#ifndef ALIVERTEXERTRACKS_H #define ALIVERTEXERTRACKS_H /* Copyright(c) 1998-2003, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ //------------------------------------------------------- // Class for vertex determination with tracks // // Origin: AliITSVertexerTracks // A.Dainese, Padova, andrea.dainese@pd.infn.it // M.Masera, Torino, massimo.masera@to.infn.it // Moved to STEER and adapted to ESD tracks: // F.Prino, Torino, prino@to.infn.it //------------------------------------------------------- /***************************************************************************** * * * This class determines the vertex of a set of tracks. * * Different algorithms are implemented, see data member fAlgo. * * * *****************************************************************************/ #include #include #include "AliLog.h" #include "AliESDVertex.h" class AliExternalTrackParam; class AliVEvent; class AliStrLine; class AliVertexerTracks : public TObject { public: AliVertexerTracks(); AliVertexerTracks(Double_t fieldkG); virtual ~AliVertexerTracks(); AliESDVertex* FindPrimaryVertex(const AliVEvent *vEvent); AliESDVertex* FindPrimaryVertex(const TObjArray *trkArrayOrig,UShort_t *idOrig); AliESDVertex* VertexForSelectedTracks(const TObjArray *trkArray,UShort_t *id, Bool_t optUseFitter=kTRUE, Bool_t optPropagate=kTRUE, Bool_t optUseDiamondConstraint=kFALSE); AliESDVertex* VertexForSelectedESDTracks(TObjArray *trkArray, Bool_t optUseFitter=kTRUE, Bool_t optPropagate=kTRUE, Bool_t optUseDiamondConstraint=kFALSE); AliESDVertex* RemoveTracksFromVertex(AliESDVertex *inVtx, const TObjArray *trkArray,UShort_t *id, const Float_t *diamondxy) const; AliESDVertex* RemoveConstraintFromVertex(AliESDVertex *inVtx, Float_t *diamondxyz, Float_t *diamondcov) const; void SetITSMode(Double_t dcacut=0.1, Double_t dcacutIter0=0.1, Double_t maxd0z0=0.5, Int_t minCls=5, Int_t mintrks=1, Double_t nsigma=3., Double_t mindetfitter=100., Double_t maxtgl=1000., Double_t fidR=3., Double_t fidZ=30., Int_t finderAlgo=1, Int_t finderAlgoIter0=4); void SetTPCMode(Double_t dcacut=0.1, Double_t dcacutIter0=1.0, Double_t maxd0z0=5.0, Int_t minCls=10, Int_t mintrks=1, Double_t nsigma=3., Double_t mindetfitter=0.1, Double_t maxtgl=1.5, Double_t fidR=3., Double_t fidZ=30., Int_t finderAlgo=1, Int_t finderAlgoIter0=4); void SetCuts(Double_t *cuts); void SetConstraintOff() { fConstraint=kFALSE; SetVtxStart(); SetVtxStartSigma(); return; } void SetConstraintOn() { fConstraint=kTRUE; return; } void SetDCAcut(Double_t maxdca) { fDCAcut=maxdca; return; } void SetDCAcutIter0(Double_t maxdca) { fDCAcutIter0=maxdca; return; } void SetFinderAlgorithm(Int_t opt=1) { fAlgo=opt; return; } void SetITSrefitRequired() { fITSrefit=kTRUE; return; } void SetITSpureSA() { fITSpureSA=kTRUE; return; } Bool_t GetITSrefitRequired() const { return fITSrefit; } void SetITSrefitNotRequired() { fITSrefit=kFALSE; return; } void SetFiducialRZ(Double_t r=3,Double_t z=30) { fFiducialR=r; fFiducialZ=z; return; } void SetMaxd0z0(Double_t maxd0z0=0.5) { fMaxd0z0=maxd0z0; return; } void SetMinClusters(Int_t n=5) { fMinClusters=n; return; } Int_t GetMinClusters() const { return fMinClusters; } void SetMinTracks(Int_t n=1) { fMinTracks=n; return; } void SetNSigmad0(Double_t n=3) { fNSigma=n; return; } Double_t GetNSigmad0() const { return fNSigma; } void SetMinDetFitter(Double_t mindet=100.) { fMinDetFitter=mindet; return; } void SetMaxTgl(Double_t maxtgl=1.) { fMaxTgl=maxtgl; return; } void SetOnlyFitter() { if(!fConstraint) AliFatal("Set constraint first!"); fOnlyFitter=kTRUE; return; } void SetSkipTracks(Int_t n,const Int_t *skipped); void SetVtxStart(Double_t x=0,Double_t y=0,Double_t z=0) { fNominalPos[0]=x; fNominalPos[1]=y; fNominalPos[2]=z; return; } void SetVtxStartSigma(Double_t sx=3.,Double_t sy=3.,Double_t sz=15.) { fNominalCov[0]=sx*sx; fNominalCov[2]=sy*sy; fNominalCov[5]=sz*sz; fNominalCov[1]=0.; fNominalCov[3]=0.; fNominalCov[4]=0.; return; } void SetVtxStart(AliESDVertex *vtx); static Double_t GetStrLinMinDist(const Double_t *p0,const Double_t *p1,const Double_t *x0); static Double_t GetDeterminant3X3(Double_t matr[][3]); static void GetStrLinDerivMatrix(const Double_t *p0,const Double_t *p1,Double_t (*m)[3],Double_t *d); static void GetStrLinDerivMatrix(const Double_t *p0,const Double_t *p1,const Double_t *sigmasq,Double_t (*m)[3],Double_t *d); static AliESDVertex TrackletVertexFinder(const TClonesArray *lines, Int_t optUseWeights=0); static AliESDVertex TrackletVertexFinder(AliStrLine **lines, const Int_t knacc, Int_t optUseWeights=0); void SetFieldkG(Double_t field=-999.) { fFieldkG=field; return; } Double_t GetFieldkG() const { if(fFieldkG<-99.) AliFatal("Field value not set"); return fFieldkG; } void SetNSigmaForUi00(Double_t n=1.5) { fnSigmaForUi00=n; return; } Double_t GetNSigmaForUi00() const { return fnSigmaForUi00; } protected: void HelixVertexFinder(); void OneTrackVertFinder(); Int_t PrepareTracks(const TObjArray &trkArrayOrig,const UShort_t *idOrig, Int_t optImpParCut); Bool_t PropagateTrackTo(AliExternalTrackParam *track, Double_t xToGo); Bool_t TrackToPoint(AliExternalTrackParam *t, TMatrixD &ri,TMatrixD &wWi, Bool_t uUi3by3=kFALSE) const; void VertexFinder(Int_t optUseWeights=0); void VertexFitter(); void StrLinVertexFinderMinDist(Int_t optUseWeights=0); void TooFewTracks(); AliESDVertex fVert; // vertex after vertex finder AliESDVertex *fCurrentVertex; // ESD vertex after fitter UShort_t fMode; // 0 ITS+TPC; 1 TPC Double_t fFieldkG; // z component of field (kGauss) Double_t fNominalPos[3]; // initial knowledge on vertex position Double_t fNominalCov[6]; // initial knowledge on vertex position TObjArray fTrkArraySel; // array with tracks to be processed UShort_t *fIdSel; // IDs of the tracks (AliESDtrack::GetID()) Int_t *fTrksToSkip; // track IDs to be skipped for find and fit Int_t fNTrksToSkip; // number of tracks to be skipped Bool_t fConstraint; // true when "mean vertex" was set in // fNominal ... and must be used in the fit Bool_t fOnlyFitter; // primary with one fitter shot only // (use only with beam constraint) Int_t fMinTracks; // minimum number of tracks Int_t fMinClusters; // minimum number of ITS or TPC clusters per track Double_t fDCAcut; // maximum DCA between 2 tracks used for vertex Double_t fDCAcutIter0; // maximum DCA between 2 tracks used for vertex Double_t fNSigma; // number of sigmas for d0 cut in PrepareTracks() Double_t fMaxd0z0; // value for sqrt(d0d0+z0z0) cut // in PrepareTracks(1) if fConstraint=kFALSE Double_t fMinDetFitter; // minimum determinant to try to invertex matrix Double_t fMaxTgl; // maximum tgl of tracks Bool_t fITSrefit; // if kTRUE (default), use only kITSrefit tracks // if kFALSE, use all tracks (also TPC only) Bool_t fITSpureSA; // if kFALSE (default) skip ITSpureSA tracks // if kTRUE use only those Double_t fFiducialR; // radius of fiducial cylinder for tracks Double_t fFiducialZ; // length of fiducial cylinder for tracks Double_t fnSigmaForUi00; // n. sigmas from finder in TrackToPoint Int_t fAlgo; // option for vertex finding algorythm Int_t fAlgoIter0; // this is for iteration 0 // fAlgo=1 (default) finds minimum-distance point among all selected tracks // approximated as straight lines // and uses errors on track parameters as weights // fAlgo=2 finds minimum-distance point among all the selected tracks // approximated as straight lines // fAlgo=3 finds the average point among DCA points of all pairs of tracks // treated as helices // fAlgo=4 finds the average point among DCA points of all pairs of tracks // approximated as straight lines // and uses errors on track parameters as weights // fAlgo=5 finds the average point among DCA points of all pairs of tracks // approximated as straight lines private: AliVertexerTracks(const AliVertexerTracks & source); AliVertexerTracks & operator=(const AliVertexerTracks & source); ClassDef(AliVertexerTracks,14) // 3D Vertexing with tracks }; #endif