/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------ // AliFRAMEv2.cxx // symmetric space frame with possibility for holes // Author: A.Morsch //------------------------------------------------------------------------ #include #include #include #include #include #include #include #include #include #include "AliFRAMEv2.h" #include "AliMagF.h" #include "AliRun.h" #include "AliConst.h" #include "AliMC.h" #include "AliLog.h" #include "AliTrackReference.h" #include ClassImp(AliFRAMEv2) //_____________________________________________________________________________ AliFRAMEv2::AliFRAMEv2(): fHoles(0) { // Constructor } //_____________________________________________________________________________ AliFRAMEv2::AliFRAMEv2(const char *name, const char *title) : AliFRAME(name,title), fHoles(0) { // Constructor } //___________________________________________ void AliFRAMEv2::CreateGeometry() { //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html Int_t idrotm[2299]; AliMatrix(idrotm[2070], 90.0, 0.0, 90.0, 270.0, 0.0, 0.0); // AliMatrix(idrotm[2083], 170.0, 0.0, 90.0, 90.0, 80.0, 0.0); AliMatrix(idrotm[2084], 170.0, 180.0, 90.0, 90.0, 80.0, 180.0); AliMatrix(idrotm[2085], 90.0, 180.0, 90.0, 90.0, 0.0, 0.0); // AliMatrix(idrotm[2086], 90.0, 0.0, 90.0, 90., 0.0, 0.0); AliMatrix(idrotm[2087], 90.0, 180.0, 90.0, 270., 0.0, 0.0); AliMatrix(idrotm[2088], 90.0, 90.0, 90.0, 180., 0.0, 0.0); AliMatrix(idrotm[2089], 90.0, 90.0, 90.0, 0., 0.0, 0.0); // AliMatrix(idrotm[2090], 90.0, 0.0, 0.0, 0., 90.0, 90.0); AliMatrix(idrotm[2091], 0.0, 0.0, 90.0, 90., 90.0, 0.0); // // Matrices have been imported from Euclid. Some simplification // seems possible // AliMatrix(idrotm[2003], 0.0, 0.0, 90.0, 130.0, 90.0, 40.0); AliMatrix(idrotm[2004], 180.0, 0.0, 90.0, 130.0, 90.0, 40.0); AliMatrix(idrotm[2005], 180.0, 0.0, 90.0, 150.0, 90.0, 240.0); AliMatrix(idrotm[2006], 0.0, 0.0, 90.0, 150.0, 90.0, 240.0); AliMatrix(idrotm[2007], 0.0, 0.0, 90.0, 170.0, 90.0, 80.0); AliMatrix(idrotm[2008], 180.0, 0.0, 90.0, 190.0, 90.0, 280.0); AliMatrix(idrotm[2009], 180.0, 0.0, 90.0, 170.0, 90.0, 80.0); AliMatrix(idrotm[2010], 0.0, 0.0, 90.0, 190.0, 90.0, 280.0); AliMatrix(idrotm[2011], 0.0, 0.0, 90.0, 350.0, 90.0, 260.0); AliMatrix(idrotm[2012], 180.0, 0.0, 90.0, 350.0, 90.0, 260.0); AliMatrix(idrotm[2013], 180.0, 0.0, 90.0, 10.0, 90.0, 100.0); AliMatrix(idrotm[2014], 0.0, 0.0, 90.0, 10.0, 90.0, 100.0); AliMatrix(idrotm[2015], 0.0, 0.0, 90.0, 30.0, 90.0, 300.0); AliMatrix(idrotm[2016], 180.0, 0.0, 90.0, 30.0, 90.0, 300.0); AliMatrix(idrotm[2017], 180.0, 0.0, 90.0, 50.0, 90.0, 140.0); AliMatrix(idrotm[2018], 0.0, 0.0, 90.0, 50.0, 90.0, 140.0); AliMatrix(idrotm[2019], 180.0, 0.0, 90.0, 130.0, 90.0, 220.0); AliMatrix(idrotm[2020], 180.0, 0.0, 90.0, 50.0, 90.0, 320.0); AliMatrix(idrotm[2021], 180.0, 0.0, 90.0, 150.0, 90.0, 60.0); AliMatrix(idrotm[2022], 180.0, 0.0, 90.0, 30.0, 90.0, 120.0); AliMatrix(idrotm[2023], 180.0, 0.0, 90.0, 170.0, 90.0, 260.0); AliMatrix(idrotm[2024], 180.0, 0.0, 90.0, 190.0, 90.0, 100.0); AliMatrix(idrotm[2025], 180.0, 0.0, 90.0, 350.0, 90.0, 80.0); AliMatrix(idrotm[2026], 180.0, 0.0, 90.0, 10.0, 90.0, 280.0); AliMatrix(idrotm[2027], 0.0, 0.0, 90.0, 50.0, 90.0, 320.0); AliMatrix(idrotm[2028], 0.0, 0.0, 90.0, 150.0, 90.0, 60.0); AliMatrix(idrotm[2029], 0.0, 0.0, 90.0, 30.0, 90.0, 120.0); AliMatrix(idrotm[2030], 0.0, 0.0, 90.0, 10.0, 90.0, 280.0); AliMatrix(idrotm[2031], 0.0, 0.0, 90.0, 170.0, 90.0, 260.0); AliMatrix(idrotm[2032], 0.0, 0.0, 90.0, 190.0, 90.0, 100.0); AliMatrix(idrotm[2033], 0.0, 0.0, 90.0, 350.0, 90.0, 80.0); Int_t *idtmed = fIdtmed->GetArray()-1999; // // The Space frame // // Float_t pbox[3], ptrap[11], ptrd1[4], ppgon[10]; Float_t dx, dy, dz; Int_t i, j, jmod; jmod = 0; // // Constants const Float_t kEps = 0.01; const Int_t kAir = idtmed[2004]; const Int_t kSteel = idtmed[2064]; const Float_t krad2deg = 180. / TMath::Pi(); const Float_t kdeg2rad = 1. / krad2deg; Float_t iFrH = 118.66; // Height of inner frame Float_t ringH = 6.00; // Height of the ring bars Float_t ringW = 10.00; // Width of the ring bars in z Float_t longH = 6.00; Float_t longW = 4.00; // Float_t dymodU[3] = {70.0, 224.0, 340.2}; Float_t dymodL[3] = {50.0, 175.0, 297.5}; // // // Frame mother volume // TGeoPgon* shB77A = new TGeoPgon(0., 360., 18, 2); shB77A->SetName("shB77A"); shB77A->DefineSection( 0, -376.5, 280., 415.7); shB77A->DefineSection( 1, 376.5, 280., 415.7); TGeoBBox* shB77B = new TGeoBBox(3.42, 2., 375.5); shB77B->SetName("shB77B"); TGeoTranslation* trB77A = new TGeoTranslation("trB77A", +283.32, 0., 0.); TGeoTranslation* trB77B = new TGeoTranslation("trB77B", -283.32, 0., 0.); trB77A->RegisterYourself(); trB77B->RegisterYourself(); TGeoCompositeShape* shB77 = new TGeoCompositeShape("shB77", "shB77A+shB77B:trB77A+shB77B:trB77B"); TGeoVolume* voB77 = new TGeoVolume("B077", shB77, gGeoManager->GetMedium("FRAME_Air")); voB77->SetName("B077"); // just to avoid a warning TVirtualMC::GetMC()->Gspos("B077", 1, "ALIC", 0., 0., 0., 0, "ONLY"); // // Reference plane #1 for TRD TGeoPgon* shBREFA = new TGeoPgon(0.0, 360., 18, 2); shBREFA->DefineSection( 0, -376., 280., 280.1); shBREFA->DefineSection( 1, 376., 280., 280.1); shBREFA->SetName("shBREFA"); TGeoCompositeShape* shBREF1 = new TGeoCompositeShape("shBREF1", "shBREFA-(shB77B:trB77A+shB77B:trB77B)"); TGeoVolume* voBREF = new TGeoVolume("BREF1", shBREF1, gGeoManager->GetMedium("FRAME_Air")); voBREF->SetVisibility(0); TVirtualMC::GetMC()->Gspos("BREF1", 1, "B077", 0., 0., 0., 0, "ONLY"); // // The outer Frame // Float_t dol = 4.; Float_t doh = 4.; Float_t ds = 0.63; // // Mother volume // ppgon[0] = 0.; ppgon[1] = 360.; ppgon[2] = 18.; ppgon[3] = 2.; ppgon[4] = -350.; ppgon[5] = 401.35; ppgon[6] = 415.6; ppgon[7] = -ppgon[4]; ppgon[8] = ppgon[5]; ppgon[9] = ppgon[6]; TVirtualMC::GetMC()->Gsvolu("B076", "PGON", kAir, ppgon, 10); TVirtualMC::GetMC()->Gspos("B076", 1, "B077", 0., 0., 0., 0, "ONLY"); // // Rings // dz = 2. * 410.2 * TMath::Sin(10.*kdeg2rad) - 2. *dol * TMath::Cos(10.*kdeg2rad)- 2. * doh * TMath::Tan(10.*kdeg2rad); Float_t l1 = dz/2.; Float_t l2 = dz/2.+2.*doh*TMath::Tan(10.*kdeg2rad); TGeoVolumeAssembly* asBI42 = new TGeoVolumeAssembly("BI42"); // Horizontal ptrd1[0] = l2 - 0.6 * TMath::Tan(10.*kdeg2rad); ptrd1[1] = l2; ptrd1[2] = 8.0 / 2.; ptrd1[3] = 0.6 / 2.; TVirtualMC::GetMC()->Gsvolu("BIH142", "TRD1", kSteel, ptrd1, 4); ptrd1[0] = l1; ptrd1[1] = l1 + 0.6 * TMath::Tan(10.*kdeg2rad); ptrd1[2] = 8.0 / 2.; ptrd1[3] = 0.6 / 2.; TVirtualMC::GetMC()->Gsvolu("BIH242", "TRD1", kSteel, ptrd1, 4); // Vertical ptrd1[0] = l1 + 0.6 * TMath::Tan(10.*kdeg2rad); ptrd1[1] = l2 - 0.6 * TMath::Tan(10.*kdeg2rad); ptrd1[2] = 0.8 / 2.; ptrd1[3] = 6.8 / 2.; TVirtualMC::GetMC()->Gsvolu("BIV42", "TRD1", kSteel, ptrd1, 4); // Place asBI42->AddNode(gGeoManager->GetVolume("BIV42"), 1, new TGeoTranslation(0., 0., 0.)); asBI42->AddNode(gGeoManager->GetVolume("BIH142"), 1, new TGeoTranslation(0., 0., 3.7)); asBI42->AddNode(gGeoManager->GetVolume("BIH242"), 1, new TGeoTranslation(0., 0., -3.7)); // // longitudinal bars // // 80 x 80 x 6.3 // pbox[0] = dol; pbox[1] = doh; pbox[2] = 345.; TVirtualMC::GetMC()->Gsvolu("B033", "BOX", kSteel, pbox, 3); pbox[0] = dol-ds; pbox[1] = doh-ds; TVirtualMC::GetMC()->Gsvolu("B034", "BOX", kAir, pbox, 3); TVirtualMC::GetMC()->Gspos("B034", 1, "B033", 0., 0., 0., 0, "ONLY"); // // TPC support // pbox[0] = 3.37; pbox[1] = 2.0; pbox[2] = 375.5; TVirtualMC::GetMC()->Gsvolu("B080", "BOX", kSteel, pbox, 3); pbox[0] = 2.78; pbox[1] = 1.4; pbox[2] = 375.5; TVirtualMC::GetMC()->Gsvolu("B081", "BOX", kAir, pbox, 3); TVirtualMC::GetMC()->Gspos("B081", 1, "B080", 0., 0., 0., 0, "ONLY"); // Small 2nd reference plane elemenet pbox[0] = 0.05; pbox[1] = 2.0; pbox[2] = 375.5; TVirtualMC::GetMC()->Gsvolu("BREF2", "BOX", kAir, pbox, 3); TVirtualMC::GetMC()->Gspos("BREF2", 1, "B080", 3.37 - 0.05, 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("B080", 1, "B077", 283.3, 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("B080", 2, "B077", -283.3, 0., 0., idrotm[2087], "ONLY"); // // Diagonal bars (1) // Float_t h, d, dq, x, theta; h = (dymodU[1]-dymodU[0]-2.*dol)*.999; d = 2.*dol; dq = h*h+dz*dz; x = TMath::Sqrt((dz*dz-d*d)/dq + d*d*h*h/dq/dq)+d*h/dq; theta = krad2deg * TMath::ACos(x); ptrap[0] = dz/2.; ptrap[1] = theta; ptrap[2] = 0.; ptrap[3] = doh; ptrap[4] = dol/x; ptrap[5] = ptrap[4]; ptrap[6] = 0; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; ptrap[10] = 0; TVirtualMC::GetMC()->Gsvolu("B047", "TRAP", kSteel, ptrap, 11); ptrap[3] = doh-ds; ptrap[4] = (dol-ds)/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("B048", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("B048", 1, "B047", 0.0, 0.0, 0., 0, "ONLY"); /* Crosses (inner most) \\ // \\// //\\ // \\ */ h = (2.*dymodU[0]-2.*dol)*.999; // // Mother volume // pbox[0] = h/2; pbox[1] = doh; pbox[2] = dz/2.; TVirtualMC::GetMC()->Gsvolu("BM49", "BOX ", kAir, pbox, 3); dq = h*h+dz*dz; x = TMath::Sqrt((dz*dz-d*d)/dq + d*d*h*h/dq/dq)+d*h/dq; theta = krad2deg * TMath::ACos(x); ptrap[0] = dz/2.-kEps; ptrap[1] = theta; ptrap[2] = 0.; ptrap[3] = doh-kEps; ptrap[4] = dol/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("B049", "TRAP", kSteel, ptrap, 11); ptrap[0] = ptrap[0]-kEps; ptrap[3] = (doh-ds); ptrap[4] = (dol-ds)/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("B050", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("B050", 1, "B049", 0.0, 0.0, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("B049", 1, "BM49", 0.0, 0.0, 0., 0, "ONLY"); Float_t dd1 = d*TMath::Tan(theta*kdeg2rad); Float_t dd2 = d/TMath::Tan(2.*theta*kdeg2rad); Float_t theta2 = TMath::ATan(TMath::Abs(dd2-dd1)/d/2.); ptrap[0] = dol; ptrap[1] = theta2*krad2deg; ptrap[2] = 0.; ptrap[3] = doh; ptrap[4] = (dz/2./x-dd1-dd2)/2.; ptrap[5] = ptrap[4]; ptrap[6] = 0.; ptrap[7] = ptrap[3]; ptrap[8] = dz/4./x; ptrap[9] = ptrap[8]; TVirtualMC::GetMC()->Gsvolu("B051", "TRAP", kSteel, ptrap, 11); Float_t ddx0 = ptrap[8]; Float_t dd1s = dd1*(1.-2.*ds/d); Float_t dd2s = dd2*(1.-2.*ds/d); Float_t theta2s = TMath::ATan(TMath::Abs(dd2s-dd1s)/(d-2.*ds)/2.); ptrap[0] = dol-ds; ptrap[1] = theta2s*krad2deg; ptrap[2] = 0.; ptrap[3] = doh-ds; ptrap[4] = ptrap[4]+ds/d/2.*(dd1+dd2); ptrap[5] = ptrap[4]; ptrap[6] = 0.; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[8]-ds/2./d*(dd1+dd2); ptrap[9] = ptrap[8]; TVirtualMC::GetMC()->Gsvolu("B052", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("B052", 1, "B051", 0.0, 0.0, 0., 0, "ONLY"); Float_t ddx, ddz, drx, drz, rtheta; AliMatrix(idrotm[2001], -theta+180, 0.0, 90.0, 90.0, 90.-theta, 0.0); rtheta = (90.-theta)*kdeg2rad; ddx = -ddx0-dol*TMath::Tan(theta2); ddz = -dol; drx = TMath::Cos(rtheta) * ddx +TMath::Sin(rtheta) *ddz+pbox[0]; drz = -TMath::Sin(rtheta) * ddx +TMath::Cos(rtheta) *ddz-pbox[2]; TVirtualMC::GetMC()->Gspos("B051", 1, "BM49", drx, 0.0, drz, idrotm[2001], "ONLY"); AliMatrix(idrotm[2002], -theta, 0.0, 90.0, 90.0, 270.-theta, 0.0); rtheta = (270.-theta)*kdeg2rad; drx = TMath::Cos(rtheta) * ddx + TMath::Sin(rtheta) * ddz-pbox[0]; drz = -TMath::Sin(rtheta) * ddx + TMath::Cos(rtheta) * ddz+pbox[2]; TVirtualMC::GetMC()->Gspos("B051", 2, "BM49", drx, 0.0, drz, idrotm[2002], "ONLY"); // // Diagonal bars (3) // h = ((dymodU[2]-dymodU[1])-2.*dol)*.999; dq = h*h+dz*dz; x = TMath::Sqrt((dz*dz-d*d)/dq + d*d*h*h/dq/dq)+d*h/dq; theta = krad2deg * TMath::ACos(x); ptrap[0] = dz/2.; ptrap[1] = theta; ptrap[3] = doh; ptrap[4] = dol/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("B045", "TRAP", kSteel, ptrap, 11); ptrap[3] = doh-ds; ptrap[4] = (dol-ds)/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("B046", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("B046", 1, "B045", 0.0, 0.0, 0., 0, "ONLY"); // // Positioning of diagonal bars Float_t rd = 405.5; dz = (dymodU[1]+dymodU[0])/2.; Float_t dz2 = (dymodU[1]+dymodU[2])/2.; // // phi = 40 // Float_t phi = 40; dx = rd * TMath::Sin(phi*kdeg2rad); dy = rd * TMath::Cos(phi*kdeg2rad); TVirtualMC::GetMC()->Gspos("B045", 1, "B076", -dx, dy, dz2, idrotm[2019], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 2, "B076", -dx, dy, -dz2, idrotm[2003], "ONLY"); // ? TVirtualMC::GetMC()->Gspos("B045", 3, "B076", dx, dy, dz2, idrotm[2020], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 4, "B076", dx, dy, -dz2, idrotm[2027], "ONLY"); // // phi = 60 // phi = 60; dx = rd * TMath::Sin(phi*kdeg2rad); dy = rd * TMath::Cos(phi*kdeg2rad); TVirtualMC::GetMC()->Gspos("B045", 5, "B076", -dx, dy, dz2, idrotm[2021], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 6, "B076", -dx, dy, -dz2, idrotm[2028], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 7, "B076", dx, dy, dz2, idrotm[2022], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 8, "B076", dx, dy, -dz2, idrotm[2029], "ONLY"); // // phi = 80 // phi = 80; dx = rd * TMath::Sin(phi*kdeg2rad); dy = rd * TMath::Cos(phi*kdeg2rad); TVirtualMC::GetMC()->Gspos("B047", 13, "B076", -dx, -dy, dz, idrotm[2008], "ONLY"); TVirtualMC::GetMC()->Gspos("B047", 14, "B076", -dx, -dy, -dz, idrotm[2010], "ONLY"); TVirtualMC::GetMC()->Gspos("B047", 15, "B076", dx, -dy, dz, idrotm[2012], "ONLY"); TVirtualMC::GetMC()->Gspos("B047", 16, "B076", dx, -dy, -dz, idrotm[2011], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 9, "B076", -dx, dy, dz2, idrotm[2023], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 10, "B076", -dx, dy, -dz2, idrotm[2031], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 11, "B076", dx, dy, dz2, idrotm[2026], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 12, "B076", dx, dy, -dz2, idrotm[2030], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 13, "B076", -dx, -dy, dz2, idrotm[2024], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 14, "B076", -dx, -dy, -dz2, idrotm[2032], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 15, "B076", dx, -dy, dz2, idrotm[2025], "ONLY"); TVirtualMC::GetMC()->Gspos("B045", 16, "B076", dx, -dy, -dz2, idrotm[2033], "ONLY"); TVirtualMC::GetMC()->Gspos("BM49", 7, "B076", dx, -dy, 0., idrotm[2025], "ONLY"); TVirtualMC::GetMC()->Gspos("BM49", 8, "B076", -dx, -dy, 0., idrotm[2024], "ONLY"); // // The internal frame // // // // Mother Volumes // ptrd1[0] = 49.8; ptrd1[1] = 70.7; ptrd1[2] = 376.5; ptrd1[3] = iFrH / 2.; Float_t r = 342.0; Float_t rout1 = 405.5; Float_t rout2 = 411.55; TString module[18]; for (i = 0; i < 18; i++) { // Create volume i char name[16]; Int_t mod = i + 13; if (mod > 17) mod -= 18; snprintf(name, 16, "BSEGMO%d", mod); TVirtualMC::GetMC()->Gsvolu(name, "TRD1", kAir, ptrd1, 4); gGeoManager->GetVolume(name)->SetVisibility(kFALSE); module[i] = name; // Place volume i Float_t phi1 = i * 20.; Float_t phi2 = 270 + phi1; if (phi2 >= 360.) phi2 -= 360.; dx = TMath::Sin(phi1*kdeg2rad)*r; dy = -TMath::Cos(phi1*kdeg2rad)*r; char nameR[16]; snprintf(nameR, 16, "B43_Rot_%d", i); TGeoRotation* rot = new TGeoRotation(nameR, 90.0, phi1, 0., 0., 90., phi2); AliMatrix(idrotm[2034+i], 90.0, phi1, 0., 0., 90., phi2); TGeoVolume* vol77 = gGeoManager->GetVolume("B077"); TGeoVolume* volS = gGeoManager->GetVolume(name); vol77->AddNode(volS, 1, new TGeoCombiTrans(dx, dy, 0., rot)); // // Position elements of outer Frame // dx = TMath::Sin(phi1*kdeg2rad)*rout1; dy = -TMath::Cos(phi1*kdeg2rad)*rout1; for (j = 0; j < 3; j++) { dz = dymodU[j]; TGeoVolume* vol = gGeoManager->GetVolume("B076"); vol->AddNode(asBI42, 6*i+2*j+1, new TGeoCombiTrans(dx, dy, dz, rot)); vol->AddNode(asBI42, 6*i+2*j+2, new TGeoCombiTrans(dx, dy, -dz, rot)); } phi1 = i*20.+10; phi2 = 270+phi1; AliMatrix(idrotm[2052+i], 90.0, phi1, 90., phi2, 0., 0.); dx = TMath::Sin(phi1*kdeg2rad)*rout2; dy = -TMath::Cos(phi1*kdeg2rad)*rout2; TVirtualMC::GetMC()->Gspos("B033", i+1, "B076", dx, dy, 0., idrotm[2052+i], "ONLY"); // } // Internal Frame rings // // // 60x60x5x6 for inner rings (I-beam) // 100x60x5 for front and rear rings // // Front and rear ptrd1[0] = 287. * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[1] = 293. * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[2] = ringW/2.; ptrd1[3] = ringH/2.; TVirtualMC::GetMC()->Gsvolu("B072", "TRD1", kSteel, ptrd1, 4); ptrd1[0] = 287.5 * TMath::Sin(10. * kdeg2rad) - 2.1; ptrd1[1] = 292.5 * TMath::Sin(10. * kdeg2rad) - 2.1; ptrd1[2] = ringW / 2. - 0.5; ptrd1[3] = ringH / 2. - 0.5; TVirtualMC::GetMC()->Gsvolu("B073", "TRD1", kAir, ptrd1, 4); TVirtualMC::GetMC()->Gspos("B073", 1, "B072", 0., 0., 0., 0, "ONLY"); // // I-Beam // Mother volume TGeoVolumeAssembly* asBI72 = new TGeoVolumeAssembly("BI72"); // Horizontal ptrd1[0] = 292.5 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[1] = 293.0 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[2] = 6./2.; ptrd1[3] = 0.5/2.; TVirtualMC::GetMC()->Gsvolu("BIH172", "TRD1", kSteel, ptrd1, 4); ptrd1[0] = 287.0 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[1] = 287.5 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[2] = 6./2.; ptrd1[3] = 0.5/2.; TVirtualMC::GetMC()->Gsvolu("BIH272", "TRD1", kSteel, ptrd1, 4); // Vertical ptrd1[0] = 287.5 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[1] = 292.5 * TMath::Sin(10.* kdeg2rad) - 2.1; ptrd1[2] = 0.6/2.; ptrd1[3] = 5./2.; TVirtualMC::GetMC()->Gsvolu("BIV72", "TRD1", kSteel, ptrd1, 4); // Place asBI72->AddNode(gGeoManager->GetVolume("BIV72"), 1, new TGeoTranslation(0., 0., 0.)); asBI72->AddNode(gGeoManager->GetVolume("BIH172"), 1, new TGeoTranslation(0., 0., 2.75)); asBI72->AddNode(gGeoManager->GetVolume("BIH272"), 1, new TGeoTranslation(0., 0., -2.75)); // Web frame 0-degree // // h x w x s = 60x40x5 // (attention: element is are half bars, "U" shaped) // Float_t dHz = 112.66; WebFrame("B063", dHz, 10.0, 10.); WebFrame("B063I", dHz, 10.0, -10.); WebFrame("B163", dHz, -40.0, 10.); WebFrame("B163I", dHz, -40.0, -10.); WebFrame("B263", dHz, 20.0, 10.); WebFrame("B263I", dHz, 20.0, -10.); WebFrame("B363", dHz, -27.1, 10.); WebFrame("B363I", dHz, -27.1, -10.); WebFrame("B463", dHz, 18.4, 10.); WebFrame("B463I", dHz, 18.4, -10.); dz = -iFrH/2.+ringH/2.+kEps; Float_t dz0 = 3.; Float_t dx0 = 49.8 + dHz/2. * TMath::Tan(10. * kdeg2rad) + 0.035; for (jmod = 0; jmod< 18; jmod++) { // ring bars for (i = 0; i < 3; i++) { // if ((i == 2) || (jmod ==0) || (jmod == 8)) { if (i == 2) { TVirtualMC::GetMC()->Gspos("B072", 6*jmod+i+1, module[jmod], 0, dymodL[i], dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("B072", 6*jmod+i+4, module[jmod], 0, -dymodL[i], dz, idrotm[2070], "ONLY"); } else { TGeoVolume* vol = gGeoManager->GetVolume(module[jmod]); vol->AddNode(asBI72, 6*jmod+i+1, new TGeoTranslation(0, dymodL[i], dz)); vol->AddNode(asBI72, 6*jmod+i+4, new TGeoTranslation(0, -dymodL[i], dz)); } } } // outer diagonal web dy = dymodL[0] + (dHz/2. - 4.) * TMath::Tan(10. * kdeg2rad); for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("B063", 4*jmod+1, module[jmod], dx0, dy, dz0, idrotm[2086], "ONLY"); TVirtualMC::GetMC()->Gspos("B063I", 4*jmod+2, module[jmod], dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B063", 4*jmod+3, module[jmod], -dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B063I", 4*jmod+4, module[jmod], -dx0, dy, dz0, idrotm[2086], "ONLY"); } dy = 73.6 + (dHz/2. + 4.) * TMath::Tan(40. * kdeg2rad); for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("B163", 4*jmod+1, module[jmod], dx0, dy, dz0, idrotm[2086], "ONLY"); TVirtualMC::GetMC()->Gspos("B163I", 4*jmod+2, module[jmod], dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B163", 4*jmod+3, module[jmod], -dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B163I", 4*jmod+4, module[jmod], -dx0, dy, dz0, idrotm[2086], "ONLY"); } dy = 224.5 - (dHz/2 + 4.) * TMath::Tan(20. * kdeg2rad); for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("B263", 4*jmod+1, module[jmod], dx0, dy, dz0, idrotm[2086], "ONLY"); TVirtualMC::GetMC()->Gspos("B263I", 4*jmod+2, module[jmod], dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B263", 4*jmod+3, module[jmod], -dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B263I", 4*jmod+4, module[jmod], -dx0, dy, dz0, idrotm[2086], "ONLY"); } dy = 231.4 + (dHz/2.+ 4.) * TMath::Tan(27.1 * kdeg2rad); for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("B363", 4*jmod+1, module[jmod], dx0, dy, dz0, idrotm[2086], "ONLY"); TVirtualMC::GetMC()->Gspos("B363I", 4*jmod+2, module[jmod], dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B363", 4*jmod+3, module[jmod], -dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B363I", 4*jmod+4, module[jmod], -dx0, dy, dz0, idrotm[2086], "ONLY"); } dy = 340.2 - (dHz/2.+ 4.) * TMath::Tan(18.4 * kdeg2rad); for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("B463", 4*jmod+1, module[jmod], dx0, dy, dz0, idrotm[2086], "ONLY"); TVirtualMC::GetMC()->Gspos("B463I", 4*jmod+2, module[jmod], dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B463", 4*jmod+3, module[jmod], -dx0, -dy, dz0, idrotm[2087], "ONLY"); TVirtualMC::GetMC()->Gspos("B463I", 4*jmod+4, module[jmod], -dx0, dy, dz0, idrotm[2086], "ONLY"); } // longitudinal bars (TPC rails attached) // new specs: // h x w x s = 100 x 75 x 6 // current: // Attention: 2 "U" shaped half rods per cell // // not yet used // ptrap[0] = 2.50; ptrap[1] = 10.00; ptrap[2] = 0.00; ptrap[3] = 350.00; ptrap[4] = 3.75; ptrap[5] = ptrap[4]; ptrap[6] = 0; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; ptrap[10] = 0; // TVirtualMC::GetMC()->Gsvolu("B059", "TRAP", kSteel, ptrap, 11); ptrap[0] = 2.2; ptrap[4] = 2.15; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; //TVirtualMC::GetMC()->Gsvolu("B062", "TRAP", kAir, ptrap, 11); //TVirtualMC::GetMC()->Gspos("B062", 1, "B059", 0.0, 0., 0., 0, "ONLY"); // // longitudinal bars (no TPC rails attached) // new specs: h x w x s = 40 x 60 x 5 // // // ptrap[0] = longW/4.; ptrap[4] = longH/2.; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("BA59", "TRAP", kSteel, ptrap, 11); ptrap[0] = longW/4.-0.25; ptrap[4] = longH/2.-0.50; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("BA62", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("BA62", 1, "BA59", 0.0, 0.0, -0.15, 0, "ONLY"); dz = -iFrH/2. + longH/2.; for (jmod = 0; jmod < 18; jmod++) { TVirtualMC::GetMC()->Gspos("BA59", 2*jmod+1, module[jmod], 49.31, 0.0, dz, idrotm[2084], "ONLY"); TVirtualMC::GetMC()->Gspos("BA59", 2*jmod+2, module[jmod], -49.31, 0.0, dz, idrotm[2083], "ONLY"); } // // Thermal shield // Float_t dyM = 99.0; MakeHeatScreen("M", dyM, idrotm[2090], idrotm[2091]); Float_t dyAM = 119.5; MakeHeatScreen("AM", dyAM, idrotm[2090], idrotm[2091]); Float_t dyA = 122.5 - 5.5; MakeHeatScreen("A" , dyA, idrotm[2090], idrotm[2091]); // // // dz = -57.2 + 0.6; for (i = 0; i < 18; i++) { char nameMo[16]; snprintf(nameMo, 16, "BSEGMO%d",i); // M TVirtualMC::GetMC()->Gspos("BTSH_M" , i+1 , nameMo, 0., 0., dz, 0, "ONLY"); // AM, CM dy = dymodL[0] + dyAM / 2. + 3.; TVirtualMC::GetMC()->Gspos("BTSH_AM", i+ 1, nameMo, 0., dy, dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BTSH_AM", i+19, nameMo, 0., -dy, dz, 0, "ONLY"); // A, C dy = dymodL[1] + dyA / 2 + 0.4; TVirtualMC::GetMC()->Gspos("BTSH_A" , i+ 1, nameMo, 0., dy, dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BTSH_A" , i+19, nameMo, 0., -dy, dz, 0, "ONLY"); } // // TRD mother volumes // ptrd1[0] = 47.4405; // CBL 28/6/2006 ptrd1[1] = 61.1765; // CBL ptrd1[2] = 375.5; // CBL ptrd1[3] = 38.95; // CBL for (i = 0; i < 18; i++) { char nameCh[16]; snprintf(nameCh, 16, "BTRD%d",i); char nameMo[16]; snprintf(nameMo, 16, "BSEGMO%d",i); TVirtualMC::GetMC()->Gsvolu(nameCh, "TRD1", kAir, ptrd1, 4); gGeoManager->GetVolume(nameCh)->SetVisibility(kFALSE); TVirtualMC::GetMC()->Gspos(nameCh, 1, nameMo, 0., 0., -12.62, 0, "ONLY"); // CBL 28/6/2006 } // // TOF mother volumes as modified by B.Guerzoni // to remove overlaps/extrusions in case of aligned TOF SMs // ptrd1[0] = 62.2500; ptrd1[1] = 64.25; ptrd1[2] = 372.6; ptrd1[3] = 14.525/2; char nameChA[16]; snprintf(nameChA, 16, "BTOFA"); TGeoTrd1 *trd1=new TGeoTrd1(nameChA,ptrd1[0],ptrd1[1],ptrd1[2],ptrd1[3]); trd1->SetName("BTOFA"); // just to avoid a warning char nameChB[16]; snprintf(nameChB, 16, "BTOFB"); TGeoBBox *box1 = new TGeoBBox(nameChB,64.25 ,372.6, 14.525/2); box1->SetName("BTOFB"); // just to avoid a warning TGeoTranslation *tr1 = new TGeoTranslation("trnsl1",0, 0, -14.525/2 ); tr1->RegisterYourself(); TGeoTranslation *tr2 = new TGeoTranslation("trnsl2",0, 0, +14.525/2 ); tr2->RegisterYourself(); TGeoCompositeShape *btofcs =new TGeoCompositeShape("Btofcs","(BTOFA:trnsl1)+(BTOFB:trnsl2)"); for (i = 0; i < 18; i++) { char nameCh[16]; snprintf(nameCh, 16, "BTOF%d",i); char nameMo[16]; snprintf(nameMo, 16, "BSEGMO%d",i); TGeoVolume* btf = new TGeoVolume(nameCh, btofcs, gGeoManager->GetMedium("FRAME_Air")); btf->SetName(nameCh); gGeoManager->GetVolume(nameCh)->SetVisibility(kFALSE); TVirtualMC::GetMC()->Gspos(nameCh, 1, nameMo, 0., 0., 43.525, 0, "ONLY"); } // // Geometry of Rails starts here // // // // Rails for space-frame // Float_t rbox[3]; rbox[0] = 25.00; rbox[1] = 27.50; rbox[2] = 600.00; TVirtualMC::GetMC()->Gsvolu("BRS1", "BOX", kAir, rbox, 3); rbox[0] = 25.00; rbox[1] = 3.75; TVirtualMC::GetMC()->Gsvolu("BRS2", "BOX", kSteel, rbox, 3); rbox[0] = 3.00; rbox[1] = 20.00; TVirtualMC::GetMC()->Gsvolu("BRS3", "BOX", kSteel, rbox, 3); TVirtualMC::GetMC()->Gspos("BRS2", 1, "BRS1", 0., -27.5+3.75, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BRS2", 2, "BRS1", 0., 27.5-3.75, 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BRS3", 1, "BRS1", 0., 0., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BRS1", 1, "ALIC", -430.-3., -190., 0., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BRS1", 2, "ALIC", 430.+3., -190., 0., 0, "ONLY"); rbox[0] = 3.0; rbox[1] = 145./4.; rbox[2] = 25.0; TVirtualMC::GetMC()->Gsvolu("BRS4", "BOX", kSteel, rbox, 3); TVirtualMC::GetMC()->Gspos("BRS4", 1, "ALIC", 430.+3., -190.+55./2.+rbox[1], 224., 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BRS4", 2, "ALIC", 430.+3., -190.+55./2.+rbox[1], -224., 0, "ONLY"); // TVirtualMC::GetMC()->Gspos("BRS4", 3, "ALIC", -430.+3, -180.+55./2.+rbox[1], 224., 0, "ONLY"); // TVirtualMC::GetMC()->Gspos("BRS4", 4, "ALIC", -430.+3, -180.+55./2.+rbox[1], -224., 0, "ONLY"); // // The Backframe // // Inner radius Float_t kBFMRin = 270.0; // Outer Radius Float_t kBFMRou = 417.5; // Width Float_t kBFMdz = 118.0; // // // Rings Float_t kBFRdr = 7.5; Float_t kBFRdz = 8.0; // // // Bars and Spokes // Float_t kBFBd = 8.0; Float_t kBFBdd = 0.6; // The Mother volume Float_t tpar[3]; tpar[0] = kBFMRin; tpar[1] = kBFMRou; tpar[2] = kBFMdz / 2.; TVirtualMC::GetMC()->Gsvolu("BFMO", "TUBE", kAir, tpar, 3); // CBL //////////////////////////////////////////////////////// // // TRD mother volume // ptrd1[0] = 47.4405 - 0.3; ptrd1[1] = 61.1765 - 0.3; ptrd1[2] = kBFMdz / 2.; ptrd1[3] = 38.95; TVirtualMC::GetMC()->Gsvolu("BFTRD", "TRD1", kAir, ptrd1, 4); gGeoManager->GetVolume("BFTRD")->SetVisibility(kFALSE); for (i = 0; i < 18; i++) { Float_t phiBF = i * 20.0; dx = TMath::Sin(phiBF*kdeg2rad)*(342.0-12.62); dy = -TMath::Cos(phiBF*kdeg2rad)*(342.0-12.62); TVirtualMC::GetMC()->Gspos("BFTRD",i,"BFMO",dx,dy,0.0,idrotm[2034+i],"ONLY"); } // CBL //////////////////////////////////////////////////////// // Rings // // Inner Ring tpar[0] = kBFMRin; tpar[1] = tpar[0] + kBFRdr; tpar[2] = kBFRdz / 2.; TVirtualMC::GetMC()->Gsvolu("BFIR", "TUBE", kSteel, tpar, 3); tpar[0] = tpar[0] + kBFBdd; tpar[1] = tpar[1] - kBFBdd; tpar[2] = (kBFRdz - 2. * kBFBdd) / 2.; TVirtualMC::GetMC()->Gsvolu("BFII", "TUBE", kAir, tpar, 3); TVirtualMC::GetMC()->Gspos("BFII", 1, "BFIR", 0., 0., 0., 0, "ONLY"); // // Outer RING tpar[0] = kBFMRou - kBFRdr + 0.1; tpar[1] = kBFMRou; tpar[2] = kBFRdz / 2.; TVirtualMC::GetMC()->Gsvolu("BFOR", "TUBE", kSteel, tpar, 3); tpar[0] = tpar[0] + kBFBdd; tpar[1] = tpar[1] - kBFBdd; tpar[2] = (kBFRdz - 2. * kBFBdd) / 2.; TVirtualMC::GetMC()->Gsvolu("BFOO", "TUBE", kAir, tpar, 3); TVirtualMC::GetMC()->Gspos("BFOO", 1, "BFOR", 0., 0., 0., 0, "ONLY"); dz = kBFMdz/2. - kBFRdz / 2.; TVirtualMC::GetMC()->Gspos("BFIR", 1, "BFMO", 0., 0., dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BFIR", 2, "BFMO", 0., 0., -dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BFOR", 1, "BFMO", 0., 0., dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BFOR", 2, "BFMO", 0., 0., -dz, 0, "ONLY"); // // Longitudinal Bars // Float_t bpar[3]; bpar[0] = kBFBd/2; bpar[1] = bpar[0]; bpar[2] = kBFMdz/2. - kBFBd; TVirtualMC::GetMC()->Gsvolu("BFLB", "BOX ", kSteel, bpar, 3); bpar[0] = bpar[0] - kBFBdd; bpar[1] = bpar[1] - kBFBdd; bpar[2] = bpar[2] - kBFBdd; TVirtualMC::GetMC()->Gsvolu("BFLL", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BFLL", 1, "BFLB", 0., 0., 0., 0, "ONLY"); for (i = 0; i < 18; i++) { Float_t ro = kBFMRou - kBFBd / 2. - 0.02; Float_t ri = kBFMRin + kBFBd / 2.; Float_t phi0 = Float_t(i) * 20.; Float_t xb = ri * TMath::Cos(phi0 * kDegrad); Float_t yb = ri * TMath::Sin(phi0 * kDegrad); AliMatrix(idrotm[2090+i], 90.0, phi0, 90.0, phi0 + 270., 0., 0.); TVirtualMC::GetMC()->Gspos("BFLB", i + 1, "BFMO", xb, yb, 0., idrotm[2090 + i], "ONLY"); xb = ro * TMath::Cos(phi0 * kDegrad); yb = ro * TMath::Sin(phi0 * kDegrad); TVirtualMC::GetMC()->Gspos("BFLB", i + 19, "BFMO", xb, yb, 0., idrotm[2090 +i], "ONLY"); } // // Radial Bars // bpar[0] = (kBFMRou - kBFMRin - 2. * kBFRdr) / 2.; bpar[1] = kBFBd/2; bpar[2] = bpar[1]; // // Avoid overlap with circle Float_t rr = kBFMRou - kBFRdr; Float_t delta = rr - TMath::Sqrt(rr * rr - kBFBd * kBFBd / 4.) + 0.01; bpar[0] -= delta /2.; TVirtualMC::GetMC()->Gsvolu("BFRB", "BOX ", kSteel, bpar, 3); bpar[0] = bpar[0] - kBFBdd; bpar[1] = bpar[1] - kBFBdd; bpar[2] = bpar[2] - kBFBdd; TVirtualMC::GetMC()->Gsvolu("BFRR", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BFRR", 1, "BFRB", 0., 0., 0., 0, "ONLY"); Int_t iphi[10] = {0, 1, 3, 6, 8, 9, 10, 12, 15, 17}; for (i = 0; i < 10; i++) { Float_t rb = (kBFMRin + kBFMRou)/2.; Float_t phib = Float_t(iphi[i]) * 20.; Float_t xb = rb * TMath::Cos(phib * kDegrad); Float_t yb = rb * TMath::Sin(phib * kDegrad); TVirtualMC::GetMC()->Gspos("BFRB", i + 1, "BFMO", xb, yb, dz, idrotm[2034 + iphi[i]], "ONLY"); TVirtualMC::GetMC()->Gspos("BFRB", i + 11, "BFMO", xb, yb, -dz, idrotm[2034 + iphi[i]], "ONLY"); } TVirtualMC::GetMC()->Gspos("BFMO", i + 19, "ALIC", 0, 0, - 376. - kBFMdz/2. - 0.5 , 0, "ONLY"); // // // The Baby Frame // // // // Inner radius Float_t kBBMRin = 278.0; // Outer Radius Float_t kBBMRou = 410.5; // Width Float_t kBBMdz = 223.0; Float_t kBBBdz = 6.0; Float_t kBBBdd = 0.6; // The Mother volume ppgon[0] = 0.; ppgon[1] = 360.; ppgon[2] = 18.; ppgon[3] = 2.; ppgon[4] = -kBBMdz / 2. ; ppgon[5] = kBBMRin; ppgon[6] = kBBMRou; ppgon[7] = -ppgon[4]; ppgon[8] = ppgon[5]; ppgon[9] = ppgon[6]; TVirtualMC::GetMC()->Gsvolu("BBMO", "PGON", kAir, ppgon, 10); TVirtualMC::GetMC()->Gsdvn("BBCE", "BBMO", 18, 2); // CBL //////////////////////////////////////////////////////// // // TRD mother volume // AliMatrix(idrotm[2092], 90.0, 90.0, 0.0, 0.0, 90.0, 0.0); ptrd1[0] = 47.4405 - 2.5; ptrd1[1] = 61.1765 - 2.5; ptrd1[2] = kBBMdz / 2.; ptrd1[3] = 38.95; TVirtualMC::GetMC()->Gsvolu("BBTRD", "TRD1", kAir, ptrd1, 4); gGeoManager->GetVolume("BBTRD")->SetVisibility(kFALSE); TVirtualMC::GetMC()->Gspos("BBTRD", 1, "BBCE", 342.0-12.62, 0.0, 0.0, idrotm[2092], "ONLY"); // CBL //////////////////////////////////////////////////////// // Longitudinal bars bpar[0] = kBBBdz/2.; bpar[1] = bpar[0]; bpar[2] = kBBMdz/2. - kBBBdz; TVirtualMC::GetMC()->Gsvolu("BBLB", "BOX ", kSteel, bpar, 3); bpar[0] -= kBBBdd; bpar[1] -= kBBBdd; bpar[2] -= kBBBdd; TVirtualMC::GetMC()->Gsvolu("BBLL", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BBLL", 1, "BBLB", 0., 0., 0., 0, "ONLY"); dx = kBBMRin + kBBBdz/2. + (bpar[1] + kBBBdd) * TMath::Sin(10. * kDegrad); dy = dx * TMath::Tan(10. * kDegrad) - kBBBdz/2./TMath::Cos(10. * kDegrad); TVirtualMC::GetMC()->Gspos("BBLB", 1, "BBCE", dx, dy, 0., idrotm[2052], "ONLY"); dx = kBBMRou - kBBBdz/2. - (bpar[1] + kBBBdd) * TMath::Sin(10. * kDegrad); dy = dx * TMath::Tan(10. * kDegrad) - kBBBdz/2./TMath::Cos(10. * kDegrad); TVirtualMC::GetMC()->Gspos("BBLB", 2, "BBCE", dx, dy, 0., idrotm[2052], "ONLY"); // // Radial Bars // bpar[0] = (kBBMRou - kBBMRin) / 2. - kBBBdz; bpar[1] = kBBBdz/2; bpar[2] = bpar[1]; TVirtualMC::GetMC()->Gsvolu("BBRB", "BOX ", kSteel, bpar, 3); bpar[0] -= kBBBdd; bpar[1] -= kBBBdd; bpar[2] -= kBBBdd; TVirtualMC::GetMC()->Gsvolu("BBRR", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BBRR", 1, "BBRB", 0., 0., 0., 0, "ONLY"); dx = (kBBMRou + kBBMRin) / 2.; dy = ((kBBMRou + kBBMRin)/ 2) * TMath::Tan(10 * kDegrad) - kBBBdz / 2./ TMath::Cos(10 * kDegrad); dz = kBBMdz/2. - kBBBdz / 2.; TVirtualMC::GetMC()->Gspos("BBRB", 1, "BBCE", dx, dy, dz, idrotm[2052], "ONLY"); TVirtualMC::GetMC()->Gspos("BBRB", 2, "BBCE", dx, dy, - dz, idrotm[2052], "ONLY"); TVirtualMC::GetMC()->Gspos("BBRB", 3, "BBCE", dx, dy, 0., idrotm[2052], "ONLY"); // // Circular bars // // Inner bpar[1] = kBBMRin * TMath::Sin(10. * kDegrad); bpar[0] = kBBBdz/2; bpar[2] = bpar[0]; TVirtualMC::GetMC()->Gsvolu("BBC1", "BOX ", kSteel, bpar, 3); bpar[0] -= kBBBdd; bpar[1] -= kBBBdd; bpar[2] -= kBBBdd; TVirtualMC::GetMC()->Gsvolu("BBC2", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BBC2", 1, "BBC1", 0., 0., 0., 0, "ONLY"); dx = kBBMRin + kBBBdz/2; dy = 0.; TVirtualMC::GetMC()->Gspos("BBC1", 1, "BBCE", dx, dy, dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BBC1", 2, "BBCE", dx, dy, -dz, 0, "ONLY"); // // Outer bpar[1] = (kBBMRou - kBBBdz) * TMath::Sin(10. * kDegrad); bpar[0] = kBBBdz/2; bpar[2] = bpar[0]; TVirtualMC::GetMC()->Gsvolu("BBC3", "BOX ", kSteel, bpar, 3); bpar[0] -= kBBBdd; bpar[1] -= kBBBdd; bpar[2] -= kBBBdd; TVirtualMC::GetMC()->Gsvolu("BBC4", "BOX ", kAir, bpar, 3); TVirtualMC::GetMC()->Gspos("BBC4", 1, "BBC3", 0., 0., 0., 0, "ONLY"); dx = kBBMRou - kBBBdz/2; dy = 0.; TVirtualMC::GetMC()->Gspos("BBC3", 1, "BBCE", dx, dy, dz, 0, "ONLY"); TVirtualMC::GetMC()->Gspos("BBC3", 2, "BBCE", dx, dy, - dz, 0, "ONLY"); // // Diagonal Bars // h = (kBBMRou - kBBMRin - 2. * kBBBdz);; d = kBBBdz; dz = kBBMdz/2. - 1.6 * kBBBdz; dq = h*h+dz*dz; x = TMath::Sqrt((dz*dz-d*d)/dq + d*d*h*h/dq/dq)+d*h/dq; theta = kRaddeg * TMath::ACos(x); ptrap[0] = dz/2.; ptrap[1] = theta; ptrap[2] = 0.; ptrap[3] = d/2; ptrap[4] = d/x/2; ptrap[5] = ptrap[4]; ptrap[6] = 0; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; ptrap[10] = 0; TVirtualMC::GetMC()->Gsvolu("BBD1", "TRAP", kSteel, ptrap, 11); ptrap[3] = d/2-kBBBdd; ptrap[4] = (d/2-kBBBdd)/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("BBD3", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("BBD3", 1, "BBD1", 0.0, 0.0, 0., 0, "ONLY"); dx = (kBBMRou + kBBMRin) / 2.; dy = ((kBBMRou + kBBMRin)/ 2) * TMath::Tan(10 * kDegrad) - kBBBdz / 2./ TMath::Cos(10 * kDegrad); TVirtualMC::GetMC()->Gspos("BBD1", 1, "BBCE", dx, dy, dz/2. + kBBBdz/2., idrotm[2052], "ONLY"); ptrap[0] = dz/2.; ptrap[1] = -theta; ptrap[2] = 0.; ptrap[3] = d/2; ptrap[4] = d/2/x; ptrap[5] = ptrap[4]; ptrap[6] = 0; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; ptrap[10] = 0; TVirtualMC::GetMC()->Gsvolu("BBD2", "TRAP", kSteel, ptrap, 11); ptrap[3] = d/2-kBBBdd; ptrap[4] = (d/2-kBBBdd)/x; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu("BBD4", "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos("BBD4", 1, "BBD2", 0.0, 0.0, 0., 0, "ONLY"); dx = (kBBMRou + kBBMRin) / 2.; dy = ((kBBMRou + kBBMRin)/ 2) * TMath::Tan(10 * kDegrad) - kBBBdz / 2./ TMath::Cos(10 * kDegrad); TVirtualMC::GetMC()->Gspos("BBD2", 1, "BBCE", dx, dy, -dz/2. - kBBBdz/2., idrotm[2052], "ONLY"); TVirtualMC::GetMC()->Gspos("BBMO", 1, "ALIC", 0., 0., + 376. + kBBMdz / 2. + 0.5, 0, "ONLY"); } //___________________________________________ void AliFRAMEv2::AddAlignableVolumes() const { // Add the 18 spaceframe sectors as alignable volumes TString basesymname("FRAME/Sector"); TString basevolpath("ALIC_1/B077_1/BSEGMO"); TString symname; TString volpath; for(Int_t sec=0; sec<18; sec++) { symname = basesymname; symname += sec; volpath = basevolpath; volpath += sec; volpath += "_1"; if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname.Data(),volpath.Data())); } } //___________________________________________ void AliFRAMEv2::CreateMaterials() { // Creates the materials Float_t epsil, stemax, tmaxfd, deemax, stmin; epsil = 1.e-4; // Tracking precision, stemax = -0.01; // Maximum displacement for multiple scat tmaxfd = -20.; // Maximum angle due to field deflection deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; //Air Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; AliMixture(65, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); AliMixture(5, "AIR$ ", aAir, zAir, dAir,4, wAir); AliMaterial(9, "ALU ", 26.98, 13., 2.7, 8.9, 37.2); AliMedium(65, "Stainless Steel", 65, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium( 5, "Air", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium( 9, "Aluminum", 9, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliFRAMEv2::Init() { // // Initialise the module after the geometry has been defined // if(AliLog::GetGlobalDebugLevel()>0) { printf("%s: **************************************" " FRAME " "**************************************\n",ClassName()); printf("\n%s: Version 2 of FRAME initialised, symmetric FRAME\n\n",ClassName()); printf("%s: **************************************" " FRAME " "**************************************\n",ClassName()); } // // The reference volume id fRefVolumeId1 = TVirtualMC::GetMC()->VolId("BREF1"); fRefVolumeId2 = TVirtualMC::GetMC()->VolId("BREF2"); } Int_t AliFRAMEv2::IsVersion() const { // Returns the version of the FRAME (1 if no holes, 0 otherwise) Int_t version = 0; if (fHoles == 0) version = 1; return version; } void AliFRAMEv2::StepManager() { // // Stepmanager of AliFRAMEv2.cxx // Used for recording of reference tracks entering the spaceframe mother volume // Int_t copy, id; // // Only charged tracks if( !(TVirtualMC::GetMC()->TrackCharge()) ) return; // // Only tracks entering mother volume // id=TVirtualMC::GetMC()->CurrentVolID(copy); if ((id != fRefVolumeId1) && (id != fRefVolumeId2)) return; if(!TVirtualMC::GetMC()->IsTrackEntering()) return; // // Add the reference track // AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kFRAME); } void AliFRAMEv2::MakeHeatScreen(const char* name, Float_t dyP, Int_t rot1, Int_t rot2) { // Heat screen panel // Int_t *idtmed = fIdtmed->GetArray()-1999; const Int_t kAir = idtmed[2004]; const Int_t kAlu = idtmed[2008]; Float_t dx, dy; char mname[16]; char cname [16]; char t1name[16]; char t2name[16]; char t3name[16]; char t4name[16]; char t5name[16]; // Float_t dxP = 2. * (287. * TMath::Sin(10.* TMath::Pi()/180.) - 2.); Float_t dzP = 1.05; // // Mother volume Float_t thshM[3]; thshM[0] = dxP / 2.; thshM[1] = dyP / 2.; thshM[2] = dzP / 2.; snprintf(mname, 16, "BTSH_%s", name); TVirtualMC::GetMC()->Gsvolu(mname, "BOX ", kAir, thshM, 3); // // Aluminum sheet thshM[2] = 0.025; snprintf(cname, 16, "BTSHA_%s", name); TVirtualMC::GetMC()->Gsvolu(cname, "BOX ", kAlu, thshM, 3); TVirtualMC::GetMC()->Gspos(cname, 1, mname, 0., 0., -0.5, 0); // // Tubes Float_t thshT[3]; thshT[0] = 0.4; thshT[1] = 0.5; thshT[2] = (dyP / 2. - 8.); // snprintf(t1name, 16, "BTSHT1_%s", name); TVirtualMC::GetMC()->Gsvolu(t1name, "TUBE", kAlu, thshT, 3); dx = - dxP / 2. + 8. - 0.5; TVirtualMC::GetMC()->Gspos(t1name, 1, mname, dx, 0., 0.025, rot1); // snprintf(t2name, 16, "BTSHT2_%s", name); snprintf(t3name, 16, "BTSHT3_%s", name); snprintf(t4name, 16, "BTSHT4_%s", name); snprintf(t5name, 16, "BTSHT5_%s", name); thshT[2] = (thshM[1] - 12.); TVirtualMC::GetMC()->Gsvolu(t2name, "TUBE", kAlu, thshT, 3); thshT[2] = 7.9/2.; TVirtualMC::GetMC()->Gsvolu(t3name, "TUBE", kAlu, thshT, 3); thshT[2] = 23.9/2.; TVirtualMC::GetMC()->Gsvolu(t4name, "TUBE", kAlu, thshT, 3); Int_t sig = 1; Int_t ipo = 1; for (Int_t i = 0; i < 5; i++) { sig *= -1; dx += 8.00; dy = 4. * sig; Float_t dy1 = - (thshM[1] - 15.5) * sig; Float_t dy2 = - (thshM[1] - 7.5) * sig; TVirtualMC::GetMC()->Gspos(t2name, ipo++, mname, dx, dy, 0.025, rot1); dx += 6.9; TVirtualMC::GetMC()->Gspos(t2name, ipo++, mname, dx, dy, 0.025, rot1); TVirtualMC::GetMC()->Gspos(t3name, i+1, mname, dx - 3.45, dy1, 0.025, rot2); TVirtualMC::GetMC()->Gspos(t4name, i+1, mname, dx - 3.45, dy2, 0.025, rot2); } dx += 8.; TVirtualMC::GetMC()->Gspos(t1name, 2, mname, dx, 0., 0.025, rot1); TVirtualMC::GetMC()->Gspos(t3name, 6, mname, dx - 3.45, -(thshM[1] - 7.5), 0.025, rot2); } void AliFRAMEv2::WebFrame(const char* name, Float_t dHz, Float_t theta0, Float_t phi0) { // // Create a web frame element // Int_t *idtmed = fIdtmed->GetArray()-1999; const Float_t krad2deg = 180. / TMath::Pi(); const Float_t kdeg2rad = 1. / krad2deg; const Int_t kAir = idtmed[2004]; const Int_t kSteel = idtmed[2064]; Float_t ptrap[11]; char nameA[16]; snprintf(nameA, 16, "%sA", name ); theta0 *= kdeg2rad; phi0 *= kdeg2rad; Float_t theta = TMath::ATan(TMath::Tan(theta0)/TMath::Sin(phi0)); Float_t phi = TMath::ACos(TMath::Cos(theta0) * TMath::Cos(phi0)); if (phi0 < 0) phi = -phi; phi *= krad2deg; theta *= krad2deg; ptrap[0] = dHz/2; ptrap[2] = theta; ptrap[1] = phi; ptrap[3] = 6./cos(theta0 * kdeg2rad)/2.; ptrap[4] = 1.; ptrap[5] = ptrap[4]; ptrap[6] = 0; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; ptrap[10] = 0; TVirtualMC::GetMC()->Gsvolu(name, "TRAP", kSteel, ptrap, 11); ptrap[3] = (6. - 1.)/cos(theta0 * kdeg2rad)/2.; ptrap[4] = 0.75; ptrap[5] = ptrap[4]; ptrap[7] = ptrap[3]; ptrap[8] = ptrap[4]; ptrap[9] = ptrap[4]; TVirtualMC::GetMC()->Gsvolu(nameA, "TRAP", kAir, ptrap, 11); TVirtualMC::GetMC()->Gspos(nameA, 1, name, 0.0, -0.25, 0., 0, "ONLY"); gGeoManager->GetVolume(name)->SetVisibility(1); }