/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Muon ABSOrber // // This class contains the description of the muon absorber geometry // // // //Begin_Html /*

The responsible person for this module is Andreas Morsch.

*/
//End_Html
//                                                                           //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

#include 

#include "AliABSOv0.h"
#include "AliConst.h"
#include "AliRun.h"

ClassImp(AliABSOv0)
 
//_____________________________________________________________________________
AliABSOv0::AliABSOv0()
{
  //
  // Default constructor
  //
}
 
//_____________________________________________________________________________
AliABSOv0::AliABSOv0(const char *name, const char *title)
       : AliABSO(name,title)
{
  //
  // Standard constructor
  //
  SetMarkerColor(7);
  SetMarkerStyle(2);
  SetMarkerSize(0.4);
}
 
//_____________________________________________________________________________
void AliABSOv0::CreateGeometry()
{
    //
    // Creation of the geometry of the muon absorber
    //
    //Begin_Html
    /*
      
    */
    //End_Html
    //Begin_Html
    /*
      
    */
    //End_Html
    
    //
    //

    enum {kC=1605, kAl=1608, kFe=1609, kCu=1610, kW=1611, kPb=1612,
	  kNiCuW=1620, kVacuum=1615, kAir=1614, kConcrete=1616,
	  kPolyCH2=1617, kSteel=1609, kInsulation=1613, kPolyCc=1619};	  
    
    Int_t *idtmed = fIdtmed->GetArray()-1599;
    
    Float_t par[24], cpar[5], cpar0[5], pcpar[12], tpar[3], tpar0[3]; 
    Float_t dz;
    Int_t idrotm[1699];
#include "ABSOSHILConst.h"
#include "ABSOConst.h"
//
// Structure of Tracking Region
//
  Float_t dzFe = 25.;

// 3 < theta < 9
    fNLayers[0] = 5; 
    fMLayers[0][0]  = kAir;              fZLayers[0][0] = kZAbsStart;
    fMLayers[0][1]  = kC;                fZLayers[0][1] = kZAbsCc;             
    fMLayers[0][2]  = kConcrete;         fZLayers[0][2] = kZRear-kDRear-dzFe;
    fMLayers[0][3]  = kSteel;            fZLayers[0][3] = kZRear-kDRear;
    fMLayers[0][4]  = kSteel;            fZLayers[0][4] = kZRear;
// 2 < theta < 3
    fNLayers[1] = 6; 

    fMLayers[1][0] = kAir          ;      fZLayers[1][0] = fZLayers[0][0]-10.;
    fMLayers[1][1] = kAl           ;      fZLayers[1][1] = fZLayers[0][0];
    fMLayers[1][2] = fMLayers[0][1];      fZLayers[1][2] = fZLayers[0][1];
    fMLayers[1][3] = fMLayers[0][2];      fZLayers[1][3] = fZLayers[0][2];
    fMLayers[1][4] = fMLayers[0][3];      fZLayers[1][4] = fZLayers[0][3];
    fMLayers[1][5] = kNiCuW;              fZLayers[1][5] = fZLayers[0][4];
//    

    Float_t dTube=0.1;                     // tube thickness
    Float_t dInsu=0.5;                     // insulation thickness
    Float_t dEnve=0.1;                     // protective envelope thickness
    //    Float_t dFree=0.5;                     // clearance thickness


// Mother volume and outer shielding: Pb
  par[0]  = 0.;
  par[1]  = 360.;
  par[2]  = 7.;
    
  par[3]  = -(kZRear-kZAbsStart)/2.;
  par[4]  = kRAbs;
  par[5]  = kZAbsStart * TMath::Tan(kTheta1);

  par[6]  = par[3]+(kZNose-kZAbsStart);
  par[7]  = kRAbs;
  par[8]  = kZNose * TMath::Tan(kTheta1);

  par[9]  = par[3]+(kZConeTPC-kZAbsStart);
  par[10] = kRAbs;
  par[11] = par[8] + (par[9] - par[6]) * TMath::Tan(kTheta2);

  par[12]  = par[3]+(kZOpen-kZAbsStart);
  par[13] = kRAbs;
  par[14] = par[11] + (par[12] - par[9]) * TMath::Tan(kAccMax);

  par[15] = par[3]+(kZRear-kDRear-kZAbsStart);
  par[16] = kRAbs   + (par[15] - par[12]) * TMath::Tan(kThetaOpen1) ;
  par[17] = par[14] + (par[15] - par[12]) * TMath::Tan(kAccMax);

  par[18] = par[3]+(kZRear-kDRear-kZAbsStart);
  par[19] = (kZRear-kDRear) * TMath::Tan(kAccMin);
  par[20] = par[14] + (par[18] - par[12]) * TMath::Tan(kAccMax);

  par[21] = -par[3];
  par[22] =  kZRear* TMath::Tan(kAccMin);
  par[23] = par[20] + (par[21] - par[18]) * TMath::Tan(kAccMax);
  gMC->Gsvolu("ABSS", "PCON", idtmed[kPb], par, 24);
  { // Begin local scope for i
      for (Int_t i=4; i<18; i+=3) par[i]  = 0;
  } // End local scope for i
  gMC->Gsvolu("ABSM", "PCON", idtmed[kVacuum+40], par, 24);
  gMC->Gspos("ABSS", 1, "ABSM", 0., 0., 0., 0, "ONLY");

//
// Steel envelope
//
  par[4] = par[5] -kDSteel;
  par[7] = par[8] -kDSteel;
  par[10]= par[11]-kDSteel;  
  par[13]= par[14]-kDSteel;  
  par[16]= par[17]-kDSteel;  
  par[19]= par[20]-kDSteel;  
  par[22]= par[23]-kDSteel;  
  gMC->Gsvolu("ABST", "PCON", idtmed[kSteel], par, 24);
  gMC->Gspos("ABST", 1, "ABSS", 0., 0., 0., 0, "ONLY");
//
// Polyethylene shield
// 
  cpar[0] = (kZRear - kZConeTPC) / 2.;
  cpar[1] = kZConeTPC * TMath::Tan(kAccMax);
  cpar[2] = cpar[1] + kDPoly;
  cpar[3] = kZRear * TMath::Tan(kAccMax);
  cpar[4] = cpar[3] + kDPoly;
  gMC->Gsvolu("APOL", "CONE", idtmed[kPolyCH2+40], cpar, 5);
  dz = (kZRear-kZAbsStart)/2.-cpar[0];
  gMC->Gspos("APOL", 1, "ABSS", 0., 0., dz, 0, "ONLY");

//
// Tungsten nose to protect TPC
// 
  cpar[0] = (kZNose - kZAbsStart) / 2.;
  cpar[1] = kZAbsStart * TMath::Tan(kAccMax);
  cpar[2] = kZAbsStart * TMath::Tan(kTheta1)-kDSteel;
  cpar[3] = kZNose * TMath::Tan(kAccMax);
  cpar[4] = kZNose * TMath::Tan(kTheta1)-kDSteel;
  gMC->Gsvolu("ANOS", "CONE", idtmed[kW], cpar, 5);
  //
  dz = -(kZRear-kZAbsStart)/2.+cpar[0];
  gMC->Gspos("ANOS", 1, "ABSS", 0., 0., dz, 0, "ONLY");
  //
  // Tungsten inner shield
  //
  Float_t zW = kZTwoDeg+.1;
  Float_t dZ = zW+(kZRear-kDRear-zW)/2.;
  //
  pcpar[0]  = 0.;
  pcpar[1]  = 360.;
  pcpar[2]  = 3.;
  pcpar[3]  = zW-dZ;
  pcpar[4]  = kRAbs;
  pcpar[5]  = zW * TMath::Tan(kAccMin);
  pcpar[6]  = kZOpen-dZ;
  pcpar[7]  = kRAbs;
  pcpar[8]  = kZOpen * TMath::Tan(kAccMin);
  pcpar[9]  = kZRear-kDRear-dZ;
  pcpar[10] = kRAbs+(kZRear-kDRear-kZOpen) * TMath::Tan(kThetaOpen1);
  pcpar[11] = (kZRear-kDRear) * TMath::Tan(kAccMin);
  
  gMC->Gsvolu("AWIN", "PCON", idtmed[kNiCuW+40], pcpar, 12);
  dz=(zW+kZRear-kDRear)/2-(kZAbsStart+kZRear)/2.;
  gMC->Gspos("AWIN", 1, "ABSS", 0., 0., dz, 0, "ONLY");
//
// First part replaced by Carbon  
//
  cpar[0] = (200.-zW)/2.;
  cpar[1] = kRAbs;
  cpar[2] = pcpar[5];
  cpar[3] = kRAbs;
  cpar[4] = 200. * TMath::Tan(kAccMin);
  gMC->Gsvolu("ACNO", "CONE", idtmed[kC], cpar, 5);
  dz = zW-dZ+cpar[0];
  gMC->Gspos("ACNO", 1, "AWIN", 0., 0., dz, 0, "ONLY");

/*  
  Float_t zWW = 383.5;
  cpar[0] = (kZRear-kDRear-zWW)/2.;
  cpar[1] = kRAbs + (zWW-kZOpen) *  TMath::Tan(kThetaOpen1);
  cpar[2] =  zWW * TMath::Tan(kAccMin);
  cpar[3] = pcpar[10];
  cpar[4] = pcpar[11];
  gMC->Gsvolu("AWNO", "CONE", idtmed[kCu+40], cpar, 5);
  dz = zWW-dZ+cpar[0];
  
  gMC->Gspos("AWNO", 1, "AWIN", 0., 0., dz, 0, "ONLY");
*/
  //
  //     Inner tracking region
  //
  //     mother volume: Cu
  //
  //
  pcpar[0]  = 0.;
  pcpar[1]  = 360.;
  pcpar[2]  = 3.;
  pcpar[3]  = -(kZRear-kZAbsStart)/2.;
  pcpar[4]  = kRAbs;
  pcpar[5]  = kZAbsStart * TMath::Tan(kAccMax);
  pcpar[6]  = pcpar[3]+(kZTwoDeg-kZAbsStart);
  pcpar[7]  = kRAbs;
  pcpar[8]  = kZTwoDeg * TMath::Tan(kAccMax);
  pcpar[9]  = -pcpar[3];
  pcpar[10] = kZRear * TMath::Tan(kAccMin);
  pcpar[11] = kZRear * TMath::Tan(kAccMax);
  gMC->Gsvolu("AITR", "PCON", idtmed[fMLayers[0][4]], pcpar, 12);
  //
  // special Pb medium for last 5 cm of Pb
  Float_t zr=kZRear-2.-0.001;
  cpar[0] = 1.0;
  cpar[1] = zr * TMath::Tan(kThetaR);
  cpar[2] = zr * TMath::Tan(kAccMax);
  cpar[3] = cpar[1] + TMath::Tan(kThetaR) * 2;
  cpar[4] = cpar[2] + TMath::Tan(kAccMax) * 2;
  gMC->Gsvolu("ARPB", "CONE", idtmed[fMLayers[0][4]], cpar, 5);
  dz=(kZRear-kZAbsStart)/2.-cpar[0]-0.001;
  gMC->Gspos("ARPB", 1, "AITR", 0., 0., dz, 0, "ONLY");
  //
  //     concrete cone: concrete 
  //
  pcpar[9]  = pcpar[3]+(kZRear-kDRear-kZAbsStart);
  pcpar[10] = (kZRear-kDRear) * TMath::Tan(kAccMin);
  pcpar[11] = (kZRear-kDRear) * TMath::Tan(kAccMax);
  gMC->Gsvolu("ACON", "PCON", idtmed[fMLayers[0][2]+40], pcpar, 12);
  gMC->Gspos("ACON", 1, "AITR", 0., 0., 0., 0, "ONLY");
//
//    Fe Cone 
//
  zr = kZRear-kDRear-dzFe;
  cpar[0]  = dzFe/2.;
  cpar[1] = zr * TMath::Tan(kAccMin);
  cpar[2] = zr * TMath::Tan(kAccMax);
  cpar[3] = cpar[1] + TMath::Tan(kAccMin) * dzFe;
  cpar[4] = cpar[2] + TMath::Tan(kAccMax) * dzFe;
  gMC->Gsvolu("ACFE", "CONE",idtmed[fMLayers[0][3]], cpar, 5);

  dz = (kZRear-kZAbsStart)/2.-kDRear-dzFe/2.;

  gMC->Gspos("ACFE", 1, "ACON", 0., 0., dz, 0, "ONLY");

  
  //
  //
  //     carbon cone: carbon
  //
  pcpar[9]  = pcpar[3]+(kZAbsCc-kZAbsStart);
  pcpar[10]  = kZAbsCc * TMath::Tan(kAccMin);
  pcpar[11]  = kZAbsCc * TMath::Tan(kAccMax);
  gMC->Gsvolu("ACAR", "PCON", idtmed[fMLayers[0][1]+40], pcpar, 12);
  gMC->Gspos("ACAR", 1, "ACON", 0., 0., 0., 0, "ONLY");
 //
 //     carbon cone outer region
 //
  cpar[0]  = 10.;
  cpar[1]  = kRAbs;
  cpar[2]  = kZAbsStart* TMath::Tan(kAccMax);
  cpar[3]  = kRAbs;
  cpar[4]  = cpar[2]+2. * cpar[0] * TMath::Tan(kAccMax);

  gMC->Gsvolu("ACAO", "CONE", idtmed[fMLayers[0][1]], cpar, 5);
  dz=-(kZRear-kZAbsStart)/2.+cpar[0];
  gMC->Gspos("ACAO", 1, "ACAR", 0., 0., dz, 0, "ONLY");
  //
  //     inner W shield
  Float_t epsi=0.;
  Float_t repsi=1.;
  
  zr=kZRear-(kDRear-epsi);
  cpar[0] = (kDRear-epsi)/2.;
  cpar[1] = zr * TMath::Tan(kAccMin);
  cpar[2] = zr * TMath::Tan(kThetaR*repsi);
  cpar[3] = cpar[1] + TMath::Tan(kAccMin) * (kDRear-epsi);
  cpar[4] = cpar[2] + TMath::Tan(kThetaR*repsi) * (kDRear-epsi);
  gMC->Gsvolu("ARW0", "CONE", idtmed[fMLayers[1][4]+40], cpar, 5);
  dz=(kZRear-kZAbsStart)/2.-cpar[0];
  gMC->Gspos("ARW0", 1, "AITR", 0., 0., dz, 0, "ONLY");
  //
  // special W medium for last 5 cm of W
  zr=kZRear-5;
  cpar[0] = 2.5;
  cpar[1] = zr * TMath::Tan(kAccMin);
  cpar[2] = zr * TMath::Tan(kThetaR*repsi);
  cpar[3] = cpar[1] + TMath::Tan(kAccMin) * 5.;
  cpar[4] = cpar[2] + TMath::Tan(kThetaR*repsi) * 5.;
  gMC->Gsvolu("ARW1", "CONE", idtmed[fMLayers[1][4]+20], cpar, 5);
  dz=(kDRear-epsi)/2.-cpar[0];
  gMC->Gspos("ARW1", 1, "ARW0", 0., 0., dz, 0, "ONLY");
  //
  // Cu
  Float_t drMin=TMath::Tan(kThetaR) * 5;
  Float_t drMax=TMath::Tan(kAccMax) * 5;
  gMC->Gsvolu("ARPE", "CONE", idtmed[fMLayers[0][4]], cpar, 0);
  cpar[0]=2.5;
  { // Begin local scope for i
      for (Int_t i=0; i<3; i++) {
	  zr=kZRear-kDRear+5+i*10.;
	  cpar[1] = zr * TMath::Tan(kThetaR);
	  cpar[2] = zr * TMath::Tan(kAccMax);
	  cpar[3] = cpar[1] + drMin;
	  cpar[4] = cpar[2] + drMax;
	  dz=(kZRear-kZAbsStart)/2.-cpar[0]-5.-(2-i)*10;
	  gMC->Gsposp("ARPE", i+1, "AITR", 0., 0., dz, 0, "ONLY",cpar,5);
      }
  } // End local scope for i
  gMC->Gspos("AITR", 1, "ABSS", 0., 0., 0., 0, "ONLY");	
  dz = (kZRear-kZAbsStart)/2.+kZAbsStart;
  gMC->Gspos("ABSM", 1, "ALIC", 0., 0., dz, 0, "ONLY");	
//
//
// vacuum system
//
// pipe and heating jackets
//
//
// cylindrical piece
  tpar0[2]=(kZOpen-kZAbsStart)/2;
  tpar0[0]=kRVacu;
  tpar0[1]=kRVacu+dTube+dInsu+dEnve;
  gMC->Gsvolu("AV11", "TUBE", idtmed[kSteel+40], tpar0, 3);
//
// insulation

  tpar[2]=tpar0[2];
  tpar[0]=kRVacu+dTube;
  tpar[1]=tpar[0]+dInsu;
  gMC->Gsvolu("AI11", "TUBE", idtmed[kInsulation+40], tpar, 3);
  gMC->Gspos("AI11", 1, "AV11", 0., 0., 0., 0, "ONLY"); 
//
  dz=-(kZRear-kZAbsStart)/2.+tpar0[2];
  gMC->Gspos("AV11", 1, "ABSM", 0., 0., dz, 0, "ONLY"); 
//
// conical piece

  cpar0[0]=(kZRear-kDRear-kZOpen)/2;
  cpar0[1]= kRVacu-0.05;
  cpar0[2]= kRVacu+dTube+dInsu+dEnve;
  Float_t dR=2.*cpar0[0]*TMath::Tan(kThetaOpen1);
  cpar0[3]=cpar0[1]+dR;
  cpar0[4]=cpar0[2]+dR;
  gMC->Gsvolu("AV21", "CONE", idtmed[kSteel+40], cpar0, 5);
  dTube+=0.05;

//
// insulation
  cpar[0]=cpar0[0];
  cpar[1]=cpar0[1]+dTube;
  cpar[2]=cpar0[1]+dTube+dInsu;
  cpar[3]=cpar0[3]+dTube;
  cpar[4]=cpar0[3]+dTube+dInsu;
  gMC->Gsvolu("AI21", "CONE", idtmed[kInsulation+40], cpar, 5);
  gMC->Gspos("AI21", 1, "AV21", 0., 0., 0., 0, "ONLY"); 
  
  dz=(kZRear-kZAbsStart)/2.-cpar0[0]-kDRear;
  gMC->Gspos("AV21", 1, "ABSM", 0., 0., dz, 0, "ONLY"); 
//
// Support cone 

  par[0]  =  22.5;
  par[1]  = 360.0;
  par[2]  =   8.0;
  par[3]  =   4.0;
    
  par[4]  = kZRear;
  par[5]  = 100.;
  par[6]  = 180.;
  
  par[7]  = kZRear+20.;
  par[8]  = 100.;
  par[9]  = 180.;

  par[10] = kZRear+20.;
  par[11] = 178.;
  par[12] = 180.;

  par[13] = 600.;
  par[14] = 178.;
  par[15] = 180.;
  

  gMC->Gsvolu("ASSS", "PGON", idtmed[kAl], par, 16);
  gMC->Gspos("ASSS", 1, "ALIC", 0., 0., 0., 0, "ONLY");

  Float_t trap[11];
  trap[ 0] = (530.-170.)/2.;
  trap[ 2] = 0.;
  trap[ 3] = 2.; 
  trap[ 4] = (600.-(kZRear+2.))/2.;;
  trap[ 5] = trap[4];
  trap[ 6] = 0.;
  trap[ 7] = 2.;
  trap[ 8] = 5.;
  trap[ 9] = 5.;
  trap[10] = 0.;
  trap[ 1] = -TMath::ATan((trap[4]-trap[8])/2./trap[0])*180./TMath::Pi();
  AliMatrix(idrotm[1600], 180., 0., 90., 0., 90., 90.);
  AliMatrix(idrotm[1601], 180., 0., 90., 0., 90., 270.);
  gMC->Gsvolu("ASST", "TRAP", idtmed[kSteel], trap, 11);
  dz = (600.+kZRear+2.)/2.+(trap[4]-trap[8])/2.;
  //  Float_t dy =  170.+trap[0];
  
//  gMC->Gspos("ASST", 1, "ALIC", 0.,  dy, dz, idrotm[1600], "ONLY");
//  gMC->Gspos("ASST", 2, "ALIC", 0., -dy, dz, idrotm[1601], "ONLY");
}

//_____________________________________________________________________________

void AliABSOv0::Init()
{
  //
  // Initialisation of the muon absorber after it has been built
  Int_t i;
  //
  if(fDebug) {
    printf("\n%s: ",ClassName());
    for(i=0;i<35;i++) printf("*");
    printf(" ABSOv0_INIT ");
    for(i=0;i<35;i++) printf("*");
    printf("\n%s: ",ClassName());
    //
    for(i=0;i<80;i++) printf("*");
    printf("\n");
  }
}