = 1.e10; fTrZmax = 1.e10; fGenerator = 0; fInitDone = kFALSE; fLego = 0; fField = 0; fConfigFunction = "Config();"; // Set random number generator gRandom = fRandom = new TRandom3(); if (gSystem->Getenv("CONFIG_SEED")) { gRandom->SetSeed((UInt_t)atoi(gSystem->Getenv("CONFIG_SEED"))); } gROOT->GetListOfBrowsables()->Add(this,name); // // Particle stack fStack = new AliStack(10000); // create the support list for the various Detectors fModules = new TObjArray(77); // // Create the TNode geometry for the event display BuildSimpleGeometry(); fHeader = new AliHeader(); fRun = 0; fEvent = 0; // fDisplay = 0; // // Create default mag field SetField(); // fMC = gMC; // // Prepare the tracking medium lists fImedia = new TArrayI(1000); for(i=0;i<1000;i++) (*fImedia)[i]=-99; // // Make particles fPDGDB = TDatabasePDG::Instance(); //Particle factory object! AliConfig::Instance()->Add(fPDGDB); // // Create HitLists list fHitLists = new TList(); // SetTransPar(); fBaseFileName = ".\0"; // fDebug = 0; } //_____________________________________________________________________________ AliRun::~AliRun() { // // Default AliRun destructor // delete fImedia; delete fField; delete fMC; delete fGeometry; delete fDisplay; delete fGenerator; delete fLego; delete fTreeD; delete fTreeH; delete fTreeE; delete fTreeR; delete fTreeS; if (fModules) { fModules->Delete(); delete fModules; } delete fStack; delete fHitLists; delete fPDGDB; delete fMCQA; delete fHeader; } //_____________________________________________________________________________ void AliRun::AddHit(Int_t id, Int_t track, Int_t *vol, Float_t *hits) const { // // Add a hit to detector id // TObjArray &dets = *fModules; if(dets[id]) ((AliModule*) dets[id])->AddHit(track,vol,hits); } //_____________________________________________________________________________ void AliRun::AddDigit(Int_t id, Int_t *tracks, Int_t *digits) const { // // Add digit to detector id // TObjArray &dets = *fModules; if(dets[id]) ((AliModule*) dets[id])->AddDigit(tracks,digits); } //_____________________________________________________________________________ void AliRun::Browse(TBrowser *b) { // // Called when the item "Run" is clicked on the left pane // of the Root browser. // It displays the Root Trees and all detectors. // if(!fStack) fStack=fHeader->Stack(); TTree* pTreeK = fStack->TreeK(); if (pTreeK) b->Add(pTreeK,pTreeK->GetName()); if (fTreeH) b->Add(fTreeH,fTreeH->GetName()); if (fTreeD) b->Add(fTreeD,fTreeD->GetName()); if (fTreeE) b->Add(fTreeE,fTreeE->GetName()); if (fTreeR) b->Add(fTreeR,fTreeR->GetName()); if (fTreeS) b->Add(fTreeS,fTreeS->GetName()); TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { b->Add(detector,detector->GetName()); } b->Add(fMCQA,"AliMCQA"); } //_____________________________________________________________________________ void AliRun::Build() { // // Initialize Alice geometry // Dummy routine // } //_____________________________________________________________________________ void AliRun::BuildSimpleGeometry() { // // Create a simple TNode geometry used by Root display engine // // Initialise geometry // fGeometry = new TGeometry("AliceGeom","Galice Geometry for Hits"); new TMaterial("void","Vacuum",0,0,0); //Everything is void TBRIK *brik = new TBRIK("S_alice","alice volume","void",2000,2000,3000); brik->SetVisibility(0); new TNode("alice","alice","S_alice"); } //_____________________________________________________________________________ void AliRun::CleanDetectors() { // // Clean Detectors at the end of event // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->FinishEvent(); } } //_____________________________________________________________________________ Int_t AliRun::DistancetoPrimitive(Int_t, Int_t) { // // Return the distance from the mouse to the AliRun object // Dummy routine // return 9999; } //_____________________________________________________________________________ void AliRun::DumpPart (Int_t i) const { // // Dumps particle i in the stack // fStack->DumpPart(i); } //_____________________________________________________________________________ void AliRun::DumpPStack () const { // // Dumps the particle stack // fStack->DumpPStack(); } //_____________________________________________________________________________ void AliRun::SetField(AliMagF* magField) { // Set Magnetic Field Map fField = magField; fField->ReadField(); } //_____________________________________________________________________________ void AliRun::SetField(Int_t type, Int_t version, Float_t scale, Float_t maxField, char* filename) { // // Set magnetic field parameters // type Magnetic field transport flag 0=no field, 2=helix, 3=Runge Kutta // version Magnetic field map version (only 1 active now) // scale Scale factor for the magnetic field // maxField Maximum value for the magnetic field // // --- Sanity check on mag field flags if(fField) delete fField; if(version==1) { fField = new AliMagFC("Map1"," ",type,scale,maxField); } else if(version<=2) { fField = new AliMagFCM("Map2-3",filename,type,scale,maxField); fField->ReadField(); } else if(version==3) { fField = new AliMagFDM("Map4",filename,type,scale,maxField); fField->ReadField(); } else { Warning("SetField","Invalid map %d\n",version); } } //_____________________________________________________________________________ void AliRun::PreTrack() { TObjArray &dets = *fModules; AliModule *module; for(Int_t i=0; i<=fNdets; i++) if((module = (AliModule*)dets[i])) module->PreTrack(); fMCQA->PreTrack(); } //_____________________________________________________________________________ void AliRun::PostTrack() { TObjArray &dets = *fModules; AliModule *module; for(Int_t i=0; i<=fNdets; i++) if((module = (AliModule*)dets[i])) module->PostTrack(); } //_____________________________________________________________________________ void AliRun::FinishPrimary() { // // Called at the end of each primary track // // static Int_t count=0; // const Int_t times=10; // This primary is finished, purify stack fStack->PurifyKine(); TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->FinishPrimary(); } // Write out hits if any if (gAlice->TreeH()) { gAlice->TreeH()->Fill(); } // // if(++count%times==1) gObjectTable->Print(); } //_____________________________________________________________________________ void AliRun::BeginPrimary() { // // Called at the beginning of each primary track // // Reset Hits info gAlice->ResetHits(); } //_____________________________________________________________________________ void AliRun::FinishEvent() { // // Called at the end of the event. // // if(fLego) fLego->FinishEvent(); //Update the energy deposit tables Int_t i; for(i=0;iSetNprimary(fStack->GetNprimary()); fHeader->SetNtrack(fStack->GetNtrack()); // Write out the kinematics fStack->FinishEvent(); // Write out the event Header information if (fTreeE) { fHeader->SetStack(fStack); fTreeE->Fill(); } // Write Tree headers TTree* pTreeK = fStack->TreeK(); if (pTreeK) pTreeK->Write(0,TObject::kOverwrite); if (fTreeH) fTreeH->Write(0,TObject::kOverwrite); ++fEvent; } //_____________________________________________________________________________ void AliRun::FinishRun() { // // Called at the end of the run. // // if(fLego) fLego->FinishRun(); // Clean detector information TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->FinishRun(); } //Output energy summary tables EnergySummary(); TFile *file = fTreeE->GetCurrentFile(); file->cd(); fTreeE->Write(0,TObject::kOverwrite); // Write AliRun info and all detectors parameters Write(0,TObject::kOverwrite); // Clean tree information fStack->FinishRun(); if (fTreeH) { delete fTreeH; fTreeH = 0; } if (fTreeD) { delete fTreeD; fTreeD = 0; } if (fTreeR) { delete fTreeR; fTreeR = 0; } if (fTreeE) { delete fTreeE; fTreeE = 0; } if (fTreeS) { delete fTreeS; fTreeS = 0; } // Close output file file->Write(); } //_____________________________________________________________________________ void AliRun::FlagTrack(Int_t track) { // Delegate to stack // fStack->FlagTrack(track); } //_____________________________________________________________________________ void AliRun::EnergySummary() { // // Print summary of deposited energy // Int_t ndep=0; Float_t edtot=0; Float_t ed, ed2; Int_t kn, i, left, j, id; const Float_t kzero=0; Int_t ievent=fHeader->GetEvent()+1; // // Energy loss information if(ievent) { printf("***************** Energy Loss Information per event (GEV) *****************\n"); for(kn=1;kn0) { fEventEnergy[ndep]=kn; if(ievent>1) { ed=ed/ievent; ed2=fSum2Energy[kn]; ed2=ed2/ievent; ed2=100*TMath::Sqrt(TMath::Max(ed2-ed*ed,kzero))/ed; } else ed2=99; fSummEnergy[ndep]=ed; fSum2Energy[ndep]=TMath::Min((Float_t) 99.,TMath::Max(ed2,kzero)); edtot+=ed; ndep++; } } for(kn=0;kn<(ndep-1)/3+1;kn++) { left=ndep-kn*3; for(i=0;i<(3VolName(id),fSummEnergy[j],fSum2Energy[j]); } printf("\n"); } // // Relative energy loss in different detectors printf("******************** Relative Energy Loss per event ********************\n"); printf("Total energy loss per event %10.3f GeV\n",edtot); for(kn=0;kn<(ndep-1)/5+1;kn++) { left=ndep-kn*5; for(i=0;i<(5VolName(id),100*fSummEnergy[j]/edtot); } printf("\n"); } for(kn=0;kn<75;kn++) printf("*"); printf("\n"); } // // Reset the TArray's // fEventEnergy.Set(0); // fSummEnergy.Set(0); // fSum2Energy.Set(0); } //_____________________________________________________________________________ AliModule *AliRun::GetModule(const char *name) const { // // Return pointer to detector from name // return (AliModule*)fModules->FindObject(name); } //_____________________________________________________________________________ AliDetector *AliRun::GetDetector(const char *name) const { // // Return pointer to detector from name // return (AliDetector*)fModules->FindObject(name); } //_____________________________________________________________________________ Int_t AliRun::GetModuleID(const char *name) const { // // Return galice internal detector identifier from name // Int_t i=-1; TObject *mod=fModules->FindObject(name); if(mod) i=fModules->IndexOf(mod); return i; } //_____________________________________________________________________________ Int_t AliRun::GetEvent(Int_t event) { // // Connect the Trees Kinematics and Hits for event # event // Set branch addresses // // Reset existing structures ResetHits(); ResetDigits(); ResetSDigits(); // Delete Trees already connected if (fTreeH) { delete fTreeH; fTreeH = 0;} if (fTreeD) { delete fTreeD; fTreeD = 0;} if (fTreeR) { delete fTreeR; fTreeR = 0;} if (fTreeS) { delete fTreeS; fTreeS = 0;} // Create the particle stack if (fHeader) delete fHeader; fHeader = 0; // Get header from file if(fTreeE) { fTreeE->SetBranchAddress("Header", &fHeader); if (!fTreeE->GetEntry(event)) { Error("GetEvent","Cannot find event:%d\n",event); return -1; } } else { Error("GetEvent","Cannot find Header Tree (TE)\n"); return -1; } // Get the stack from the header, set fStack to 0 if it // fails to get event if (fStack) delete fStack; fStack = fHeader->Stack(); if (fStack) { if (!fStack->GetEvent(event)) fStack = 0; } // TFile *file = fTreeE->GetCurrentFile(); char treeName[20]; file->cd(); // Get Hits Tree header from file sprintf(treeName,"TreeH%d",event); fTreeH = (TTree*)gDirectory->Get(treeName); if (!fTreeH) { Error("GetEvent","cannot find Hits Tree for event:%d\n",event); } // Get Digits Tree header from file sprintf(treeName,"TreeD%d",event); fTreeD = (TTree*)gDirectory->Get(treeName); if (!fTreeD) { // Warning("GetEvent","cannot find Digits Tree for event:%d\n",event); } file->cd(); // Get SDigits Tree header from file sprintf(treeName,"TreeS%d",event); fTreeS = (TTree*)gDirectory->Get(treeName); if (!fTreeS) { // Warning("GetEvent","cannot find SDigits Tree for event:%d\n",event); } file->cd(); // Get Reconstruct Tree header from file sprintf(treeName,"TreeR%d",event); fTreeR = (TTree*)gDirectory->Get(treeName); if (!fTreeR) { // printf("WARNING: cannot find Reconstructed Tree for event:%d\n",event); } file->cd(); // Set Trees branch addresses TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->SetTreeAddress(); } return fStack->GetNtrack(); } //_____________________________________________________________________________ TGeometry *AliRun::GetGeometry() { // // Import Alice geometry from current file // Return pointer to geometry object // if (!fGeometry) fGeometry = (TGeometry*)gDirectory->Get("AliceGeom"); // // Unlink and relink nodes in detectors // This is bad and there must be a better way... // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { TList *dnodes=detector->Nodes(); Int_t j; TNode *node, *node1; for ( j=0; jGetSize(); j++) { node = (TNode*) dnodes->At(j); node1 = fGeometry->GetNode(node->GetName()); dnodes->Remove(node); dnodes->AddAt(node1,j); } } return fGeometry; } //_____________________________________________________________________________ void AliRun::GetNextTrack(Int_t &mtrack, Int_t &ipart, Float_t *pmom, Float_t &e, Float_t *vpos, Float_t *polar, Float_t &tof) { // Delegate to stack // fStack->GetNextTrack(mtrack, ipart, pmom, e, vpos, polar, tof); } //_____________________________________________________________________________ Int_t AliRun::GetPrimary(Int_t track) const { // // return number of primary that has generated track // return fStack->GetPrimary(track); } //_____________________________________________________________________________ void AliRun::InitMC(const char *setup) { // // Initialize the Alice setup // if(fInitDone) { Warning("Init","Cannot initialise AliRun twice!\n"); return; } gROOT->LoadMacro(setup); gInterpreter->ProcessLine(fConfigFunction.Data()); gMC->DefineParticles(); //Create standard MC particles TObject *objfirst, *objlast; fNdets = fModules->GetLast()+1; // //=================Create Materials and geometry gMC->Init(); // Added also after in case of interactive initialisation of modules fNdets = fModules->GetLast()+1; TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->SetTreeAddress(); objlast = gDirectory->GetList()->Last(); // Add Detector histograms in Detector list of histograms if (objlast) objfirst = gDirectory->GetList()->After(objlast); else objfirst = gDirectory->GetList()->First(); while (objfirst) { detector->Histograms()->Add(objfirst); objfirst = gDirectory->GetList()->After(objfirst); } } ReadTransPar(); //Read the cuts for all materials MediaTable(); //Build the special IMEDIA table //Initialise geometry deposition table fEventEnergy.Set(gMC->NofVolumes()+1); fSummEnergy.Set(gMC->NofVolumes()+1); fSum2Energy.Set(gMC->NofVolumes()+1); //Compute cross-sections gMC->BuildPhysics(); //Write Geometry object to current file. fGeometry->Write(); fInitDone = kTRUE; fMCQA = new AliMCQA(fNdets); AliConfig::Instance(); // // Save stuff at the beginning of the file to avoid file corruption Write(); } //_____________________________________________________________________________ void AliRun::MediaTable() { // // Built media table to get from the media number to // the detector id // Int_t kz, nz, idt, lz, i, k, ind; // Int_t ibeg; TObjArray &dets = *gAlice->Detectors(); AliModule *det; // // For all detectors for (kz=0;kzGetIdtmed()); for(nz=0;nz<100;nz++) { // Find max and min material number if((idt=idtmed[nz])) { det->LoMedium() = det->LoMedium() < idt ? det->LoMedium() : idt; det->HiMedium() = det->HiMedium() > idt ? det->HiMedium() : idt; } } if(det->LoMedium() > det->HiMedium()) { det->LoMedium() = 0; det->HiMedium() = 0; } else { if(det->HiMedium() > fImedia->GetSize()) { Error("MediaTable","Increase fImedia from %d to %d", fImedia->GetSize(),det->HiMedium()); return; } // Tag all materials in rage as belonging to detector kz for(lz=det->LoMedium(); lz<= det->HiMedium(); lz++) { (*fImedia)[lz]=kz; } } } } // // Print summary table printf(" Traking media ranges:\n"); for(i=0;i<(fNdets-1)/6+1;i++) { for(k=0;k< (6 %3d;",det->GetName(),det->LoMedium(), det->HiMedium()); else printf(" %6s: %3d -> %3d;","NULL",0,0); } printf("\n"); } } //____________________________________________________________________________ void AliRun::SetGenerator(AliGenerator *generator) { // // Load the event generator // if(!fGenerator) fGenerator = generator; } //____________________________________________________________________________ void AliRun::ResetGenerator(AliGenerator *generator) { // // Load the event generator // if(fGenerator) if(generator) Warning("ResetGenerator","Replacing generator %s with %s\n", fGenerator->GetName(),generator->GetName()); else Warning("ResetGenerator","Replacing generator %s with NULL\n", fGenerator->GetName()); fGenerator = generator; } //____________________________________________________________________________ void AliRun::SetTransPar(char *filename) { fTransParName = filename; } //____________________________________________________________________________ void AliRun::SetBaseFile(char *filename) { fBaseFileName = filename; } //____________________________________________________________________________ void AliRun::ReadTransPar() { // // Read filename to set the transport parameters // const Int_t kncuts=10; const Int_t knflags=11; const Int_t knpars=kncuts+knflags; const char kpars[knpars][7] = {"CUTGAM" ,"CUTELE","CUTNEU","CUTHAD","CUTMUO", "BCUTE","BCUTM","DCUTE","DCUTM","PPCUTM","ANNI", "BREM","COMP","DCAY","DRAY","HADR","LOSS", "MULS","PAIR","PHOT","RAYL"}; char line[256]; char detName[7]; char* filtmp; Float_t cut[kncuts]; Int_t flag[knflags]; Int_t i, itmed, iret, ktmed, kz; FILE *lun; // // See whether the file is there filtmp=gSystem->ExpandPathName(fTransParName.Data()); lun=fopen(filtmp,"r"); delete [] filtmp; if(!lun) { Warning("ReadTransPar","File %s does not exist!\n",fTransParName.Data()); return; } // if(fDebug) { printf(" "); for(i=0;i<60;i++) printf("*"); printf("\n"); printf(" *%59s\n","*"); printf(" * Please check carefully what you are doing!%10s\n","*"); printf(" *%59s\n","*"); } // while(1) { // Initialise cuts and flags for(i=0;iGetIdtmed(); // Check that the tracking medium code is valid if(0<=itmed && itmed < 100) { ktmed=idtmed[itmed]; if(!ktmed) { Warning("ReadTransPar","Invalid tracking medium code %d for %s\n",itmed,mod->GetName()); continue; } // Set energy thresholds for(kz=0;kz=0) { if(fDebug) printf(" * %-6s set to %10.3E for tracking medium code %4d for %s\n", kpars[kz],cut[kz],itmed,mod->GetName()); gMC->Gstpar(ktmed,kpars[kz],cut[kz]); } } // Set transport mechanisms for(kz=0;kz=0) { if(fDebug) printf(" * %-6s set to %10d for tracking medium code %4d for %s\n", kpars[kncuts+kz],flag[kz],itmed,mod->GetName()); gMC->Gstpar(ktmed,kpars[kncuts+kz],Float_t(flag[kz])); } } } else { Warning("ReadTransPar","Invalid medium code %d *\n",itmed); continue; } } else { if(fDebug) printf("%s::ReadTransParModule: %s not present\n",ClassName(),detName); continue; } } } //_____________________________________________________________________________ void AliRun::MakeTree(Option_t *option, const char *file) { // // Create the ROOT trees // Loop on all detectors to create the Root branch (if any) // char hname[30]; // // Analyse options const char *oK = strstr(option,"K"); const char *oH = strstr(option,"H"); const char *oE = strstr(option,"E"); const char *oD = strstr(option,"D"); const char *oR = strstr(option,"R"); const char *oS = strstr(option,"S"); // TDirectory *cwd = gDirectory; TBranch *branch = 0; if (oK) fStack->MakeTree(fEvent, file); if (oE && !fTreeE) { fTreeE = new TTree("TE","Header"); branch = fTreeE->Branch("Header", "AliHeader", &fHeader, 4000, 0); branch->SetAutoDelete(kFALSE); TFolder *folder = (TFolder *)gROOT->FindObjectAny("/Folders/RunMC/Event/Header"); if (folder) folder->Add(fHeader); // branch = fTreeE->Branch("Stack","AliStack", &fStack, 4000, 0); // branch->SetAutoDelete(kFALSE); // if (folder) folder->Add(fStack); fTreeE->Write(0,TObject::kOverwrite); } if (file && branch) { char * outFile = new char[strlen(gAlice->GetBaseFile())+strlen(file)+2]; sprintf(outFile,"%s/%s",GetBaseFile(),file); branch->SetFile(outFile); TIter next( branch->GetListOfBranches()); while ((branch=(TBranch*)next())) { branch->SetFile(outFile); } if (GetDebug()>1) printf("* MakeBranch * Diverting Branch %s to file %s\n", branch->GetName(),file); cwd->cd(); delete outFile; } if (oH && !fTreeH) { sprintf(hname,"TreeH%d",fEvent); fTreeH = new TTree(hname,"Hits"); fTreeH->SetAutoSave(1000000000); //no autosave fTreeH->Write(0,TObject::kOverwrite); } if (oD && !fTreeD) { sprintf(hname,"TreeD%d",fEvent); fTreeD = new TTree(hname,"Digits"); fTreeD->Write(0,TObject::kOverwrite); } if (oS && !fTreeS) { sprintf(hname,"TreeS%d",fEvent); fTreeS = new TTree(hname,"SDigits"); fTreeS->Write(0,TObject::kOverwrite); } if (oR && !fTreeR) { sprintf(hname,"TreeR%d",fEvent); fTreeR = new TTree(hname,"Reconstruction"); fTreeR->Write(0,TObject::kOverwrite); } // // Create a branch for hits/digits for each detector // Each branch is a TClonesArray. Each data member of the Hits classes // will be in turn a subbranch of the detector master branch TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { if (oH) detector->MakeBranch(option,file); } } //_____________________________________________________________________________ TParticle* AliRun::Particle(Int_t i) { return fStack->Particle(i); } //_____________________________________________________________________________ void AliRun::BeginEvent() { // Clean-up previous event // Energy scores fEventEnergy.Reset(); // Clean detector information CleanDetectors(); // Reset stack info fStack->Reset(); // // Reset all Detectors & kinematics & trees // char hname[30]; // // Initialise event header fHeader->Reset(fRun,fEvent); // fStack->BeginEvent(fEvent); // if(fLego) { fLego->BeginEvent(); return; } // ResetHits(); ResetDigits(); ResetSDigits(); if(fTreeH) { fTreeH->Reset(); sprintf(hname,"TreeH%d",fEvent); fTreeH->SetName(hname); } if(fTreeD) { fTreeD->Reset(); sprintf(hname,"TreeD%d",fEvent); fTreeD->SetName(hname); fTreeD->Write(0,TObject::kOverwrite); } if(fTreeS) { fTreeS->Reset(); sprintf(hname,"TreeS%d",fEvent); fTreeS->SetName(hname); fTreeS->Write(0,TObject::kOverwrite); } if(fTreeR) { fTreeR->Reset(); sprintf(hname,"TreeR%d",fEvent); fTreeR->SetName(hname); fTreeR->Write(0,TObject::kOverwrite); } } //_____________________________________________________________________________ void AliRun::ResetDigits() { // // Reset all Detectors digits // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->ResetDigits(); } } //_____________________________________________________________________________ void AliRun::ResetSDigits() { // // Reset all Detectors digits // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->ResetSDigits(); } } //_____________________________________________________________________________ void AliRun::ResetHits() { // // Reset all Detectors hits // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->ResetHits(); } } //_____________________________________________________________________________ void AliRun::ResetPoints() { // // Reset all Detectors points // TIter next(fModules); AliModule *detector; while((detector = (AliModule*)next())) { detector->ResetPoints(); } } //_____________________________________________________________________________ void AliRun::RunMC(Int_t nevent, const char *setup) { // // Main function to be called to process a galice run // example // Root > gAlice.Run(); // a positive number of events will cause the finish routine // to be called // // check if initialisation has been done if (!fInitDone) InitMC(setup); // Create the Root Tree with one branch per detector MakeTree("ESDR"); if (gSystem->Getenv("CONFIG_SPLIT_FILE")) { MakeTree("K","Kine.root"); MakeTree("H","Hits.root"); } else { MakeTree("KH"); } gMC->ProcessRun(nevent); // End of this run, close files if(nevent>0) FinishRun(); } //_____________________________________________________________________________ void AliRun::RunReco(const char *selected, Int_t first, Int_t last) { // // Main function to be called to reconstruct Alice event // cout << "Found "<< gAlice->TreeE()->GetEntries() << "events" << endl; Int_t nFirst = first; Int_t nLast = (last < 0)? (Int_t) gAlice->TreeE()->GetEntries() : last; for (Int_t nevent = nFirst; nevent <= nLast; nevent++) { cout << "Processing event "<< nevent << endl; GetEvent(nevent); // MakeTree("R"); Digits2Reco(selected); } } //_____________________________________________________________________________ void AliRun::Hits2Digits(const char *selected) { // Convert Hits to sumable digits // for (Int_t nevent=0; neventTreeE()->GetEntries(); nevent++) { GetEvent(nevent); // MakeTree("D"); Hits2SDigits(selected); SDigits2Digits(selected); } } //_____________________________________________________________________________ void AliRun::Tree2Tree(Option_t *option, const char *selected) { // // Function to transform the content of // // - TreeH to TreeS (option "S") // - TreeS to TreeD (option "D") // - TreeD to TreeR (option "R") // // If multiple options are specified ("SDR"), transformation will be done in sequence for // selected detector and for all detectors if none is selected (detector string // can contain blank separated list of detector names). const char *oS = strstr(option,"S"); const char *oD = strstr(option,"D"); const char *oR = strstr(option,"R"); TObjArray *detectors = Detectors(); TIter next(detectors); AliDetector *detector = 0; TDirectory *cwd = gDirectory; char outFile[32]; while((detector = (AliDetector*)next())) { if (selected) if (strcmp(detector->GetName(),selected)) continue; if (detector->IsActive()){ if (gSystem->Getenv("CONFIG_SPLIT_FILE")) { if (oS) { sprintf(outFile,"SDigits.%s.root",detector->GetName()); detector->MakeBranch("S",outFile); } if (oD) { sprintf(outFile,"Digits.%s.root",detector->GetName()); detector->MakeBranch("D",outFile); } if (oR) { sprintf(outFile,"Reco.%s.root",detector->GetName()); detector->MakeBranch("R",outFile); } } else { detector->MakeBranch(option); } cwd->cd(); if (oS) { cout << "Hits2SDigits: Processing " << detector->GetName() << "..." << endl; detector->Hits2SDigits(); } if (oD) { cout << "SDigits2Digits: Processing " << detector->GetName() << "..." << endl; detector->SDigits2Digits(); } if (oR) { cout << "Digits2Reco: Processing " << detector->GetName() << "..." << endl; detector->Digits2Reco(); } cwd->cd(); } } } //_____________________________________________________________________________ void AliRun::RunLego(const char *setup, Int_t nc1, Float_t c1min, Float_t c1max,Int_t nc2,Float_t c2min,Float_t c2max, Float_t rmin,Float_t rmax,Float_t zmax, AliLegoGenerator* gener) { // // Generates lego plots of: // - radiation length map phi vs theta // - radiation length map phi vs eta // - interaction length map // - g/cm2 length map // // ntheta bins in theta, eta // themin minimum angle in theta (degrees) // themax maximum angle in theta (degrees) // nphi bins in phi // phimin minimum angle in phi (degrees) // phimax maximum angle in phi (degrees) // rmin minimum radius // rmax maximum radius // // // The number of events generated = ntheta*nphi // run input parameters in macro setup (default="Config.C") // // Use macro "lego.C" to visualize the 3 lego plots in spherical coordinates //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html // // check if initialisation has been done if (!fInitDone) InitMC(setup); //Save current generator AliGenerator *gen=Generator(); // Set new generator if (!gener) gener = new AliLegoGenerator(); ResetGenerator(gener); // // Configure Generator gener->SetRadiusRange(rmin, rmax); gener->SetZMax(zmax); gener->SetCoor1Range(nc1, c1min, c1max); gener->SetCoor2Range(nc2, c2min, c2max); //Create Lego object fLego = new AliLego("lego",gener); //Prepare MC for Lego Run gMC->InitLego(); //Run Lego Object gMC->ProcessRun(nc1*nc2+1); // Create only the Root event Tree MakeTree("E"); // End of this run, close files FinishRun(); // Restore current generator ResetGenerator(gen); // Delete Lego Object delete fLego; fLego=0; } //_____________________________________________________________________________ void AliRun::SetConfigFunction(const char * config) { // // Set the signature of the function contained in Config.C to configure // the run // fConfigFunction=config; } //_____________________________________________________________________________ void AliRun::SetCurrentTrack(Int_t track) { // // Set current track number // fStack->SetCurrentTrack(track); } //_____________________________________________________________________________ void AliRun::SetTrack(Int_t done, Int_t parent, Int_t pdg, Float_t *pmom, Float_t *vpos, Float_t *polar, Float_t tof, AliMCProcess mech, Int_t &ntr, Float_t weight) { // Delegate to stack // fStack->SetTrack(done, parent, pdg, pmom, vpos, polar, tof, mech, ntr, weight); } //_____________________________________________________________________________ void AliRun::SetTrack(Int_t done, Int_t parent, Int_t pdg, Double_t px, Double_t py, Double_t pz, Double_t e, Double_t vx, Double_t vy, Double_t vz, Double_t tof, Double_t polx, Double_t poly, Double_t polz, AliMCProcess mech, Int_t &ntr, Float_t weight) { // Delegate to stack // fStack->SetTrack(done, parent, pdg, px, py, pz, e, vx, vy, vz, tof, polx, poly, polz, mech, ntr, weight); } //_____________________________________________________________________________ void AliRun::SetHighWaterMark(const Int_t nt) { // // Set high water mark for last track in event fStack->SetHighWaterMark(nt); } //_____________________________________________________________________________ void AliRun::KeepTrack(const Int_t track) { // // Delegate to stack // fStack->KeepTrack(track); } //_____________________________________________________________________________ void AliRun::StepManager(Int_t id) { // // Called at every step during transport // // // --- If lego option, do it and leave if (fLego) fLego->StepManager(); else { Int_t copy; //Update energy deposition tables AddEnergyDeposit(gMC->CurrentVolID(copy),gMC->Edep()); //Call the appropriate stepping routine; AliModule *det = (AliModule*)fModules->At(id); if(det) { fMCQA->StepManager(id); det->StepManager(); } } } //_____________________________________________________________________________ void AliRun::Streamer(TBuffer &R__b) { // Stream an object of class AliRun. if (R__b.IsReading()) { if (!gAlice) gAlice = this; AliRun::Class()->ReadBuffer(R__b, this); // gROOT->GetListOfBrowsables()->Add(this,"Run"); fTreeE = (TTree*)gDirectory->Get("TE"); if (fTreeE) { fTreeE->SetBranchAddress("Header", &fHeader); } else Error("Streamer","cannot find Header Tree\n"); fTreeE->GetEntry(0); gRandom = fRandom; } else { AliRun::Class()->WriteBuffer(R__b, this); } } //___________________________________________________________________________ Int_t AliRun::CurrentTrack() const { // // Returns current track // return fStack->CurrentTrack(); } //___________________________________________________________________________ Int_t AliRun::GetNtrack() const { // // Returns number of tracks in stack // return fStack->GetNtrack(); } //___________________________________________________________________________ TObjArray* AliRun::Particles() { // // Returns pointer to Particles array // return fStack->Particles(); } //___________________________________________________________________________ TTree* AliRun::TreeK() { // // Returns pointer to the TreeK array // return fStack->TreeK(); } void AliRun::SetGenEventHeader(AliGenEventHeader* header) { fHeader->SetGenEventHeader(header); }