#ifndef ALIESDTRACK_H #define ALIESDTRACK_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //------------------------------------------------------------------------- // Class AliESDtrack // This is the class to deal with during the physics analysis of data // // Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch //------------------------------------------------------------------------- /***************************************************************************** * Use GetExternalParameters() and GetExternalCovariance() to access the * * track information regardless of its internal representation. * * This formation is now fixed in the following way: * * external param0: local Y-coordinate of a track (cm) * * external param1: local Z-coordinate of a track (cm) * * external param2: local sine of the track momentum azimuthal angle * * external param3: tangent of the track momentum dip angle * * external param4: 1/pt (1/(GeV/c)) * * * * The Get*Label() getters return the label of the associated MC particle. * * The absolute value of this label is the index of the particle within the * * MC stack. If the label is negative, this track was assigned a certain * * number of clusters that did not in fact belong to this track. * *****************************************************************************/ #include #include "AliExternalTrackParam.h" #include "AliVTrack.h" #include "AliPID.h" #include "AliESDfriendTrack.h" #include "AliTPCdEdxInfo.h" class TParticle; class AliESDVertex; class AliESDEvent; class AliKalmanTrack; class AliTrackPointArray; class TPolyMarker3D; class AliESDtrack : public AliExternalTrackParam { public: // enum {kNITSchi2Std=3}; // AliESDtrack(); AliESDtrack(const AliESDtrack& track); AliESDtrack(const AliVTrack* track); AliESDtrack(TParticle * part); virtual ~AliESDtrack(); virtual void Copy(TObject &obj) const; const AliESDfriendTrack *GetFriendTrack() const {return fFriendTrack;} void SetFriendTrack(const AliESDfriendTrack *t) { delete fFriendTrack; fFriendTrack=new AliESDfriendTrack(*t); } void ReleaseESDfriendTrack() { delete fFriendTrack; fFriendTrack=0; } void AddCalibObject(TObject * object); // add calib object to the list TObject * GetCalibObject(Int_t index); // return calib objct at given position void MakeMiniESDtrack(); void SetID(Short_t id) { fID =id;} Int_t GetID() const { return fID;} void SetVertexID(Char_t id) { fVertexID=id;} Char_t GetVertexID() const { return fVertexID;} void SetStatus(ULong_t flags) {fFlags|=flags;} void ResetStatus(ULong_t flags) {fFlags&=~flags;} Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags); void SetIntegratedLength(Double_t l) {fTrackLength=l;} void SetIntegratedTimes(const Double_t *times); void SetESDpid(const Double_t *p); void GetESDpid(Double_t *p) const; virtual const Double_t *PID() const { return fR; } Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;} ULong_t GetStatus() const {return fFlags;} Int_t GetLabel() const {return fLabel;} void SetLabel(Int_t label) {fLabel = label;} void GetExternalParameters(Double_t &x, Double_t p[5]) const; void GetExternalCovariance(Double_t cov[15]) const; Double_t GetIntegratedLength() const {return fTrackLength;} void GetIntegratedTimes(Double_t *times) const; Int_t GetPID(Bool_t tpcOnly=kFALSE) const; Int_t GetTOFBunchCrossing(Double_t b=0, Bool_t pidTPConly=kTRUE) const; Double_t GetMass(Bool_t tpcOnly=kFALSE) const {return AliPID::ParticleMass(GetPID(tpcOnly));} Double_t M() const; Double_t E() const; Double_t Y() const; Bool_t GetConstrainedPxPyPz(Double_t *p) const { if (!fCp) return kFALSE; return fCp->GetPxPyPz(p); } Bool_t GetConstrainedXYZ(Double_t *r) const { if (!fCp) return kFALSE; return fCp->GetXYZ(r); } const AliExternalTrackParam *GetConstrainedParam() const {return fCp;} Bool_t GetConstrainedExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetConstrainedExternalCovariance(Double_t cov[15]) const; Double_t GetConstrainedChi2() const {return fCchi2;} Double_t GetChi2TPCConstrainedVsGlobal(const AliESDVertex* vtx) const; // // global track chi2 void SetGlobalChi2(Double_t chi2) {fGlobalChi2 = chi2;} Double_t GetGlobalChi2() const {return fGlobalChi2;} Bool_t GetInnerPxPyPz(Double_t *p) const { if (!fIp) return kFALSE; return fIp->GetPxPyPz(p); } const AliExternalTrackParam * GetInnerParam() const { return fIp;} const AliExternalTrackParam * GetTPCInnerParam() const {return fTPCInner;} Bool_t FillTPCOnlyTrack(AliESDtrack &track); Bool_t GetInnerXYZ(Double_t *r) const { if (!fIp) return kFALSE; return fIp->GetXYZ(r); } Bool_t GetInnerExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetInnerExternalCovariance(Double_t cov[15]) const; void SetOuterParam(const AliExternalTrackParam *p, ULong_t flags); void SetOuterHmpParam(const AliExternalTrackParam *p, ULong_t flags); const AliExternalTrackParam * GetOuterParam() const { return fOp;} const AliExternalTrackParam * GetOuterHmpParam() const { return fHMPIDp;} Bool_t GetOuterPxPyPz(Double_t *p) const { if (!fOp) return kFALSE; return fOp->GetPxPyPz(p); } Bool_t GetOuterHmpPxPyPz(Double_t *p) const { if (!fHMPIDp) return kFALSE; return fHMPIDp->GetPxPyPz(p); } Bool_t GetOuterXYZ(Double_t *r) const { if (!fOp) return kFALSE; return fOp->GetXYZ(r); } Bool_t GetOuterHmpXYZ(Double_t *r) const { if (!fHMPIDp) return kFALSE; return fHMPIDp->GetXYZ(r); } Bool_t GetOuterExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetOuterExternalCovariance(Double_t cov[15]) const; Bool_t GetOuterHmpExternalParameters (Double_t &alpha, Double_t &x, Double_t p[5]) const; Bool_t GetOuterHmpExternalCovariance(Double_t cov[15]) const; Int_t GetNcls(Int_t idet) const; Int_t GetClusters(Int_t idet, Int_t *idx) const; void SetITSpid(const Double_t *p); void GetITSpid(Double_t *p) const; Double_t GetITSsignal() const {return fITSsignal;} void SetITSdEdxSamples(const Double_t s[4]); void GetITSdEdxSamples(Double_t *s) const; Double_t GetITSchi2() const {return fITSchi2;} Double_t GetITSchi2Std(Int_t step) const {return (step>-1&&step-1&&stepSetITStrack(track); } AliKalmanTrack *GetITStrack(){ return fFriendTrack!=NULL?fFriendTrack->GetITStrack():NULL; } Bool_t HasPointOnITSLayer(Int_t i) const {return TESTBIT(fITSClusterMap,i);} Bool_t HasSharedPointOnITSLayer(Int_t i) const {return TESTBIT(fITSSharedMap,i);} void SetTPCpid(const Double_t *p); void GetTPCpid(Double_t *p) const; void SetTPCPoints(Float_t points[4]){ for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i]; } void SetTPCPointsF(UChar_t findable){fTPCnclsF = findable;} void SetTPCPointsFIter1(UChar_t findable){fTPCnclsFIter1 = findable;} UShort_t GetTPCNcls() const { return fTPCncls;} UShort_t GetTPCNclsF() const { return fTPCnclsF;} UShort_t GetTPCNclsIter1() const { return fTPCnclsIter1;} UShort_t GetTPCNclsFIter1() const { return fTPCnclsFIter1;} UShort_t GetTPCnclsS(Int_t i0=0,Int_t i1=159) const; UShort_t GetTPCncls(Int_t row0=0,Int_t row1=159) const; Double_t GetTPCPoints(Int_t i) const {return fTPCPoints[i];} void SetKinkIndexes(Int_t points[3]) { for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i]; } void SetV0Indexes(Int_t points[3]) { for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i]; } void SetTPCsignal(Float_t signal, Float_t sigma, UChar_t npoints){ fTPCsignal = signal; fTPCsignalS = sigma; fTPCsignalN = npoints; } void SetTPCsignalTunedOnData(Float_t signal){ fTPCsignalTuned = signal; } void SetTPCdEdxInfo(AliTPCdEdxInfo * dEdxInfo); AliTPCdEdxInfo * GetTPCdEdxInfo() const {return fTPCdEdxInfo;} Double_t GetTPCsignal() const {return fTPCsignal;} Double_t GetTPCsignalTunedOnData() const {return fTPCsignalTuned;} Double_t GetTPCsignalSigma() const {return fTPCsignalS;} UShort_t GetTPCsignalN() const {return fTPCsignalN;} Double_t GetTPCmomentum() const {return fIp?fIp->GetP():GetP();} Double_t GetTPCchi2() const {return fTPCchi2;} Double_t GetTPCchi2Iter1() const {return fTPCchi2Iter1;} UShort_t GetTPCclusters(Int_t *idx) const; Double_t GetTPCdensity(Int_t row0, Int_t row1) const; Int_t GetTPCLabel() const {return fTPCLabel;} Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];} Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];} const TBits& GetTPCFitMap() const {return fTPCFitMap;} const TBits& GetTPCClusterMap() const {return fTPCClusterMap;} const TBits* GetTPCClusterMapPtr() const {return &fTPCClusterMap;} const TBits& GetTPCSharedMap() const {return fTPCSharedMap;} void SetTPCFitMap(const TBits &amap) {fTPCFitMap = amap;} void SetTPCClusterMap(const TBits &amap) {fTPCClusterMap = amap;} void SetTPCSharedMap(const TBits &amap) {fTPCSharedMap = amap;} Float_t GetTPCClusterInfo(Int_t nNeighbours=3, Int_t type=0, Int_t row0=0, Int_t row1=159, Int_t bitType=0 ) const; Float_t GetTPCClusterDensity(Int_t nNeighbours=3, Int_t type=0, Int_t row0=0, Int_t row1=159, Int_t bitType=0 ) const; Float_t GetTPCCrossedRows() const; void SetTRDpid(const Double_t *p); void SetTRDsignal(Double_t sig) {fTRDsignal = sig;} void SetTRDNchamberdEdx(UChar_t nch) {fTRDNchamberdEdx = nch;} void SetTRDNclusterdEdx(UChar_t ncls){fTRDNclusterdEdx = ncls;} // A.Bercuci void SetTRDntracklets(UChar_t q){fTRDntracklets = q;} UChar_t GetTRDntracklets() const {return (fTRDntracklets>>3)&7;} UChar_t GetTRDntrackletsPID() const {return fTRDntracklets&7;} // TEMPORARY alias asked by the HFE group to allow // reading of the v4-16-Release data with TRUNK related software (A.Bercuci@Apr 30th 09) UChar_t GetTRDpidQuality() const {return GetTRDntrackletsPID();} UChar_t GetTRDtrkltOccupancy(Int_t ly) const { return ly=0 ? fTRDTimBin[ly] & 0x1F : 0; } UChar_t GetTRDtrkltClCross(Int_t ly) const { return ly=0 ? (fTRDTimBin[ly] >> 5) & 0x03 : 0; } Bool_t IsTRDtrkltChmbGood(Int_t ly) const { return ly=0 ? ((fTRDTimBin[ly] >> 7) & 0x01) == 1 : kFALSE;} // end A.Bercuci void SetNumberOfTRDslices(Int_t n); Int_t GetNumberOfTRDslices() const; void SetTRDslice(Double_t q, Int_t plane, Int_t slice); void SetTRDmomentum(Double_t p, Int_t plane, Double_t *sp=0x0); Double_t GetTRDslice(Int_t plane, Int_t slice=-1) const; Double_t GetTRDmomentum(Int_t plane, Double_t *sp=0x0) const; void SetTRDQuality(Float_t quality){fTRDQuality=quality;} Double_t GetTRDQuality()const {return fTRDQuality;} void SetTRDBudget(Float_t budget){fTRDBudget=budget;} Double_t GetTRDBudget()const {return fTRDBudget;} void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;} void GetTRDpid(Double_t *p) const; Double_t GetTRDsignal() const {return fTRDsignal;} UChar_t GetTRDNchamberdEdx() const {return fTRDNchamberdEdx;} UChar_t GetTRDNclusterdEdx() const {return fTRDNclusterdEdx;} Char_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];} Double_t GetTRDchi2() const {return fTRDchi2;} UChar_t GetTRDclusters(Int_t *idx) const; UChar_t GetTRDncls() const {return fTRDncls;} UChar_t GetTRDncls0() const {return fTRDncls0;} UChar_t GetTRDtracklets(Int_t *idx) const; void SetTRDpid(Int_t iSpecies, Float_t p); Double_t GetTRDpid(Int_t iSpecies) const; Int_t GetTRDLabel() const {return fTRDLabel;} void SetTRDtrack(AliKalmanTrack * track){ if (fFriendTrack) fFriendTrack->SetTRDtrack(track); } AliKalmanTrack *GetTRDtrack(){ return fFriendTrack!=NULL?fFriendTrack->GetTRDtrack():NULL; } void SetTOFsignal(Double_t tof) {fTOFsignal=tof;} Double_t GetTOFsignal() const {return fTOFsignal;} void SetTOFsignalToT(Double_t ToT) {fTOFsignalToT=ToT;} Double_t GetTOFsignalToT() const {return fTOFsignalToT;} void SetTOFsignalRaw(Double_t tof) {fTOFsignalRaw=tof;} Double_t GetTOFsignalRaw() const {return fTOFsignalRaw;} void SetTOFsignalDz(Double_t dz) {fTOFsignalDz=dz;} Double_t GetTOFsignalDz() const {return fTOFsignalDz;} void SetTOFsignalDx(Double_t dx) {fTOFsignalDx=dx;} Double_t GetTOFsignalDx() const {return fTOFsignalDx;} void SetTOFDeltaBC(Short_t deltaBC) {fTOFdeltaBC=deltaBC;}; Short_t GetTOFDeltaBC() const {return fTOFdeltaBC;} void SetTOFL0L1(Short_t l0l1) {fTOFl0l1=l0l1;}; Short_t GetTOFL0L1() const {return fTOFl0l1;} Double_t GetTOFchi2() const {return fTOFchi2;} void SetTOFpid(const Double_t *p); void SetTOFLabel(const Int_t *p); void GetTOFpid(Double_t *p) const; void GetTOFLabel(Int_t *p) const; void GetTOFInfo(Float_t *info) const; void SetTOFInfo(Float_t *info); Int_t GetTOFCalChannel() const {return fTOFCalChannel;} Int_t GetTOFcluster() const {return fTOFindex;} void SetTOFcluster(Int_t index) {fTOFindex=index;} void SetTOFCalChannel(Int_t index) {fTOFCalChannel=index;} // HMPID methodes +++++++++++++++++++++++++++++++++ (kir) void SetHMPIDsignal(Double_t theta) {fHMPIDsignal=theta;} Double_t GetHMPIDsignal() const {if(fHMPIDsignal>0) return fHMPIDsignal - (Int_t)fHMPIDsignal; else return fHMPIDsignal;} Double_t GetHMPIDoccupancy() const {return (Int_t)fHMPIDsignal/10.0;} void SetHMPIDpid(const Double_t *p); void GetHMPIDpid(Double_t *p) const; void SetHMPIDchi2(Double_t chi2) {fHMPIDchi2=chi2;} Double_t GetHMPIDchi2() const {return fHMPIDchi2;} void SetHMPIDcluIdx(Int_t ch,Int_t idx) {fHMPIDcluIdx=ch*1000000+idx;} Int_t GetHMPIDcluIdx() const {return fHMPIDcluIdx;} void SetHMPIDtrk(Float_t x, Float_t y, Float_t th, Float_t ph) { fHMPIDtrkX=x; fHMPIDtrkY=y; fHMPIDtrkTheta=th; fHMPIDtrkPhi=ph; } void GetHMPIDtrk(Float_t &x, Float_t &y, Float_t &th, Float_t &ph) const { x=fHMPIDtrkX; y=fHMPIDtrkY; th=fHMPIDtrkTheta; ph=fHMPIDtrkPhi; } void SetHMPIDmip(Float_t x, Float_t y, Int_t q, Int_t nph=0) { fHMPIDmipX=x; fHMPIDmipY=y; fHMPIDqn=1000000*nph+q; } void GetHMPIDmip(Float_t &x,Float_t &y,Int_t &q,Int_t &nph) const { x=fHMPIDmipX; y=fHMPIDmipY; q=fHMPIDqn%1000000; nph=fHMPIDqn/1000000; } Bool_t IsHMPID() const {return fFlags&kHMPIDpid;} Bool_t IsPureITSStandalone() const {return fFlags&kITSpureSA;} Bool_t IsMultPrimary() const {return !(fFlags&kMultSec);} Bool_t IsMultSecondary() const {return (fFlags&kMultSec);} Int_t GetEMCALcluster() const {return fCaloIndex;} void SetEMCALcluster(Int_t index) {fCaloIndex=index;} Bool_t IsEMCAL() const {return fFlags&kEMCALmatch;} Double_t GetTrackPhiOnEMCal() const {return fTrackPhiOnEMCal;} Double_t GetTrackEtaOnEMCal() const {return fTrackEtaOnEMCal;} void SetTrackPhiEtaOnEMCal(Double_t phi,Double_t eta) {fTrackPhiOnEMCal=phi;fTrackEtaOnEMCal=eta;} Int_t GetPHOScluster() const {return fCaloIndex;} void SetPHOScluster(Int_t index) {fCaloIndex=index;} Bool_t IsPHOS() const {return fFlags&kPHOSmatch;} Double_t GetPHOSdx()const{return fCaloDx ;} Double_t GetPHOSdz()const{return fCaloDz ;} void SetPHOSdxdz(Double_t dx, Double_t dz){fCaloDx=dx,fCaloDz=dz;} void SetTrackPointArray(AliTrackPointArray *points) { if (fFriendTrack) fFriendTrack->SetTrackPointArray(points); } const AliTrackPointArray *GetTrackPointArray() const { return fFriendTrack!=NULL?fFriendTrack->GetTrackPointArray():NULL; } Bool_t RelateToVertexTPC(const AliESDVertex *vtx, Double_t b, Double_t maxd, AliExternalTrackParam *cParam=0); Bool_t RelateToVertexTPCBxByBz(const AliESDVertex *vtx, Double_t b[3],Double_t maxd, AliExternalTrackParam *cParam=0); void GetImpactParametersTPC(Float_t &xy,Float_t &z) const {xy=fdTPC; z=fzTPC;} void GetImpactParametersTPC(Float_t p[2], Float_t cov[3]) const { p[0]=fdTPC; p[1]=fzTPC; cov[0]=fCddTPC; cov[1]=fCdzTPC; cov[2]=fCzzTPC; } Double_t GetConstrainedChi2TPC() const {return fCchi2TPC;} Bool_t RelateToVertex(const AliESDVertex *vtx, Double_t b, Double_t maxd, AliExternalTrackParam *cParam=0); Bool_t RelateToVertexBxByBz(const AliESDVertex *vtx, Double_t b[3], Double_t maxd, AliExternalTrackParam *cParam=0); void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;} void GetImpactParameters(Float_t p[2], Float_t cov[3]) const { p[0]=fD; p[1]=fZ; cov[0]=fCdd; cov[1]=fCdz; cov[2]=fCzz; } virtual void Print(Option_t * opt) const ; const AliESDEvent* GetESDEvent() const {return fESDEvent;} void SetESDEvent(const AliESDEvent* evt) {fESDEvent = evt;} // // visualization (M. Ivanov) // void FillPolymarker(TPolyMarker3D *pol, Float_t magf, Float_t minR, Float_t maxR, Float_t stepR); // // online mode Matthias.Richter@cern.ch // in order to optimize AliESDtrack for usage in the online HLT, // some functionality is disabled // - creation of AliESDfriendTrack // - set lengt of bit fields fTPCClusterMap and fTPCSharedMap to 0 static void OnlineMode(bool mode) {fgkOnlineMode=mode;} static bool OnlineMode() {return fgkOnlineMode;} protected: AliExternalTrackParam *fCp; // Track parameters constrained to the primary vertex AliExternalTrackParam *fIp; // Track parameters estimated at the inner wall of TPC AliExternalTrackParam *fTPCInner; // Track parameters estimated at the inner wall of TPC using the TPC stand-alone AliExternalTrackParam *fOp; // Track parameters estimated at the point of maximal radial coordinate reached during the tracking AliExternalTrackParam *fHMPIDp; // Track parameters at HMPID AliESDfriendTrack *fFriendTrack; //! All the complementary information TBits fTPCFitMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow which is used in the fit TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow TBits fTPCSharedMap; // Map of clusters, one bit per padrow; 1 if has a shared cluster on given padrow ULong_t fFlags; // Reconstruction status flags Int_t fID; // Unique ID of the track Int_t fLabel; // Track label Int_t fITSLabel; // label according ITS Int_t fITSModule[12]; // modules crossed by the track in the ITS Int_t fTPCLabel; // label according TPC Int_t fTRDLabel; // label according TRD Int_t fTOFLabel[3]; // TOF label Int_t fTOFCalChannel; // Channel Index of the TOF Signal Int_t fTOFindex; // index of the assigned TOF cluster Int_t fHMPIDqn; // 1000000*number of photon clusters + QDC Int_t fHMPIDcluIdx; // 1000000*chamber id + cluster idx of the assigned MIP cluster Int_t fCaloIndex; // index of associated EMCAL/PHOS cluster (AliESDCaloCluster) Int_t fKinkIndexes[3]; // array of indexes of posible kink candidates Int_t fV0Indexes[3]; // array of indexes of posible kink candidates Double32_t fR[AliPID::kSPECIES]; //[0.,0.,8] combined "detector response probability" Double32_t fITSr[AliPID::kSPECIES]; //[0.,0.,8] "detector response probabilities" (for the PID) Double32_t fTPCr[AliPID::kSPECIES]; //[0.,0.,8] "detector response probabilities" (for the PID) Double32_t fTRDr[AliPID::kSPECIES]; //[0.,0.,8] "detector response probabilities" (for the PID) Double32_t fTOFr[AliPID::kSPECIES]; //[0.,0.,8] "detector response probabilities" (for the PID) Double32_t fHMPIDr[AliPID::kSPECIES];//[0.,0.,8] "detector response probabilities" (for the PID) Double32_t fHMPIDtrkTheta;//[-2*pi,2*pi,16] theta of the track extrapolated to the HMPID, LORS // how much of this is needed? Double32_t fHMPIDtrkPhi; //[-2*pi,2*pi,16] phi of the track extrapolated to the HMPID, LORS Double32_t fHMPIDsignal; // HMPID PID signal (Theta ckov, rad) Double32_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking Double32_t fTrackLength; // Track length Double32_t fdTPC; // TPC-only impact parameter in XY plane Double32_t fzTPC; // TPC-only impact parameter in Z Double32_t fCddTPC,fCdzTPC,fCzzTPC; // Covariance matrix of the TPC-only impact parameters Double32_t fCchi2TPC; // [0.,0.,8] TPC-only chi2 at the primary vertex Double32_t fD; // Impact parameter in XY plane Double32_t fZ; // Impact parameter in Z Double32_t fCdd,fCdz,fCzz; // Covariance matrix of the impact parameters Double32_t fCchi2; // [0.,0.,8] chi2 at the primary vertex Double32_t fITSchi2Std[kNITSchi2Std]; // [0.,0.,8] standard chi2 in the ITS (with standard errors) Double32_t fITSchi2; // [0.,0.,8] chi2 in the ITS Double32_t fTPCchi2; // [0.,0.,8] chi2 in the TPC Double32_t fTPCchi2Iter1; // [0.,0.,8] chi2 in the TPC Double32_t fTRDchi2; // [0.,0.,8] chi2 in the TRD Double32_t fTOFchi2; // [0.,0.,8] chi2 in the TOF Double32_t fHMPIDchi2; // [0.,0.,8] chi2 in the HMPID Double32_t fGlobalChi2; // [0.,0.,8] chi2 of the global track Double32_t fITSsignal; // [0.,0.,10] detector's PID signal Double32_t fITSdEdxSamples[4]; // [0.,0.,10] ITS dE/dx samples Double32_t fTPCsignal; // [0.,0.,10] detector's PID signal Double32_t fTPCsignalTuned; //! [0.,0.,10] detector's PID signal tuned on data when using MC Double32_t fTPCsignalS; // [0.,0.,10] RMS of dEdx measurement AliTPCdEdxInfo * fTPCdEdxInfo; // object containing dE/dx information for different pad regions Double32_t fTPCPoints[4]; // [0.,0.,10] TPC points -first, max. dens, last and max density Double32_t fTRDsignal; // detector's PID signal Double32_t fTRDQuality; // trd quality factor for TOF Double32_t fTRDBudget; // trd material budget Double32_t fTOFsignal; // detector's PID signal Double32_t fTOFsignalToT; // detector's ToT signal Double32_t fTOFsignalRaw; // detector's uncorrected time signal Double32_t fTOFsignalDz; // local z of track's impact on the TOF pad Double32_t fTOFsignalDx; // local x of track's impact on the TOF pad Double32_t fTOFInfo[10]; //! TOF informations Short_t fTOFdeltaBC; // detector's Delta Bunch Crossing correction Short_t fTOFl0l1; // detector's L0L1 latency correction Double32_t fCaloDx ; // [0.,0.,8] distance to calorimeter cluster in calo plain (phi direction) Double32_t fCaloDz ; // [0.,0.,8] distance to calorimeter cluster in calo plain (z direction) Double32_t fHMPIDtrkX; // x of the track impact, LORS Double32_t fHMPIDtrkY; // y of the track impact, LORS Double32_t fHMPIDmipX; // x of the MIP in LORS Double32_t fHMPIDmipY; // y of the MIP in LORS UShort_t fTPCncls; // number of clusters assigned in the TPC UShort_t fTPCnclsF; // number of findable clusters in the TPC UShort_t fTPCsignalN; // number of points used for dEdx UShort_t fTPCnclsIter1; // number of clusters assigned in the TPC - iteration 1 UShort_t fTPCnclsFIter1; // number of findable clusters in the TPC - iteration 1 Char_t fITSncls; // number of clusters assigned in the ITS UChar_t fITSClusterMap; // map of clusters, one bit per a layer UChar_t fITSSharedMap; // map of shared clusters, one bit per a layer UChar_t fTRDncls; // number of clusters assigned in the TRD UChar_t fTRDncls0; // number of clusters assigned in the TRD before first material cross UChar_t fTRDntracklets; // number of TRD tracklets used for tracking/PID UChar_t fTRDNchamberdEdx; // number of chambers used to calculated the TRD truncated mean UChar_t fTRDNclusterdEdx; // number of clusters used to calculated the TRD truncated mean Int_t fTRDnSlices; // number of slices used for PID in the TRD Double32_t *fTRDslices; //[fTRDnSlices] Char_t fTRDTimBin[kTRDnPlanes]; // Time bin of Max cluster from all six planes Char_t fVertexID; // ID of the primary vertex this track belongs to mutable const AliESDEvent* fESDEvent; //!Pointer back to event to which the track belongs mutable Float_t fCacheNCrossedRows; //! Cache for the number of crossed rows mutable Float_t fCacheChi2TPCConstrainedVsGlobal; //! Cache for the chi2 of constrained TPC vs global track mutable const AliESDVertex* fCacheChi2TPCConstrainedVsGlobalVertex; //! Vertex for which the cache is valid Double_t fTrackPhiOnEMCal; // phi of track after being propagated to 430cm Double_t fTrackEtaOnEMCal; // eta of track after being propagated to 430cm private: static bool fgkOnlineMode; //! indicate the online mode to skip some of the functionality AliESDtrack & operator=(const AliESDtrack & ); ClassDef(AliESDtrack,66) //ESDtrack }; #endif