/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //------------------------------------------------------------------------- // Beam pipe class // This version uses TGeo // Author: A.Morsch //------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliConst.h" #include "AliMagF.h" #include "AliPIPEv3.h" #include "AliRun.h" #include "AliLog.h" ClassImp(AliPIPEv3) //_____________________________________________________________________________ AliPIPEv3::AliPIPEv3() : fBeamBackground(0) { // Constructor } //_____________________________________________________________________________ AliPIPEv3::AliPIPEv3(const char *name, const char *title) : AliPIPE(name,title), fBeamBackground(0) { // Constructor } //___________________________________________ void AliPIPEv3::CreateGeometry() { // // Method describing the beam pipe geometry // AliDebug(1,"Create PIPEv3 geometry"); Float_t dz, z, zsh, z0; // // Rotation Matrices // const Float_t kDegRad = TMath::Pi() / 180.; // Rotation by 180 deg TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.); TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.); TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.); TGeoRotation* rot045 = new TGeoRotation("rot045", 90., 45., 90., 135., 0., 0.); TGeoRotation* rot135 = new TGeoRotation("rot135", 90. ,135., 90., 225., 0., 0.); TGeoRotation* rot225 = new TGeoRotation("rot225", 90. ,225., 90., 315., 0., 0.); TGeoRotation* rot315 = new TGeoRotation("rot315", 90. ,315., 90., 45., 0., 0.); // // Media const TGeoMedium* kMedAir = gGeoManager->GetMedium("PIPE_AIR"); const TGeoMedium* kMedAirHigh = gGeoManager->GetMedium("PIPE_AIR_HIGH"); const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); const TGeoMedium* kMedVacM = gGeoManager->GetMedium("PIPE_VACUUMM"); const TGeoMedium* kMedInsu = gGeoManager->GetMedium("PIPE_INS_C0"); const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); const TGeoMedium* kMedBe = gGeoManager->GetMedium("PIPE_BE"); const TGeoMedium* kMedCu = gGeoManager->GetMedium("PIPE_CU"); const TGeoMedium* kMedKapton = gGeoManager->GetMedium("PIPE_KAPTON"); const TGeoMedium* kMedAco = gGeoManager->GetMedium("PIPE_ANTICORODAL"); const TGeoMedium* kMedNEG = gGeoManager->GetMedium("PIPE_NEG COATING"); // Top volume TGeoVolume* top = gGeoManager->GetVolume("ALIC"); // // //////////////////////////////////////////////////////////////////////////////// // // // The Central Vacuum system // // // //////////////////////////////////////////////////////////////////////////////// // // // The ALICE central beam-pipe according to drawing LHCVC2C_0001 // Drawings of sub-elements: // // Pos 7 - Minimised Flange: LHCVFX_P0025 // Pos 6 - Standard Flange: STDVFUHV0009 // Pos 8 - Bellow: LHCVBX__0001 // // Absolute z-coordinates -82.0 - 400.0 cm // Total length: 482.0 cm // It consists of 3 main parts: // CP/2 The flange on the non-absorber side: 36.5 cm // CP/1 The central Be pipe: 405.0 cm // CP/3 The double-bellow and flange on the absorber side: 40.5 cm // // // // // Starting position in z const Float_t kCPz0 = -400.0; // Length of the CP/1 section const Float_t kCP1Length = 405.0; // Length of the CP/2 section const Float_t kCP2Length = 36.5; // Length of the CP/3 section const Float_t kCP3Length = 40.5; // Position of the CP/2 section // const Float_t kCP2pos = kCPz0 + kCP2Length / 2.; // Position of the CP/3 section const Float_t kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.; /////////////////// // CP/1 // /////////////////// // Inner and outer radii of the Be-section [Pos 1] const Float_t kCP1NegRo = 2.90 + 0.0002; const Float_t kCP1BeRi = 2.90; const Float_t kCP1BeRo = 2.98; const Float_t kCP1KaRo = 2.99; // // Be-Stainless Steel adaptor tube [Pos 2] at both ends of the Be-section. Length 5 cm const Float_t kCP1BeStAdaptorLength = 5.00; // // Bulge of the Be-Stainless Steel adaptor Tube [Pos 2] const Float_t kCP1BeStRo = 3.05; // // Length of bulge [Pos 2] const Float_t kCP1BulgeLength = 0.50; // // Distance between bulges [Pos 2] const Float_t kCP1BulgeBulgeDistance = 1.00; // // Length of Be-pipe const Float_t kCP1BeLength = kCP1Length - 2. * kCP1BeStAdaptorLength; // // CP/1 Mother volume TGeoVolume* voCp1Mo = new TGeoVolume("CP1MO", new TGeoTube(0., kCP1BeStRo, kCP1Length / 2.), kMedAir); voCp1Mo->SetVisibility(0); ///////////////////////////////////////////// // CP/1 Be-Section // ///////////////////////////////////////////// TGeoVolume* voCp1Vac = new TGeoVolume("CP1VAC", new TGeoTube(0., kCP1BeRi, kCP1BeLength / 2.), kMedVac); TGeoVolume* voCp1Be = new TGeoVolume("CP1BE", new TGeoTube(0., kCP1BeRo, kCP1BeLength / 2.), kMedBe); // Outer Kapton foil TGeoVolume* voCp1Ka = new TGeoVolume("CP1KA", new TGeoTube(0., kCP1KaRo, kCP1BeLength / 2.), kMedKapton); // Inner NEG coating TGeoVolume* voCp1NEG = new TGeoVolume("CP1NEG", new TGeoTube(kCP1BeRi, kCP1NegRo, kCP1BeLength / 2.), kMedNEG); voCp1Ka->AddNode(voCp1Be, 1, gGeoIdentity); voCp1Be->AddNode(voCp1Vac, 1, gGeoIdentity); voCp1Be->AddNode(voCp1NEG, 1, gGeoIdentity); voCp1Mo->AddNode(voCp1Ka, 1, gGeoIdentity); ///////////////////////////////////////////// // CP/1 Be-Stainless Steel adaptor tube // ///////////////////////////////////////////// TGeoPcon* shCp1At = new TGeoPcon(0., 360., 8); // First Bulge z = - kCP1BeStAdaptorLength / 2.; shCp1At->DefineSection(0, z, 0., kCP1BeStRo); z += kCP1BulgeLength; shCp1At->DefineSection(1, z, 0., kCP1BeStRo); shCp1At->DefineSection(2, z, 0., kCP1BeRo); // Between the bulges z += kCP1BulgeBulgeDistance; shCp1At->DefineSection(3, z, 0., kCP1BeRo); shCp1At->DefineSection(4, z, 0., kCP1BeStRo); // Second bulge z += kCP1BulgeLength; shCp1At->DefineSection(5, z, 0., kCP1BeStRo); shCp1At->DefineSection(6, z, 0., kCP1BeRo); // Straight piece z = kCP1BeStAdaptorLength / 2.; shCp1At->DefineSection(7, z, 0., kCP1BeRo); // TGeoVolume* voCp1At = new TGeoVolume("CP1AT", shCp1At, kMedSteel); TGeoVolume* voCp1AtV = new TGeoVolume("CP1ATV", new TGeoTube(0., kCP1BeRi, kCP1BeStAdaptorLength / 2.), kMedVac); voCp1At->AddNode(voCp1AtV, 1, gGeoIdentity); // Position adaptor tube at both ends dz = kCP1Length / 2. - kCP1BeStAdaptorLength / 2.; voCp1Mo->AddNode(voCp1At, 1, new TGeoTranslation(0., 0., -dz)); voCp1Mo->AddNode(voCp1At, 2, new TGeoCombiTrans(0., 0., dz, rot180)); TGeoVolumeAssembly* voCp1 = new TGeoVolumeAssembly("Cp1"); voCp1->AddNode(voCp1Mo, 1, gGeoIdentity); // /////////////////// // CP/2 // /////////////////// // // Fixed Point tube [Pos 5] // // Inner and outer radii of the Stainless Steel pipe const Float_t kCP2StRi = 2.90; const Float_t kCP2StRo = 2.98; // // Transition to central Be-pipe (Bulge) // Length const Float_t kCP2BulgeLength = 0.80; // // Bulge outer radius const Float_t kCP2BulgeRo = 3.05; // // Fixed Point at z = 391.7 (IP) // // Position of fixed point const Float_t kCP2FixedPointZ = 8.30; // // Outer radius of fixed point const Float_t kCP2FixedPointRo = 3.50; // // Length of fixed point const Float_t kCP2FixedPointLength = 0.60; // // Fixed Flange [Pos 6] // // Fixed flange outer radius const Float_t kCP2FixedFlangeRo = 7.60; // // Fixed flange inner radius const Float_t kCP2FixedFlangeRi = 3.00; // Fixed flange inner radius bulge const Float_t kCP2FixedFlangeBulgeRi = 2.90; // Fixed flange lengths of sections at inner radius const Float_t kCP2FixedFlangeRecessLengths[3] ={1., 0.08, 0.9}; // Fixed flange length const Float_t kCP2FixedFlangeLength = 1.98; // // Fixed flange bulge // Outer radius const Float_t kCP2FixedFlangeBulgeRo = 3.00; // // Length const Float_t kCP2FixedFlangeBulgeLength = 2.00; // // CP/2 Mother Volume // TGeoPcon* shCp2Mo = new TGeoPcon(0., 360., 14); // Flange z = - kCP2Length / 2.; shCp2Mo->DefineSection( 0, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); z += kCP2FixedFlangeRecessLengths[0]; shCp2Mo->DefineSection( 1, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); shCp2Mo->DefineSection( 2, z, 0., kCP2FixedFlangeRo); z += (kCP2FixedFlangeRecessLengths[1] + kCP2FixedFlangeRecessLengths[2]) ; shCp2Mo->DefineSection( 3, z, 0., kCP2FixedFlangeRo); // Straight section between Flange and Fixed Point shCp2Mo->DefineSection( 4, z, 0., kCP2FixedFlangeBulgeRo); z += kCP2FixedFlangeBulgeLength; shCp2Mo->DefineSection( 5, z, 0., kCP2FixedFlangeBulgeRo); shCp2Mo->DefineSection( 6, z, 0., kCP2StRo); z = - kCP2Length / 2 + kCP2FixedPointZ - kCP2FixedPointLength / 2.; shCp2Mo->DefineSection( 7, z, 0., kCP2StRo); // Fixed Point shCp2Mo->DefineSection( 8, z, 0., kCP2FixedPointRo); z += kCP2FixedPointLength; shCp2Mo->DefineSection( 9, z, 0., kCP2FixedPointRo); // Straight section between Fixed Point and transition bulge shCp2Mo->DefineSection(10, z, 0., kCP2StRo); z = kCP2Length / 2. - kCP2BulgeLength; shCp2Mo->DefineSection(11, z, 0., kCP2StRo); shCp2Mo->DefineSection(12, z, 0., kCP2BulgeRo); z = kCP2Length / 2.; shCp2Mo->DefineSection(13, z, 0., kCP2BulgeRo); TGeoVolume* voCp2Mo = new TGeoVolume("CP2MO", shCp2Mo, kMedAir); voCp2Mo->SetVisibility(0); // // CP/1 Vacuum TGeoTube* shCp2Va = new TGeoTube(0., kCP2StRi, (kCP2Length - kCP2FixedFlangeRecessLengths[0])/2.); TGeoVolume* voCp2Va = new TGeoVolume("CP2VA", shCp2Va, kMedVac); voCp2Mo->AddNode(voCp2Va, 1, new TGeoTranslation(0., 0., kCP2FixedFlangeRecessLengths[0]/2.)); ///////////////////////////////////////////// // CP/2 Fixed Flange [Pos 6] // ///////////////////////////////////////////// TGeoPcon* shCp2Fl = new TGeoPcon(0., 360., 6); z = - kCP2FixedFlangeLength / 2.; shCp2Fl->DefineSection(0, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); z += kCP2FixedFlangeRecessLengths[0]; shCp2Fl->DefineSection(1, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); shCp2Fl->DefineSection(2, z, kCP2FixedFlangeBulgeRi, kCP2FixedFlangeRo); z += kCP2FixedFlangeRecessLengths[1]; shCp2Fl->DefineSection(3, z, kCP2FixedFlangeBulgeRi, kCP2FixedFlangeRo); shCp2Fl->DefineSection(4, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); z = kCP2FixedFlangeLength / 2.; shCp2Fl->DefineSection(5, z, kCP2FixedFlangeRi, kCP2FixedFlangeRo); TGeoVolume* voCp2Fl = new TGeoVolume("CP2FL", shCp2Fl, kMedSteel); // dz = - kCP2Length / 2. + kCP2FixedFlangeLength / 2.; voCp2Mo->AddNode(voCp2Fl, 1, new TGeoTranslation(0., 0., dz)); ///////////////////////////////////////////////////////////// // CP/2 Beam pipe with fixed point and transition bulges // ///////////////////////////////////////////////////////////// TGeoPcon* shCp2Pi = new TGeoPcon(0., 360., 10); // Bulge at transition to flange z = - (kCP2Length - kCP2FixedFlangeRecessLengths[0] - kCP2FixedFlangeRecessLengths[1]) / 2.; z0 = z; shCp2Pi->DefineSection(0, z, kCP2StRi, kCP2FixedFlangeBulgeRo); z += kCP2FixedFlangeBulgeLength; shCp2Pi->DefineSection(1, z, kCP2StRi, kCP2FixedFlangeBulgeRo); // Straight section between Bulge and Fixed Point shCp2Pi->DefineSection(2, z, kCP2StRi, kCP2StRo); z += (kCP2FixedPointZ - kCP2FixedPointLength / 2. - kCP2FixedFlangeRecessLengths[0] - kCP2FixedFlangeRecessLengths[1] - kCP2FixedFlangeBulgeLength); shCp2Pi->DefineSection(3, z, kCP2StRi, kCP2StRo); // Fixed Point shCp2Pi->DefineSection(4, z, kCP2StRi, kCP2FixedPointRo); z += kCP2FixedPointLength; shCp2Pi->DefineSection(5, z, kCP2StRi, kCP2FixedPointRo); // Straight section between Fixed Point and transition bulge shCp2Pi->DefineSection(6, z, kCP2StRi, kCP2StRo); z = - shCp2Pi->GetZ(0) - kCP2BulgeLength; shCp2Pi->DefineSection(7, z, kCP2StRi, kCP2StRo); // Bulge at transition to Be pipe shCp2Pi->DefineSection(8, z, kCP2StRi, kCP2BulgeRo); z = - shCp2Pi->GetZ(0); shCp2Pi->DefineSection(9, z, kCP2StRi, kCP2BulgeRo); TGeoVolume* voCp2Pi = new TGeoVolume("CP2PI", shCp2Pi, kMedSteel); dz = (kCP2FixedFlangeRecessLengths[0] + kCP2FixedFlangeRecessLengths[1]) / 2.; voCp2Mo->AddNode(voCp2Pi, 1, new TGeoTranslation(0., 0., dz)); // // Central beam pipe support collars // LHCVC2C_0019 // cp1l = 405. // Position at z = -46., 40., 150. TGeoVolume* voCpSupC = new TGeoVolume("CpSupC", new TGeoTube(3.051, 4.00, 0.35), kMedAco); voCp1->AddNode(voCpSupC, 1, new TGeoTranslation(0., 0., kCP1Length / 2. - 98.2 - 34.77 + 0.49)); // voCp1->AddNode(voCpSupC, 2, new TGeoTranslation(0., 0., kCP1Length / 2.- 191.5)); // Beam Pipe Protection Tube // // ALIFWDA_0025 // // Plaque de Centrage ALIFWDA_0019 const Float_t kFwdaBPPTXL = 3.; TGeoXtru* shFwdaBPPTX = new TGeoXtru(2); Double_t xBPPTX[8] = {12.5, 7.5, -7.5, -12.5, -12.5, -7.5, 7.5, 12.5}; Double_t yBPPTX[8] = { 7.0, 12.0, 12.0, 7.0, -7.0, -12.0, -12.0, -7.0}; shFwdaBPPTX->DefinePolygon(8, xBPPTX, yBPPTX); shFwdaBPPTX->DefineSection(0, 0., 0., 0., 1.); shFwdaBPPTX->DefineSection(1, kFwdaBPPTXL, 0., 0., 1.); shFwdaBPPTX->SetName("FwdaBPPTX"); TGeoTube* shFwdaBPPTY = new TGeoTube(0., 8.5, 3.2); shFwdaBPPTY->SetName("FwdaBPPTY"); TGeoCompositeShape* shFwdaBPPTPC = new TGeoCompositeShape("shFwdaBPPTPC", "FwdaBPPTX-FwdaBPPTY"); TGeoVolume* voFwdaBPPTPC = new TGeoVolume("FwdaBPPTPC", shFwdaBPPTPC, kMedAco); // // Tube ALIFWDA_0020 // const Float_t kFwdaBPPTTL = 48.; const Float_t kFwdaBPPTTL = 35.; TGeoVolume* voFwdaBPPTT = new TGeoVolume("FwdaBPPTT", new TGeoTube(8.85, 9.0, kFwdaBPPTTL/2.), kMedAco); TGeoVolumeAssembly* voFwdaBPPT = new TGeoVolumeAssembly("FwdaBPPT"); voFwdaBPPT->AddNode(voFwdaBPPTPC, 1, gGeoIdentity); voFwdaBPPT->AddNode(voFwdaBPPTT, 1, new TGeoTranslation(0., 0., kFwdaBPPTTL/2. + kFwdaBPPTXL)); // BeamPipe and T0A Support // // ALIFWDA_0033 // // Support Plate ALIFWDA_0026 const Float_t kFwdaBPSPL = 4.0; TGeoXtru* shFwdaBPSPX = new TGeoXtru(2); Double_t xBPSPX[8] = {10.0, 6.0 , -6.0, -10.0, -10.0, -6.0, 6.0, 10.0}; Double_t yBPSPX[8] = { 6.0, 10.0, 10.0, 6.0, - 6.0, -10.0, -10.0, -6.0}; shFwdaBPSPX->DefinePolygon(8, xBPSPX, yBPSPX); shFwdaBPSPX->DefineSection(0, 0., 0., 0., 1.); shFwdaBPSPX->DefineSection(1, kFwdaBPSPL, 0., 0., 1.); shFwdaBPSPX->SetName("FwdaBPSPX"); TGeoPcon* shFwdaBPSPY = new TGeoPcon(0., 360., 6); shFwdaBPSPY->DefineSection(0, -1.00, 0., 5.5); shFwdaBPSPY->DefineSection(1, 3.50, 0., 5.5); shFwdaBPSPY->DefineSection(2, 3.50, 0., 5.0); shFwdaBPSPY->DefineSection(3, 3.86, 0., 5.0); shFwdaBPSPY->DefineSection(4, 3.86, 0., 5.5); shFwdaBPSPY->DefineSection(5, 5.00, 0., 5.5); shFwdaBPSPY->SetName("FwdaBPSPY"); TGeoCompositeShape* shFwdaBPSP = new TGeoCompositeShape("shFwdaBPSP", "FwdaBPSPX-FwdaBPSPY"); TGeoVolume* voFwdaBPSP = new TGeoVolume("FwdaBPSP", shFwdaBPSP, kMedAco); // // Flasque ALIFWDA_00027 const Float_t kFwdaBPSTTRi = 7.6/2.; const Float_t kFwdaBPSTTRo1 = 13.9/2.; const Float_t kFwdaBPSTTRo2 = 8.2/2.; const Float_t kFwdaBPSTTRo3 = 9.4/2.; TGeoPcon* shFwdaBPSFL = new TGeoPcon(0., 360., 8); z = 0., shFwdaBPSFL->DefineSection(0, z, kFwdaBPSTTRi, kFwdaBPSTTRo1); z += 0.64; shFwdaBPSFL->DefineSection(1, z, kFwdaBPSTTRi, kFwdaBPSTTRo1); shFwdaBPSFL->DefineSection(2, z, kFwdaBPSTTRi, kFwdaBPSTTRo2); z += 2.55; shFwdaBPSFL->DefineSection(3, z, kFwdaBPSTTRi, kFwdaBPSTTRo2); shFwdaBPSFL->DefineSection(4, z, kFwdaBPSTTRi, kFwdaBPSTTRo3); z += 0.4; shFwdaBPSFL->DefineSection(5, z, kFwdaBPSTTRi, kFwdaBPSTTRo3); shFwdaBPSFL->DefineSection(6, z, kFwdaBPSTTRi, kFwdaBPSTTRo2); z += 1.2; shFwdaBPSFL->DefineSection(7, z, kFwdaBPSTTRi, kFwdaBPSTTRo2); TGeoVolume* voFwdaBPSFL = new TGeoVolume("FwdaBPSFL", shFwdaBPSFL, kMedAco); // // Cable support TGeoBBox* shFwdaBPSCSa = new TGeoBBox(3.0, 8.75, 0.5); shFwdaBPSCSa->SetName("FwdaBPSCSa"); TGeoBBox* shFwdaBPSCSb = new TGeoBBox(1.25, 4.00, 1.0); shFwdaBPSCSb->SetName("FwdaBPSCSb"); TGeoTranslation* tFwdaBPSCSb = new TGeoTranslation(0., 5.25 - 8.75, 0.); tFwdaBPSCSb->SetName("tFwdaBPSCSb"); tFwdaBPSCSb->RegisterYourself(); TGeoBBox* shFwdaBPSCSc = new TGeoBBox(3.0, 0.50, 0.70); shFwdaBPSCSc->SetName("FwdaBPSCSc"); TGeoTranslation* tFwdaBPSCSc = new TGeoTranslation(0., 0.5 - 8.75, 1.2); tFwdaBPSCSc->SetName("tFwdaBPSCSc"); tFwdaBPSCSc->RegisterYourself(); TGeoCompositeShape* shFwdaBPSCS = new TGeoCompositeShape("shFwdaBPSCS", "(FwdaBPSCSa-FwdaBPSCSb:tFwdaBPSCSb)+FwdaBPSCSc:tFwdaBPSCSc"); TGeoVolume* voFwdaBPSCS = new TGeoVolume("FwdaBPSCS", shFwdaBPSCS, kMedAco); // Assembling the beam pipe support TGeoVolumeAssembly* voFwdaBPS = new TGeoVolumeAssembly("FwdaBPS"); voFwdaBPS->AddNode(voFwdaBPSP, 1, new TGeoCombiTrans(0., 0., 0., rot045)); voFwdaBPS->AddNode(voFwdaBPSFL, 1, new TGeoTranslation(0., 0., kFwdaBPSPL)); const Float_t kFwdaBPSCSdy = 18.75/TMath::Sqrt(2.); voFwdaBPS->AddNode(voFwdaBPSCS, 1, new TGeoCombiTrans(- kFwdaBPSCSdy, kFwdaBPSCSdy, 2., rot045)); voFwdaBPS->AddNode(voFwdaBPSCS, 2, new TGeoCombiTrans(- kFwdaBPSCSdy, - kFwdaBPSCSdy, 2., rot135)); voFwdaBPS->AddNode(voFwdaBPSCS, 3, new TGeoCombiTrans( kFwdaBPSCSdy, - kFwdaBPSCSdy, 2., rot225)); voFwdaBPS->AddNode(voFwdaBPSCS, 4, new TGeoCombiTrans( kFwdaBPSCSdy, kFwdaBPSCSdy, 2., rot315)); TGeoVolumeAssembly* voCp2 = new TGeoVolumeAssembly("CP2"); voCp2->AddNode(voCp2Mo, 1, gGeoIdentity); voCp2->AddNode(voFwdaBPPT, 1, new TGeoTranslation(0., 0., -kCP2Length / 2. + 13.8)); voCp2->AddNode(voFwdaBPS, 1, new TGeoTranslation(0., 0., -kCP2Length / 2. + 5.1)); // /////////////////// // CP/3 // /////////////////// // // Adaptor tube [Pos 4] // // Adaptor tube length const Float_t kCP3AdaptorTubeLength = 5.50; // // Inner and outer radii const Float_t kCP3AdaptorTubeRi = 2.92; const Float_t kCP3AdaptorTubeRo = 3.00; // // Bulge at transition point // Inner and outer radii const Float_t kCP3AdaptorTubeBulgeRi = 2.90; const Float_t kCP3AdaptorTubeBulgeRo = 3.05; // // Length of bulge const Float_t kCP3AdaptorTubeBulgeLength = 0.80; // // Bellow [Pos 8] // // Total length const Float_t kCP3BellowLength = 13.00; // Outer Radius const Float_t kCP3BellowRo = 3.6; // Inner Radius const Float_t kCP3BellowRi = 2.8; // Number of plies const Int_t kCP3NumberOfPlies = 18; // Length of undulated region const Float_t kCP3BellowUndulatedLength = 8.30; // Plie thickness const Float_t kCP3PlieThickness = 0.02; // Connection Plie radies (at transition been undulated region and beam pipe) const Float_t kCP3ConnectionPlieR = 0.21; // Plie radius // const Float_t kCP3PlieR = 0.118286; const Float_t kCP3PlieR = (kCP3BellowUndulatedLength - 4. * kCP3ConnectionPlieR + 2. * kCP3NumberOfPlies * kCP3PlieThickness) / (4. * kCP3NumberOfPlies - 2.); // Length of connection pipe const Float_t kCP3BellowConnectionLength = 2.35; // // Tube between bellows [Pos 3] // // Length of tube const Float_t kCP3TubeLength = 4.00; // // Minimised fixed flange [Pos 7] // // Length of flange connection tube const Float_t kCP3FlangeConnectorLength = 5.0 - 1.4; // Length of Flange const Float_t kCP3FlangeLength = 1.40; // Outer radius const Float_t kCP3FlangeRo = 4.30; // // CP/3 Mother volume // TGeoPcon* shCp3Mo = new TGeoPcon(0., 360., 12); // From transition to first bellow z = - kCP3Length / 2.; shCp3Mo->DefineSection( 0, z, 0., kCP3AdaptorTubeBulgeRo); z += kCP3BellowConnectionLength + kCP3AdaptorTubeLength; shCp3Mo->DefineSection( 1, z, 0., kCP3AdaptorTubeBulgeRo); // First Bellow shCp3Mo->DefineSection( 2, z, 0., kCP3BellowRo); z += kCP3BellowUndulatedLength; shCp3Mo->DefineSection( 3, z, 0., kCP3BellowRo); // Connection between the two bellows shCp3Mo->DefineSection( 4, z, 0., kCP3AdaptorTubeBulgeRo); z += 2. * kCP3BellowConnectionLength + kCP3TubeLength; shCp3Mo->DefineSection( 5, z, 0., kCP3AdaptorTubeBulgeRo); // Second bellow shCp3Mo->DefineSection( 6, z, 0., kCP3BellowRo); z += kCP3BellowUndulatedLength; shCp3Mo->DefineSection( 7, z, 0., kCP3BellowRo); // Pipe between second Bellow and Flange shCp3Mo->DefineSection( 8, z, 0., kCP3AdaptorTubeBulgeRo); z += kCP3BellowConnectionLength + kCP3FlangeConnectorLength; shCp3Mo->DefineSection( 9, z, 0., kCP3AdaptorTubeBulgeRo); // Flange shCp3Mo->DefineSection(10, z, 0., kCP3FlangeRo); z = -shCp3Mo->GetZ(0); shCp3Mo->DefineSection(11, z, 0., kCP3FlangeRo); // // TGeoVolume* voCp3Mo = new TGeoVolume("CP3MO", shCp3Mo, kMedAir); TGeoVolume* voCp3Mo = new TGeoVolumeAssembly("CP3MO"); voCp3Mo->SetVisibility(0); TGeoVolumeAssembly* voCp3 = new TGeoVolumeAssembly("Cp3"); voCp3->AddNode(voCp3Mo, 1, gGeoIdentity); voCp3->AddNode(voCpSupC, 3, new TGeoTranslation(0., 0., - kCP3Length / 2. + 4.6 - 0.49)); dz = kCP3pos; ////////////////////////////////////////////// // CP/3 Adaptor tube // ////////////////////////////////////////////// TGeoPcon* shCp3AtV = new TGeoPcon(0., 360., 4); // Bulge at transition z = - kCP3AdaptorTubeLength / 2.; shCp3AtV->DefineSection(0, z, 0., kCP3AdaptorTubeBulgeRo); z += kCP3AdaptorTubeBulgeLength; shCp3AtV->DefineSection(1, z, 0., kCP3AdaptorTubeBulgeRo); // Tube shCp3AtV->DefineSection(2, z, 0., kCP3AdaptorTubeRo); z = + kCP3AdaptorTubeLength / 2.; shCp3AtV->DefineSection(3, z, 0., kCP3AdaptorTubeRo); TGeoVolume* voCp3AtV = new TGeoVolume("CP3ATV", shCp3AtV, kMedVac); TGeoPcon* shCp3AtS = new TGeoPcon(0., 360., 4); // Bulge at transition shCp3AtS->DefineSection(0, shCp3AtV->GetZ(0), kCP3AdaptorTubeBulgeRi, kCP3AdaptorTubeBulgeRo); shCp3AtS->DefineSection(1, shCp3AtV->GetZ(1), kCP3AdaptorTubeBulgeRi, kCP3AdaptorTubeBulgeRo); // Tube shCp3AtS->DefineSection(2, shCp3AtV->GetZ(2), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo); shCp3AtS->DefineSection(3, shCp3AtV->GetZ(3), kCP3AdaptorTubeRi , kCP3AdaptorTubeRo); TGeoVolume* voCp3AtS = new TGeoVolume("CP3ATS", shCp3AtS, kMedSteel); voCp3AtV->AddNode(voCp3AtS, 1, gGeoIdentity); dz = - kCP3Length / 2. + kCP3AdaptorTubeLength / 2.; voCp3Mo->AddNode(voCp3AtV, 1, new TGeoTranslation(0., 0., dz)); ///////////////////////////////// // CP/3 Bellow section // ///////////////////////////////// // // Upper part of the undulation TGeoTorus* plieTorusUO = new TGeoTorus(kCP3BellowRo - kCP3PlieR, 0. , kCP3PlieR); plieTorusUO->SetName("TorusUO"); TGeoTorus* plieTorusUI = new TGeoTorus(kCP3BellowRo - kCP3PlieR, kCP3PlieR - kCP3PlieThickness, kCP3PlieR); plieTorusUI->SetName("TorusUI"); TGeoTube* plieTubeU = new TGeoTube (kCP3BellowRo - kCP3PlieR, kCP3BellowRo, kCP3PlieR); plieTubeU->SetName("TubeU"); TGeoCompositeShape* shUpperPlieO = new TGeoCompositeShape("upperPlieO", "TorusUO*TubeU"); TGeoCompositeShape* shUpperPlieI = new TGeoCompositeShape("upperPlieI", "TorusUI*TubeU"); TGeoVolume* voWiggleUO = new TGeoVolume("CP3WUO", shUpperPlieO, kMedVac); TGeoVolume* voWiggleUI = new TGeoVolume("CP3WUI", shUpperPlieI, kMedSteel); voWiggleUO->AddNode(voWiggleUI, 1, gGeoIdentity); // // Lower part of the undulation TGeoTorus* plieTorusLO = new TGeoTorus(kCP3BellowRi + kCP3PlieR, 0. , kCP3PlieR); plieTorusLO->SetName("TorusLO"); TGeoTorus* plieTorusLI = new TGeoTorus(kCP3BellowRi + kCP3PlieR, kCP3PlieR - kCP3PlieThickness, kCP3PlieR); plieTorusLI->SetName("TorusLI"); TGeoTube* plieTubeL = new TGeoTube (kCP3BellowRi, kCP3BellowRi + kCP3PlieR, kCP3PlieR); plieTubeL->SetName("TubeL"); TGeoCompositeShape* shLowerPlieO = new TGeoCompositeShape("lowerPlieO", "TorusLO*TubeL"); TGeoCompositeShape* shLowerPlieI = new TGeoCompositeShape("lowerPlieI", "TorusLI*TubeL"); TGeoVolume* voWiggleLO = new TGeoVolume("CP3WLO", shLowerPlieO, kMedVac); TGeoVolume* voWiggleLI = new TGeoVolume("CP3WLI", shLowerPlieI, kMedSteel); voWiggleLO->AddNode(voWiggleLI, 1, gGeoIdentity); // // Connection between upper and lower part of undulation TGeoVolume* voWiggleC1 = new TGeoVolume("Q3WCO1", new TGeoTube(kCP3BellowRi + kCP3PlieR, kCP3BellowRo - kCP3PlieR, kCP3PlieThickness / 2.), kMedSteel); TGeoVolume* voWiggleC2 = new TGeoVolume("Q3WCO2", new TGeoTube(kCP3BellowRi + kCP3ConnectionPlieR, kCP3BellowRo - kCP3PlieR, kCP3PlieThickness / 2.), kMedSteel); // // Conncetion between undulated section and beam pipe TGeoTorus* plieTorusCO = new TGeoTorus(kCP3BellowRi + kCP3ConnectionPlieR, 0. , kCP3ConnectionPlieR); plieTorusCO->SetName("TorusCO"); TGeoTorus* plieTorusCI = new TGeoTorus(kCP3BellowRi + kCP3ConnectionPlieR, kCP3ConnectionPlieR - kCP3PlieThickness, kCP3ConnectionPlieR); plieTorusCI->SetName("TorusCI"); TGeoTube* plieTubeC = new TGeoTube (kCP3BellowRi, kCP3BellowRi + kCP3ConnectionPlieR, kCP3ConnectionPlieR); plieTubeC->SetName("TubeC"); TGeoCompositeShape* shConnectionPlieO = new TGeoCompositeShape("connectionPlieO", "TorusCO*TubeC"); TGeoCompositeShape* shConnectionPlieI = new TGeoCompositeShape("connectionPlieI", "TorusCI*TubeC"); TGeoVolume* voConnectionPO = new TGeoVolume("CP3CPO", shConnectionPlieO, kMedVac); TGeoVolume* voConnectionPI = new TGeoVolume("CP3CPI", shConnectionPlieI, kMedSteel); voConnectionPO->AddNode(voConnectionPI, 1, gGeoIdentity); // // Connecting pipes TGeoVolume* voConnectionPipeO = new TGeoVolume("CP3BECO", new TGeoTube(0., kCP3AdaptorTubeRo, kCP3BellowConnectionLength / 2.), kMedVac); TGeoVolume* voConnectionPipeI = new TGeoVolume("CP3BECI", new TGeoTube(kCP3AdaptorTubeRi, kCP3AdaptorTubeRo, kCP3BellowConnectionLength / 2.), kMedSteel); voConnectionPipeO->AddNode(voConnectionPipeI, 1, gGeoIdentity); // // Bellow mother TGeoPcon* shBellowMotherPC = new TGeoPcon(0., 360., 6); dz = - kCP3BellowLength / 2; shBellowMotherPC->DefineSection(0, dz, 0., kCP3AdaptorTubeRo); dz += kCP3BellowConnectionLength; shBellowMotherPC->DefineSection(1, dz, 0., kCP3AdaptorTubeRo); shBellowMotherPC->DefineSection(2, dz, 0., kCP3BellowRo); dz = kCP3BellowLength /2. - kCP3BellowConnectionLength;; shBellowMotherPC->DefineSection(3, dz, 0., kCP3BellowRo); shBellowMotherPC->DefineSection(4, dz, 0., kCP3AdaptorTubeRo); dz += kCP3BellowConnectionLength; shBellowMotherPC->DefineSection(5, dz, 0., kCP3AdaptorTubeRo); TGeoVolume* voBellowMother = new TGeoVolume("CP3BeMO", shBellowMotherPC, kMedVac); voBellowMother->SetVisibility(0); // // Add undulations z0 = - kCP3BellowLength / 2. + kCP3BellowConnectionLength + 2. * kCP3ConnectionPlieR - kCP3PlieThickness; zsh = 4. * kCP3PlieR - 2. * kCP3PlieThickness; for (Int_t iw = 0; iw < 18; iw++) { Float_t zpos = z0 + iw * zsh; if (iw > 0) voBellowMother->AddNode(voWiggleC1, iw + 1 , new TGeoTranslation(0., 0., zpos + kCP3PlieThickness / 2.)); else voBellowMother->AddNode(voWiggleC2, iw + 1 , new TGeoTranslation(0., 0., zpos + kCP3PlieThickness / 2.)); zpos += kCP3PlieR; voBellowMother->AddNode(voWiggleUO, iw + 1, new TGeoTranslation(0., 0., zpos)); zpos += kCP3PlieR; if (iw < 17) voBellowMother->AddNode(voWiggleC1, iw + 19, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness / 2.)); else voBellowMother->AddNode(voWiggleC2, iw + 19, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness / 2.)); if (iw < 17) { zpos += kCP3PlieR; voBellowMother->AddNode(voWiggleLO, iw + 1, new TGeoTranslation(0., 0., zpos - kCP3PlieThickness)); } } // // Add connecting undulation between bellow and connecting pipe dz = - kCP3BellowUndulatedLength / 2. + kCP3ConnectionPlieR; voBellowMother->AddNode(voConnectionPO, 1, new TGeoTranslation(0., 0., dz)); voBellowMother->AddNode(voConnectionPO, 2, new TGeoTranslation(0., 0., -dz)); // // Add connecting pipe dz = - kCP3BellowLength / 2. + kCP3BellowConnectionLength / 2.; voBellowMother->AddNode(voConnectionPipeO, 1, new TGeoTranslation(0., 0., dz)); voBellowMother->AddNode(voConnectionPipeO, 2, new TGeoTranslation(0., 0., -dz)); // // Add bellow to CP/3 mother dz = - kCP3Length / 2. + kCP3AdaptorTubeLength + kCP3BellowLength / 2.; voCp3Mo->AddNode(voBellowMother, 1, new TGeoTranslation(0., 0., dz)); dz += (kCP3BellowLength + kCP3TubeLength); voCp3Mo->AddNode(voBellowMother, 2, new TGeoTranslation(0., 0., dz)); /////////////////////////////////////////// // Beam pipe section between bellows // /////////////////////////////////////////// TGeoVolume* voCp3Bco = new TGeoVolume("CP3BCO", new TGeoTube(0., kCP3AdaptorTubeRo, kCP3TubeLength / 2.), kMedVac); TGeoVolume* voCp3Bci = new TGeoVolume("CP3BCI", new TGeoTube(kCP3AdaptorTubeRi, kCP3AdaptorTubeRo, kCP3TubeLength / 2.), kMedSteel); voCp3Bco->AddNode(voCp3Bci, 1, gGeoIdentity); dz = - kCP3Length / 2. + kCP3AdaptorTubeLength + kCP3BellowLength + kCP3TubeLength / 2.; voCp3Mo->AddNode(voCp3Bco, 1, new TGeoTranslation(0., 0., dz)); /////////////////////////////////////////// // CP3 Minimised Flange // /////////////////////////////////////////// TGeoPcon* shCp3mfo = new TGeoPcon(0., 360., 4); z = - (kCP3FlangeConnectorLength + kCP3FlangeLength) / 2.; // Connection Tube shCp3mfo->DefineSection(0, z, 0., kCP3AdaptorTubeRo); z += kCP3FlangeConnectorLength; shCp3mfo->DefineSection(1, z, 0., kCP3AdaptorTubeRo); // Flange shCp3mfo->DefineSection(2, z, 0., kCP3FlangeRo); z = - shCp3mfo->GetZ(0); shCp3mfo->DefineSection(3, z, 0., kCP3FlangeRo); TGeoVolume* voCp3mfo = new TGeoVolume("CP3MFO", shCp3mfo, kMedVac); TGeoPcon* shCp3mfi = new TGeoPcon(0., 360., 4); // Connection Tube shCp3mfi->DefineSection(0, shCp3mfo->GetZ(0), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo); shCp3mfi->DefineSection(1, shCp3mfo->GetZ(1), kCP3AdaptorTubeRi, kCP3AdaptorTubeRo); // Flange shCp3mfi->DefineSection(2, shCp3mfo->GetZ(2), kCP3AdaptorTubeRi, kCP3FlangeRo); shCp3mfi->DefineSection(3, shCp3mfo->GetZ(3), kCP3AdaptorTubeRi, kCP3FlangeRo); TGeoVolume* voCp3mfi = new TGeoVolume("CP3MFI", shCp3mfi, kMedSteel); voCp3mfo->AddNode(voCp3mfi, 1, gGeoIdentity); dz = kCP3Length / 2. - (kCP3FlangeConnectorLength + kCP3FlangeLength) / 2.; voCp3Mo->AddNode(voCp3mfo, 1, new TGeoTranslation(0., 0., dz)); // // Assemble the central beam pipe // TGeoVolumeAssembly* asCP = new TGeoVolumeAssembly("CP"); z = 0.; asCP->AddNode(voCp2, 1, gGeoIdentity); z += kCP2Length / 2. + kCP1Length / 2.; asCP->AddNode(voCp1, 1, new TGeoTranslation(0., 0., z)); z += kCP1Length / 2. + kCP3Length / 2.; asCP->AddNode(voCp3, 1, new TGeoTranslation(0., 0., z)); top->AddNode(asCP, 1, new TGeoCombiTrans(0., 0., 400. - kCP2Length / 2, rot180)); //////////////////////////////////////////////////////////////////////////////// // // // RB24/1 // // // //////////////////////////////////////////////////////////////////////////////// // // // Drawing LHCVC2U_0001 // Copper Tube RB24/1 393.5 cm // Warm module VMACA 18.0 cm // Annular Ion Pump 35.0 cm // Valve 7.5 cm // Warm module VMABC 28.0 cm // ================================ // 462.0 cm // // Copper Tube RB24/1 const Float_t kRB24CuTubeL = 393.5; const Float_t kRB24CuTubeRi = 8.0/2.; const Float_t kRB24CuTubeRo = 8.4/2.; const Float_t kRB24CuTubeFRo = 7.6; const Float_t kRB24CuTubeFL = 1.86; TGeoVolume* voRB24CuTubeM = new TGeoVolume("voRB24CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB24CuTubeL/2.), kMedVac); voRB24CuTubeM->SetVisibility(0); TGeoVolume* voRB24CuTube = new TGeoVolume("voRB24CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24CuTubeL/2.), kMedCu); voRB24CuTubeM->AddNode(voRB24CuTube, 1, gGeoIdentity); // Air outside tube with higher transport cuts TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA", new TGeoTube(25., 100., kRB24CuTubeL/2.), kMedAirHigh); voRB24CuTubeA->SetVisibility(0); // Simplified DN 100 Flange TGeoVolume* voRB24CuTubeF = new TGeoVolume("voRB24CuTubeF", new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL/2.), kMedSteel); // Warm Module Type VMACA // LHCVMACA_0002 // // Pos 1 Warm Bellows DN100 LHCVBU__0012 // Pos 2 RF Contact D80 LHCVSR__0005 // Pos 3 Trans. Tube Flange LHCVSR__0065 // [Pos 4 Hex. Countersunk Screw Bossard BN4719] // [Pos 5 Tension spring LHCVSR__0011] // // // // Pos1 Warm Bellows DN100 // Pos1.1 Bellows LHCVBU__0006 // // // Connection Tubes // Connection tube inner r const Float_t kRB24B1ConTubeRin = 10.0/2.; // Connection tube outer r const Float_t kRB24B1ConTubeRou = 10.3/2.; // Connection tube length const Float_t kRB24B1ConTubeL = 2.5; // const Float_t kRB24B1CompL = 16.00; // Length of the compensator const Float_t kRB24B1BellowRi = 10.25/2.; // Bellow inner radius const Float_t kRB24B1BellowRo = 11.40/2.; // Bellow outer radius const Int_t kRB24B1NumberOfPlies = 27; // Number of plies const Float_t kRB24B1BellowUndL = 11.00; // Length of undulated region const Float_t kRB24B1PlieThickness = 0.015; // Plie thickness const Float_t kRB24B1PlieRadius = (kRB24B1BellowUndL + (2. * kRB24B1NumberOfPlies+ 1.) * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies + 2.); const Float_t kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube const Float_t kRB24B1ProtTubeLength = 4.2; // Length of the protection tube const Float_t kRB24B1RFlangeL = 1.86; // Length of the flanges const Float_t kRB24B1RFlangeLO = 0.26; // Flange overlap const Float_t kRB24B1RFlangeRO = 11.18/2; // Inner radius at Flange overlap const Float_t kRB24B1RFlangeRou = 15.20/2.; // Outer radius of flange const Float_t kRB24B1RFlangeRecess = 0.98; // Flange recess const Float_t kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess); /// // // Bellow mother volume TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 14); // Connection Tube and Flange z = 0.; shRB24B1BellowM->DefineSection( 0, z, 0., kRB24B1RFlangeRou); z += kRB24B1RFlangeLO; shRB24B1BellowM->DefineSection( 1, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection( 2, z, 0., kRB24B1RFlangeRou); z = kRB24B1RFlangeL; shRB24B1BellowM->DefineSection( 3, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection( 4, z, 0., kRB24B1ConTubeRou); z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess; shRB24B1BellowM->DefineSection( 5, z, 0., kRB24B1ConTubeRou); // Plie shRB24B1BellowM->DefineSection( 6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness); z += kRB24B1BellowUndL; shRB24B1BellowM->DefineSection( 7, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness); shRB24B1BellowM->DefineSection( 8, z, 0., kRB24B1ConTubeRou); // Connection Tube and Flange z = kRB24B1L - shRB24B1BellowM->GetZ(3); shRB24B1BellowM->DefineSection( 9, z, 0., kRB24B1ConTubeRou); shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou); z = kRB24B1L - shRB24B1BellowM->GetZ(1); shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection(12, z, 0., kRB24B1RFlangeRou); z = kRB24B1L - shRB24B1BellowM->GetZ(0); shRB24B1BellowM->DefineSection(13, z, 0., kRB24B1RFlangeRou); TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVac); voRB24B1BellowM->SetVisibility(0); // // Bellow Section TGeoVolume* voRB24B1Bellow = MakeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo, kRB24B1BellowUndL, kRB24B1PlieRadius ,kRB24B1PlieThickness); voRB24B1Bellow->SetVisibility(0); // // End Parts (connection tube) TGeoVolume* voRB24B1CT = new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL/2.), kMedSteel); // // Protection Tube TGeoVolume* voRB24B1PT = new TGeoVolume("RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness, kRB24B1ProtTubeLength / 2.), kMedSteel); z = kRB24B1ConTubeL/2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess); voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1ConTubeL/2.+ kRB24B1BellowUndL/2.); voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1BellowUndL/2. + kRB24B1ConTubeL/2); voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z)); z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO; voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z)); z += kRB24B1ProtTubeLength + 0.6; voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z)); // Pos 1/2 Rotatable Flange LHCVBU__0013 // Pos 1/3 Flange DN100/103 LHCVBU__0018 // The two flanges can be represented by the same volume // Outer Radius (including the outer movable ring). // The inner ring has a diameter of 12.04 cm TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10); z = 0.; shRB24B1RFlange->DefineSection(0, z, 10.30/2., kRB24B1RFlangeRou); z += 0.55; // 5.5 mm added for outer ring z += 0.43; shRB24B1RFlange->DefineSection(1, z, 10.30/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(2, z, 10.06/2., kRB24B1RFlangeRou); z += 0.15; shRB24B1RFlange->DefineSection(3, z, 10.06/2., kRB24B1RFlangeRou); // In reality this part is rounded shRB24B1RFlange->DefineSection(4, z, 10.91/2., kRB24B1RFlangeRou); z += 0.15; shRB24B1RFlange->DefineSection(5, z, 10.91/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(6, z, 10.06/2., kRB24B1RFlangeRou); z += 0.32; shRB24B1RFlange->DefineSection(7, z, 10.06/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou); z += kRB24B1RFlangeLO; shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou); TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteel); z = kRB24B1L - kRB24B1RFlangeL; voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z)); z = kRB24B1RFlangeL; voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180)); // // Pos 2 RF Contact D80 LHCVSR__0005 // // Pos 2.1 RF Contact Flange LHCVSR__0003 // TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6); const Float_t kRB24B1RCTFlangeRin = 8.06/2. + 0.05; // Inner radius const Float_t kRB24B1RCTFlangeL = 1.45; // Length z = 0.; shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20/2.); z += 0.15; shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20/2.); shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60/2.); z += 1.05; shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60/2.); shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16/2.); z += 0.25; shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16/2.); TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCu); z = kRB24B1L - kRB24B1RCTFlangeL; voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z)); // // Pos 2.2 RF-Contact LHCVSR__0004 // TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3); const Float_t kRB24B1RCTRin = 8.00/2.; // Inner radius const Float_t kRB24B1RCTCRin = 8.99/2.; // Max. inner radius conical section const Float_t kRB24B1RCTL = 11.78; // Length const Float_t kRB24B1RCTSL = 10.48; // Length of straight section const Float_t kRB24B1RCTd = 0.03; // Thickness z = 0; shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd); z = kRB24B1RCTL - kRB24B1RCTSL; // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ???? shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd); z = kRB24B1RCTL - 0.03; shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd); TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCu); z = kRB24B1L - kRB24B1RCTL - 0.45; voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z)); // // Pos 3 Trans. Tube Flange LHCVSR__0065 // // Pos 3.1 Transition Tube D53 LHCVSR__0064 // Pos 3.2 Transition Flange LHCVSR__0060 // Pos 3.3 Transition Tube LHCVSR__0058 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7); // Flange z = 0.; shRB24B1TTF->DefineSection(0, z, 6.30/2., 11.16/2.); z += 0.25; shRB24B1TTF->DefineSection(1, z, 6.30/2., 11.16/2.); shRB24B1TTF->DefineSection(2, z, 6.30/2., 9.3/2.); z += 0.55; shRB24B1TTF->DefineSection(3, z, 6.30/2., 9.3/2.); // Tube shRB24B1TTF->DefineSection(4, z, 6.30/2., 6.7/2.); z += 5.80; shRB24B1TTF->DefineSection(5, z, 6.30/2., 6.7/2.); // Transition Tube z += 3.75; shRB24B1TTF->DefineSection(6, z, 8.05/2., 8.45/2.); TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteel); z = 0.; voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z)); // Annular Ion Pump // LHCVC2U_0003 // // Pos 1 Rotable Flange LHCVFX__0031 // Pos 2 RF Screen Tube LHCVC2U_0005 // Pos 3 Shell LHCVC2U_0007 // Pos 4 Extruded Shell LHCVC2U_0006 // Pos 5 Feedthrough Tube LHCVC2U_0004 // Pos 6 Tubulated Flange STDVFUHV0021 // Pos 7 Fixed Flange LHCVFX__0032 // Pos 8 Pumping Elements // // Pos 1 Rotable Flange LHCVFX__0031 // pos 7 Fixed Flange LHCVFX__0032 // // Mother volume const Float_t kRB24AIpML = 35.; TGeoVolume* voRB24AIpM = new TGeoVolume("voRB24AIpM", new TGeoTube(0., 10., kRB24AIpML/2.), kMedAir); voRB24AIpM->SetVisibility(0); // // Length 35 cm // Flange 2 x 1.98 = 3.96 // Tube = 32.84 //========================== // 36.80 // Overlap 2 * 0.90 = 1.80 const Float_t kRB24IpRFD1 = 0.68; // Length of section 1 const Float_t kRB24IpRFD2 = 0.30; // Length of section 2 const Float_t kRB24IpRFD3 = 0.10; // Length of section 3 const Float_t kRB24IpRFD4 = 0.35; // Length of section 4 const Float_t kRB24IpRFD5 = 0.55; // Length of section 5 const Float_t kRB24IpRFRo = 15.20/2.; // Flange outer radius const Float_t kRB24IpRFRi1 = 6.30/2.; // Flange inner radius section 1 const Float_t kRB24IpRFRi2 = 6.00/2.; // Flange inner radius section 2 const Float_t kRB24IpRFRi3 = 5.84/2.; // Flange inner radius section 3 const Float_t kRB24IpRFRi4 = 6.00/2.; // Flange inner radius section 1 const Float_t kRB24IpRFRi5 = 10.50/2.; // Flange inner radius section 2 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9); z0 = 0.; shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo); z0 += kRB24IpRFD1; shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo); z0 += kRB24IpRFD2; shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo); shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo); z0 += kRB24IpRFD3; shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo); shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo); z0 += kRB24IpRFD4; shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo); shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo); z0 += kRB24IpRFD5; shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo); TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel); // // Pos 2 RF Screen Tube LHCVC2U_0005 // // // Tube Float_t kRB24IpSTTL = 32.84; // Total length of the tube Float_t kRB24IpSTTRi = 5.80/2.; // Inner Radius Float_t kRB24IpSTTRo = 6.00/2.; // Outer Radius TGeoVolume* voRB24IpSTT = new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL/2.), kMedSteel); // Screen Float_t kRB24IpSTCL = 0.4; // Lenth of the crochet detail // Length of the screen Float_t kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL; // Rel. position of the screen Float_t kRB24IpSTSZ = 7.00 + kRB24IpSTCL; TGeoVolume* voRB24IpSTS = new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL/2.), kMedSteel); // Vacuum TGeoVolume* voRB24IpSTV = new TGeoVolume("RB24IpSTV", new TGeoTube(0., kRB24IpSTTRi, kRB24AIpML/2.), kMedVac); // voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL/2. + kRB24IpSTSL/2.)); // Crochets // Inner radius Float_t kRB24IpSTCRi = kRB24IpSTTRo + 0.25; // Outer radius Float_t kRB24IpSTCRo = kRB24IpSTTRo + 0.35; // Length of 1stsection Float_t kRB24IpSTCL1 = 0.15; // Length of 2nd section Float_t kRB24IpSTCL2 = 0.15; // Length of 3rd section Float_t kRB24IpSTCL3 = 0.10; // Rel. position of 1st Crochet TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5); z0 = 0; shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo); z0 += kRB24IpSTCL1; shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo); shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo); z0 += kRB24IpSTCL2; shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo); z0 += kRB24IpSTCL3; shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001); TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel); // Pos 3 Shell LHCVC2U_0007 // Pos 4 Extruded Shell LHCVC2U_0006 Float_t kRB24IpShellL = 4.45; // Length of the Shell Float_t kRB24IpShellD = 0.10; // Wall thickness of the shell Float_t kRB24IpShellCTRi = 6.70/2.; // Inner radius of the connection tube Float_t kRB24IpShellCTL = 1.56; // Length of the connection tube Float_t kRB24IpShellCARi = 17.80/2.; // Inner radius of the cavity Float_t kRB24IpShellCCRo = 18.20/2.; // Inner radius at the centre TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7); z0 = 0; shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD); z0 += kRB24IpShellCTL; shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD); shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD); z0 += kRB24IpShellD; shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD); z0 = kRB24IpShellL - kRB24IpShellD; shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD); shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo); z0 = kRB24IpShellL; shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo); TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel); TGeoPcon* shRB24IpShellM = MakeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi , 13); for (Int_t i = 0; i < 6; i++) { z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5-i); Float_t rmin = shRB24IpShellM->GetRmin(5-i); Float_t rmax = shRB24IpShellM->GetRmax(5-i); shRB24IpShellM->DefineSection(7+i, z, rmin, rmax); } TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac); voRB24IpShellM->SetVisibility(0); voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity); voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180)); // // Pos 8 Pumping Elements // // Anode array TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54/2.), kMedSteel); Float_t kRB24IpPEAR = 5.5; for (Int_t i = 0; i < 15; i++) { Float_t phi = Float_t(i) * 24.; Float_t x = kRB24IpPEAR * TMath::Cos(kDegRad * phi); Float_t y = kRB24IpPEAR * TMath::Sin(kDegRad * phi); voRB24IpShellM->AddNode(voRB24IpPE, i+1, new TGeoTranslation(x, y, kRB24IpShellL)); } // // Cathodes // // Here we could add some Ti strips // Postioning of elements voRB24AIpM->AddNode(voRB24IpRF, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2.)); voRB24AIpM->AddNode(voRB24IpRF, 2, new TGeoCombiTrans (0., 0., +kRB24AIpML/2., rot180)); voRB24AIpM->AddNode(voRB24IpSTT, 1, new TGeoTranslation(0., 0., 0.)); voRB24AIpM->AddNode(voRB24IpSTV, 1, new TGeoTranslation(0., 0., 0.)); voRB24AIpM->AddNode(voRB24IpShellM, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2. + 8.13)); voRB24AIpM->AddNode(voRB24IpSTC, 1, new TGeoTranslation(0., 0., 8.13 - kRB24AIpML/2.)); voRB24AIpM->AddNode(voRB24IpSTC, 2, new TGeoCombiTrans (0., 0., 8.14 + 8.9 - kRB24AIpML/2., rot180)); // // Valve // VAC Series 47 DN 63 with manual actuator // const Float_t kRB24ValveWz = 7.5; const Float_t kRB24ValveDN = 10.0/2.; // // Body containing the valve plate // const Float_t kRB24ValveBoWx = 15.6; const Float_t kRB24ValveBoWy = (21.5 + 23.1 - 5.); const Float_t kRB24ValveBoWz = 4.6; const Float_t kRB24ValveBoD = 0.5; TGeoVolume* voRB24ValveBoM = new TGeoVolume("RB24ValveBoM", new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedAir); voRB24ValveBoM->SetVisibility(0); TGeoVolume* voRB24ValveBo = new TGeoVolume("RB24ValveBo", new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedSteel); voRB24ValveBoM->AddNode(voRB24ValveBo, 1, gGeoIdentity); // // Inner volume // TGeoVolume* voRB24ValveBoI = new TGeoVolume("RB24ValveBoI", new TGeoBBox( kRB24ValveBoWx/2. - kRB24ValveBoD, kRB24ValveBoWy/2. - kRB24ValveBoD/2., kRB24ValveBoWz/2. - kRB24ValveBoD), kMedVac); voRB24ValveBo->AddNode(voRB24ValveBoI, 1, new TGeoTranslation(0., kRB24ValveBoD/2., 0.)); // // Opening and Flanges const Float_t kRB24ValveFlRo = 18./2.; const Float_t kRB24ValveFlD = 1.45; TGeoVolume* voRB24ValveBoA = new TGeoVolume("RB24ValveBoA", new TGeoTube(0., kRB24ValveDN/2., kRB24ValveBoD/2.), kMedVac); voRB24ValveBo->AddNode(voRB24ValveBoA, 1, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, -kRB24ValveBoWz/2. + kRB24ValveBoD/2.)); voRB24ValveBo->AddNode(voRB24ValveBoA, 2, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, +kRB24ValveBoWz/2. - kRB24ValveBoD/2.)); TGeoVolume* voRB24ValveFl = new TGeoVolume("RB24ValveFl", new TGeoTube(kRB24ValveDN/2., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedSteel); TGeoVolume* voRB24ValveFlI = new TGeoVolume("RB24ValveFlI", new TGeoTube(0., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedVac); voRB24ValveFlI->AddNode(voRB24ValveFl, 1, gGeoIdentity); // // Actuator Flange const Float_t kRB24ValveAFlWx = 18.9; const Float_t kRB24ValveAFlWy = 5.0; const Float_t kRB24ValveAFlWz = 7.7; TGeoVolume* voRB24ValveAFl = new TGeoVolume("RB24ValveAFl", new TGeoBBox(kRB24ValveAFlWx/2., kRB24ValveAFlWy/2., kRB24ValveAFlWz/2.), kMedSteel); // // Actuator Tube const Float_t kRB24ValveATRo = 9.7/2.; const Float_t kRB24ValveATH = 16.6; TGeoVolume* voRB24ValveAT = new TGeoVolume("RB24ValveAT", new TGeoTube(kRB24ValveATRo - 2. * kRB24ValveBoD,kRB24ValveATRo, kRB24ValveATH/2.), kMedSteel); // // Manual Actuator (my best guess) TGeoVolume* voRB24ValveMA1 = new TGeoVolume("RB24ValveMA1", new TGeoCone(2.5/2., 0., 0.5, 4.5, 5.), kMedSteel); TGeoVolume* voRB24ValveMA2 = new TGeoVolume("RB24ValveMA2", new TGeoTorus(5., 0., 1.25), kMedSteel); TGeoVolume* voRB24ValveMA3 = new TGeoVolume("RB24ValveMA3", new TGeoTube (0., 1.25, 2.5), kMedSteel); // // Position all volumes Float_t y0; TGeoVolumeAssembly* voRB24ValveMo = new TGeoVolumeAssembly("RB24ValveMo"); voRB24ValveMo->AddNode(voRB24ValveFl, 1, new TGeoTranslation(0., 0., - 7.5/2. + kRB24ValveFlD/2.)); voRB24ValveMo->AddNode(voRB24ValveFl, 2, new TGeoTranslation(0., 0., + 7.5/2. - kRB24ValveFlD/2.)); y0 = -21.5; voRB24ValveMo->AddNode(voRB24ValveBoM, 1, new TGeoTranslation(0., y0 + kRB24ValveBoWy/2., 0.)); y0 += kRB24ValveBoWy; voRB24ValveMo->AddNode(voRB24ValveAFl, 1, new TGeoTranslation(0., y0 + kRB24ValveAFlWy/2., 0.)); y0 += kRB24ValveAFlWy; voRB24ValveMo->AddNode(voRB24ValveAT, 1, new TGeoCombiTrans(0., y0 + kRB24ValveATH/2., 0., rotyz)); y0 += kRB24ValveATH; voRB24ValveMo->AddNode(voRB24ValveMA1, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz)); y0 += 2.5; voRB24ValveMo->AddNode(voRB24ValveMA2, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz)); y0 += 2.5; voRB24ValveMo->AddNode(voRB24ValveMA3, 1, new TGeoCombiTrans(5./TMath::Sqrt(2.), y0 + 5.0/2., 5./TMath::Sqrt(2.), rotyz)); // // Warm Module Type VMABC // LHCVMABC_0002 // // // // Flange 1.00 // Central Piece 11.50 // Bellow 14.50 // End Flange 1.00 //=================================== // Total 28.00 // // Pos 1 Warm Bellows DN100 LHCVBU__0016 // Pos 2 Trans. Tube Flange LHCVSR__0062 // Pos 3 RF Contact D63 LHCVSR__0057 // [Pos 4 Hex. Countersunk Screw Bossard BN4719] // [Pos 5 Tension spring LHCVSR__00239] // // Pos 1 Warm Bellows DN100 LHCVBU__0016 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014 // // Tube 1 const Float_t kRB24VMABCRBT1Ri = 10.0/2.; const Float_t kRB24VMABCRBT1Ro = 10.3/2.; const Float_t kRB24VMABCRBT1L = 11.5; const Float_t kRB24VMABCRBT1L2 = 8.; const Float_t kRB24VMABCL = 28.; TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1->SetName("RB24VMABCRBT1"); TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o"); TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2"); // Lower inforcement TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume("RB24VMABCRBT12", new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2/2., 220., 320.) , kMedSteel); // // Tube 2 const Float_t kRB24VMABCRBT2Ri = 6.0/2.; const Float_t kRB24VMABCRBT2Ro = 6.3/2.; const Float_t kRB24VMABCRBF2Ro = 11.4/2.; const Float_t kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding const Float_t kRB24VMABCRBF2L = 1.75; TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L/2.); shRB24VMABCRBT2->SetName("RB24VMABCRBT2"); TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L/2. + 2.); shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i"); TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L/2., 0., 7.2 - kRB24VMABCRBT1L/2. , rotxz); tRBT2->SetName("tRBT2"); tRBT2->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT2c = new TGeoCompositeShape("shRB24VMABCRBT2c","RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o"); TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteel); // Flange // Pos 1.4 Flange DN63 LHCVBU__0008 TGeoVolume* voRB24VMABCRBF2 = new TGeoVolume("RB24VMABCRBF2", new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel); // DN63 Blank Flange (my best guess) TGeoVolume* voRB24VMABCRBF2B = new TGeoVolume("RB24VMABCRBF2B", new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel); // // Tube 3 const Float_t kRB24VMABCRBT3Ri = 3.5/2.; const Float_t kRB24VMABCRBT3Ro = 3.8/2.; const Float_t kRB24VMABCRBF3Ro = 7.0/2.; const Float_t kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding const Float_t kRB24VMABCRBF3L = 1.27; TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L/2); shRB24VMABCRBT3->SetName("RB24VMABCRBT3"); TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L/2. + 2.); shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i"); TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz); tRBT3->SetName("tRBT3"); tRBT3->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT3c = new TGeoCompositeShape("shRB24VMABCRBT3c","RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o"); TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel); // Flange // Pos 1.4 Flange DN35 LHCVBU__0007 TGeoVolume* voRB24VMABCRBF3 = new TGeoVolume("RB24VMABCRBF3", new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L/2.), kMedSteel); // // Tube 4 const Float_t kRB24VMABCRBT4Ri = 6.0/2.; const Float_t kRB24VMABCRBT4Ro = 6.4/2.; const Float_t kRB24VMABCRBT4L = 6.6; TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L/2.); shRB24VMABCRBT4->SetName("RB24VMABCRBT4"); TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0.,-11.+kRB24VMABCRBT4L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz); tRBT4->SetName("tRBT4"); tRBT4->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT4c = new TGeoCompositeShape("shRB24VMABCRBT4c","RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2"); TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteel); TGeoCompositeShape* shRB24VMABCRB = new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)"); TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteel); // // Plate const Float_t kRB24VMABCRBBx = 16.0; const Float_t kRB24VMABCRBBy = 1.5; const Float_t kRB24VMABCRBBz = 15.0; // Relative position of tubes const Float_t kRB24VMABCTz = 7.2; // Relative position of plate const Float_t kRB24VMABCPz = 3.6; const Float_t kRB24VMABCPy = -12.5; TGeoVolume* voRB24VMABCRBP = new TGeoVolume("RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx/2., kRB24VMABCRBBy/2., kRB24VMABCRBBz/2.), kMedSteel); // // Pirani Gauge (my best guess) // TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15); // DN35/16 Coupling z = 0; shRB24VMABCPirani->DefineSection( 0, z, 0.8 , kRB24VMABCRBF3Ro); z += kRB24VMABCRBF3L; // 1.3 shRB24VMABCPirani->DefineSection( 1, z, 0.8 , kRB24VMABCRBF3Ro); shRB24VMABCPirani->DefineSection( 2, z, 0.8 , 1.0); // Pipe z += 2.8; shRB24VMABCPirani->DefineSection( 3, z, 0.8 , 1.0); // Flange shRB24VMABCPirani->DefineSection( 4, z, 0.8 , 1.75); z += 1.6; shRB24VMABCPirani->DefineSection( 5, z, 0.8 , 1.75); shRB24VMABCPirani->DefineSection( 6, z, 0.8 , 1.0); z += 5.2; shRB24VMABCPirani->DefineSection( 7, z, 0.8 , 1.0); shRB24VMABCPirani->DefineSection( 8, z, 0.8 , 2.5); z += 2.0; shRB24VMABCPirani->DefineSection( 9, z, 0.80, 2.50); shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75); z += 5.7; shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75); shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75); z += 0.2; shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75); shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75); z += 0.5; shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75); TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteel); // // // // // Positioning of elements TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB"); // voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity); // Plate voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1, new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy /2., kRB24VMABCRBBz/2. - kRB24VMABCRBT1L/2. + kRB24VMABCPz)); // Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity); // Flange Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz)); // Blank Flange Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy- kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz)); // Tube 3 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity); // Flange Tube 3 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L/2., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz)); // Pirani Gauge voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1, new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz)); // Tube 4 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity); // Inforcement voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L2/2. - kRB24VMABCRBT1L/2. + 2.8)); // Pos 1.3 Bellows with end part LHCVBU__0002 // // Connection Tube // Connection tube inner r const Float_t kRB24VMABBEConTubeRin = 10.0/2.; // Connection tube outer r const Float_t kRB24VMABBEConTubeRou = 10.3/2.; // Connection tube length const Float_t kRB24VMABBEConTubeL1 = 0.9; const Float_t kRB24VMABBEConTubeL2 = 2.6; // const Float_t RB24VMABBEBellowL = kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 + kRB24B1BellowUndL; // Mother volume TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6); // Connection Tube and Flange z = 0.; shRB24VMABBEBellowM->DefineSection( 0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); z += kRB24VMABBEConTubeL1; shRB24VMABBEBellowM->DefineSection( 1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); shRB24VMABBEBellowM->DefineSection( 2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness); z += kRB24B1BellowUndL; shRB24VMABBEBellowM->DefineSection( 3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness); shRB24VMABBEBellowM->DefineSection( 4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); z += kRB24VMABBEConTubeL2; shRB24VMABBEBellowM->DefineSection( 5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVac); voRB24VMABBEBellowM->SetVisibility(0); // Connection tube left TGeoVolume* voRB24VMABBECT1 = new TGeoVolume("RB24VMABBECT1", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL1/2.), kMedSteel); // Connection tube right TGeoVolume* voRB24VMABBECT2 = new TGeoVolume("RB24VMABBECT2", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL2/2.), kMedSteel); z = kRB24VMABBEConTubeL1/2.; voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z)); z += kRB24VMABBEConTubeL1/2.; z += kRB24B1BellowUndL/2.; voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z)); z += kRB24B1BellowUndL/2.; z += kRB24VMABBEConTubeL2/2.; voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z)); z += kRB24VMABBEConTubeL2/2.; voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L/2.)); // Pos 1.2 Rotable flange LHCVBU__0013[*] // Front voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., - kRB24VMABCRBT1L/2. + 0.86, rot180)); // End z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL +kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2; voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86)); // Pos 2 Trans. Tube Flange LHCVSR__0062 // Pos 2.1 Transition Tube LHCVSR__0063 // Pos 2.2 Transition Flange LHCVSR__0060 // // Transition Tube with Flange TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7); z = 0.; shRB24VMABCTT->DefineSection(0, z, 6.3/2., 11.16/2.); z += 0.25; shRB24VMABCTT->DefineSection(1, z, 6.3/2., 11.16/2.); shRB24VMABCTT->DefineSection(2, z, 6.3/2., 9.30/2.); z += 0.25; shRB24VMABCTT->DefineSection(3, z, 6.3/2., 9.30/2.); shRB24VMABCTT->DefineSection(4, z, 6.3/2., 6.70/2.); z += (20.35 - 0.63); shRB24VMABCTT->DefineSection(5, z, 6.3/2., 6.7/2.); z += 0.63; shRB24VMABCTT->DefineSection(6, z, 6.3/2., 6.7/2.); TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteel); voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., - kRB24VMABCRBT1L/2.-1.)); // Pos 3 RF Contact D63 LHCVSR__0057 // Pos 3.1 RF Contact Flange LHCVSR__0017 // TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6); const Float_t kRB24VMABCCTFlangeRin = 6.36/2.; // Inner radius const Float_t kRB24VMABCCTFlangeL = 1.30; // Length z = 0.; shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5/2.); z += 0.15; shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5/2.); shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9/2.); z += 0.9; shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9/2.); shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16/2.); z += 0.25; shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16/2.); TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCu); // // Pos 3.2 RF-Contact LHCVSR__0056 // TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4); const Float_t kRB24VMABCCTRin = 6.30/2.; // Inner radius const Float_t kRB24VMABCCTCRin = 7.29/2.; // Max. inner radius conical section const Float_t kRB24VMABCCTL = 11.88; // Length const Float_t kRB24VMABCCTSL = 10.48; // Length of straight section const Float_t kRB24VMABCCTd = 0.03; // Thickness z = 0; shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd); z = kRB24VMABCCTL - kRB24VMABCCTSL; shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd); z = kRB24VMABCCTL - kRB24VMABCCTFlangeL; shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd); z = kRB24VMABCCTL; shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd); TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCu); TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT"); voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity); voRB24VMABRFCT->AddNode( voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL)); z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.; voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z)); // // Assembling RB24/1 // TGeoVolumeAssembly* voRB24 = new TGeoVolumeAssembly("RB24"); // Cu Tube with two simplified flanges voRB24->AddNode(voRB24CuTubeM, 1, gGeoIdentity); if (!fBeamBackground) voRB24->AddNode(voRB24CuTubeA, 1, gGeoIdentity); z = - kRB24CuTubeL/2 + kRB24CuTubeFL/2.; voRB24->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z)); z = + kRB24CuTubeL/2 - kRB24CuTubeFL/2.; voRB24->AddNode(voRB24CuTubeF, 2, new TGeoTranslation(0., 0., z)); // VMABC close to compensator magnet z = - kRB24CuTubeL/2. - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.; voRB24->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z)); // Bellow z = kRB24CuTubeL/2; voRB24->AddNode(voRB24B1BellowM, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1L + kRB24AIpML/2.); // Annular ion pump voRB24->AddNode(voRB24AIpM, 1, new TGeoTranslation(0., 0., z)); z += (kRB24AIpML/2. + kRB24ValveWz/2.); // Valve voRB24->AddNode(voRB24ValveMo, 1, new TGeoTranslation(0., 0., z)); z += (kRB24ValveWz/2.+ kRB24VMABCRBT1L/2. + 1.); // VMABC close to forward detectors voRB24->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z)); // // RB24/2 // // Copper Tube RB24/2 // // This is the part inside the compensator magnet const Float_t kRB242CuTubeL = 330.0; TGeoVolume* voRB242CuTubeM = new TGeoVolume("voRB242CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB242CuTubeL/2.), kMedVacM); voRB242CuTubeM->SetVisibility(0); TGeoVolume* voRB242CuTube = new TGeoVolume("voRB242CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB242CuTubeL/2.), kMedCu); voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity); TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242"); voRB242->AddNode(voRB242CuTubeM, 1, gGeoIdentity); z = - kRB242CuTubeL/2 + kRB24CuTubeFL/2.; voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z)); z = + kRB242CuTubeL/2 - kRB24CuTubeFL/2.; voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z)); z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL/2.; voRB24->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z)); // // RB24/3 // // Copper Tube RB24/3 const Float_t kRB243CuTubeL = 303.35; TGeoVolume* voRB243CuTubeM = new TGeoVolume("voRB243CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB243CuTubeL/2.), kMedVac); voRB24CuTubeM->SetVisibility(0); TGeoVolume* voRB243CuTube = new TGeoVolume("voRB243CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB243CuTubeL/2.), kMedCu); voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity); TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243"); TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A"); voRB243A->AddNode(voRB243CuTubeM, 1, gGeoIdentity); z = - kRB243CuTubeL/2 + kRB24CuTubeFL/2.; voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z)); z = + kRB243CuTubeL/2 - kRB24CuTubeFL/2.; voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z)); z = + kRB243CuTubeL/2; voRB243A->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z)); z = - kRB243CuTubeL/2. - kRB24B1L; voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z)); z = - (1.5 * kRB243CuTubeL + 2. * kRB24B1L); voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z)); z = - 2. * (kRB243CuTubeL + kRB24B1L) - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.; voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z)); z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL; voRB24->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z)); // // top->AddNode(voRB24, 1, new TGeoCombiTrans(0., 0., kRB24CuTubeL/2 + 88.5 + 400., rot180)); // //////////////////////////////////////////////////////////////////////////////// // // // The Absorber Vacuum system // // // //////////////////////////////////////////////////////////////////////////////// // // Rotable Flange starts at: 82.00 cm from IP // Length of rotable flange section: 10.68 cm // Weld 0.08 cm // Length of straight section 207.21 cm // ======================================================================= // 299.97 cm [0.03 cm missing ?] // Length of opening cone 252.09 cm // Weld 0.15 cm // Length of compensator 30.54 cm // Weld 0.15 cm // Length of fixed flange 2.13 - 0.97 1.16 cm // ======================================================================= // 584.06 cm [584.80 installed] [0.74 cm missing] // RB26/3 // Length of split flange 2.13 - 1.2 0.93 cm // Weld 0.15 cm // Length of fixed point section 16.07 cm // Weld 0.15 cm // Length of opening cone 629.20 cm // Weld 0.30 cm // Kength of the compensator 41.70 cm // Weld 0.30 cm // Length of fixed flange 2.99 - 1.72 1.27 cm // ================================================= // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much] // // RB26/4-5 // Length of split flange 2.13 - 1.2 0.93 cm // Weld 0.15 cm // Length of fixed point section 16.07 cm // Weld 0.15 cm // Length of opening cone 629.20 cm // Weld 0.30 cm // Length of closing cone // Weld // Lenth of straight section // Kength of the compensator 41.70 cm // Weld 0.30 cm // Length of fixed flange 2.99 - 1.72 1.27 cm // ================================================= // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much] /////////////////////////////////////////// // // // RB26/1-2 // // Drawing LHCV2a_0050 [as installed] // // Drawing LHCV2a_0008 // // Drawing LHCV2a_0001 // /////////////////////////////////////////// // Pos1 Vacuum Tubes LHCVC2A__0010 // Pos2 Compensator LHCVC2A__0064 // Pos3 Rotable Flange LHCVFX___0016 // Pos4 Fixed Flange LHCVFX___0006 // Pos5 Bellow Tooling LHCVFX___0003 // // // /////////////////////////////////// // RB26/1-2 Vacuum Tubes // // Drawing LHCVC2a_0010 // /////////////////////////////////// const Float_t kRB26s12TubeL = 459.45; // 0.15 cm added for welding // // Add 1 cm on outer diameter for insulation // TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 5); // Section 1: straight section shRB26s12Tube->DefineSection(0, 0.00, 5.84/2., 6.00/2.); shRB26s12Tube->DefineSection(1, 207.21, 5.84/2., 6.00/2.); // Section 2: 0.72 deg opening cone shRB26s12Tube->DefineSection(2, 207.21, 5.84/2., 6.14/2.); shRB26s12Tube->DefineSection(3, 452.30, 12.00/2., 12.30/2.); shRB26s12Tube->DefineSection(4, kRB26s12TubeL, 12.00/2., 12.30/2.); TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteel); // Add the insulation layer TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", MakeInsulationFromTemplate(shRB26s12Tube), kMedInsu); voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity); TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", MakeMotherFromTemplate(shRB26s12Tube), kMedVac); voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity); /////////////////////////////////// // RB26/2 Axial Compensator // // Drawing LHCVC2a_0064 // /////////////////////////////////// const Float_t kRB26s2CompL = 30.65; // Length of the compensator const Float_t kRB26s2BellowRo = 14.38/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s2BellowRi = 12.12/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1] const Float_t kRB26s2BellowUndL = 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?] const Float_t kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1] const Float_t kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] // Plie radius const Float_t kRB26s2PlieR = (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2NumberOfPlies * kRB26s2PlieThickness) / (4. * kRB26s2NumberOfPlies); const Float_t kRB26s2CompTubeInnerR = 12.00/2.; // Connection tubes inner radius [Pos 2 + 3] const Float_t kRB26s2CompTubeOuterR = 12.30/2.; // Connection tubes outer radius [Pos 2 + 3] const Float_t kRB26s2WeldingTubeLeftL = 9.00/2.; // Left connection tube half length [Pos 2] const Float_t kRB26s2WeldingTubeRightL = 11.65/2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding] const Float_t kRB26s2RingOuterR = 18.10/2.; // Ring inner radius [Pos 4] const Float_t kRB26s2RingL = 0.40/2.; // Ring half length [Pos 4] const Float_t kRB26s2RingZ = 6.50 ; // Ring z-position [Pos 4] const Float_t kRB26s2ProtOuterR = 18.20/2.; // Protection tube outer radius [Pos 5] const Float_t kRB26s2ProtL = 15.00/2.; // Protection tube half length [Pos 5] const Float_t kRB26s2ProtZ = 6.70 ; // Protection tube z-position [Pos 5] // Mother volume // TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6); shRB26s2Compensator->DefineSection( 0, 0.0, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 2, kRB26s2RingZ, 0., kRB26s2ProtOuterR); shRB26s2Compensator->DefineSection( 3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR); shRB26s2Compensator->DefineSection( 4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 5, kRB26s2CompL , 0., kRB26s2CompTubeOuterR); TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s2Bellow = new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s2PlieTorusU = new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR); shRB26s2PlieTorusU->SetName("RB26s2TorusU"); TGeoTube* shRB26s2PlieTubeU = new TGeoTube (kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR); shRB26s2PlieTubeU->SetName("RB26s2TubeU"); TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU"); TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s2PlieTorusL = new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR); shRB26s2PlieTorusL->SetName("RB26s2TorusL"); TGeoTube* shRB26s2PlieTubeL = new TGeoTube (kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR); shRB26s2PlieTubeL->SetName("RB26s2TubeL"); TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL"); TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume("RB26s2PlieConn1", new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle"); z0 = - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness; voRB26s2Wiggle->AddNode(voRB26s2WiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s2BellowUndL/2.+ kRB26s2ConnectionPlieR; voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2ConnectionPlieR; zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness; for (Int_t iw = 0; iw < kRB26s2NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness)); } voRB26s2Compensator->AddNode(voRB26s2Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL/2.)); // // [Pos 2] Left Welding Tube // TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL); TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL)); // // [Pos 3] Right Welding Tube // TGeoTube* shRB26s2CompRightTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL); TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL)); // // [Pos 4] Ring // TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL); TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL)); // // [Pos 5] Outer Protecting Tube // TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL); TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL)); /////////////////////////////////// // Rotable Flange // // Drawing LHCVFX_0016 // /////////////////////////////////// const Float_t kRB26s1RFlangeTubeRi = 5.84/2. ; // Tube inner radius const Float_t kRB26s1RFlangeTubeRo = 6.00/2. ; // Tube outer radius // Pos 1 Clamp Ring LHCVFX__0015 const Float_t kRB26s1RFlangeCrL = 1.40 ; // Lenth of the clamp ring const Float_t kRB26s1RFlangeCrRi1 = 6.72/2. ; // Ring inner radius section 1 const Float_t kRB26s1RFlangeCrRi2 = 6.06/2. ; // Ring inner radius section 2 const Float_t kRB26s1RFlangeCrRo = 8.60/2. ; // Ring outer radius const Float_t kRB26s1RFlangeCrD = 0.800 ; // Width section 1 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4); z0 = 0.; shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo); z0 += kRB26s1RFlangeCrD; shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo); shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo); z0 = kRB26s1RFlangeCrL; shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo); TGeoVolume* voRB26s1RFlangeCr = new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteel); // Pos 2 Insert LHCVFX__0015 const Float_t kRB26s1RFlangeIsL = 4.88 ; // Lenth of the insert const Float_t kRB26s1RFlangeIsR = 6.70/2. ; // Ring radius const Float_t kRB26s1RFlangeIsD = 0.80 ; // Ring Width TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4); z0 = 0.; shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR); z0 += kRB26s1RFlangeIsD; shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR); shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL; shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlangeIs = new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteel); // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap) // Pos 3 Fixed Point Section LHCVC2A_0021 const Float_t kRB26s1RFlangeFpL = 5.88 ; // Length of the fixed point section (0.08 cm added for welding) const Float_t kRB26s1RFlangeFpZ = 3.82 ; // Position of the ring const Float_t kRB26s1RFlangeFpD = 0.59 ; // Width of the ring const Float_t kRB26s1RFlangeFpR = 7.00/2. ; // Radius of the ring TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 += kRB26s1RFlangeFpZ; shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR); z0 += kRB26s1RFlangeFpD; shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR); shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeFpL; shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteel); // Put everything in a mother volume TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo); z0 += kRB26s1RFlangeCrL; shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo); shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ; shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo); shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR); z0 += kRB26s1RFlangeFpD; shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR); shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL; shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVac); voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity); voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity); voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL)); /////////////////////////////////// // Fixed Flange // // Drawing LHCVFX_0006 // /////////////////////////////////// const Float_t kRB26s2FFlangeL = 2.13; // Length of the flange const Float_t kRB26s2FFlangeD1 = 0.97; // Length of section 1 const Float_t kRB26s2FFlangeD2 = 0.29; // Length of section 2 const Float_t kRB26s2FFlangeD3 = 0.87; // Length of section 3 const Float_t kRB26s2FFlangeRo = 17.15/2.; // Flange outer radius const Float_t kRB26s2FFlangeRi1 = 12.30/2.; // Flange inner radius section 1 const Float_t kRB26s2FFlangeRi2 = 12.00/2.; // Flange inner radius section 2 const Float_t kRB26s2FFlangeRi3 = 12.30/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD1; shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo); shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD2; shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo); shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD3; shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo); TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteel); TGeoVolume* voRB26s2FFlangeM = new TGeoVolume("RB26s2FFlangeM", MakeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVac); voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity); //////////////////////////////////////// // // // RB26/3 // // Drawing LHCV2a_0048 // // Drawing LHCV2a_0002 // //////////////////////////////////////// // // Pos 1 Vacuum Tubes LHCVC2A__0003 // Pos 2 Fixed Point LHCVFX___0005 // Pos 3 Split Flange LHCVFX___0007 // Pos 4 Fixed Flange LHCVFX___0004 // Pos 5 Axial Compensator LHCVC2A__0065 // // // // /////////////////////////////////// // Vacuum Tube // // Drawing LHCVC2A_0003 // /////////////////////////////////// const Float_t kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding const Float_t kRB26s3TubeR1 = 12./2.; const Float_t kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi()); TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7); // Section 1: straight section shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15); shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15); // Section 2: 0.829 deg opening cone shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20); shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20); shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30); shRB26s3Tube->DefineSection(5, 622.20, 30.00/2., 30.60/2.); shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00/2., 30.60/2.); TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteel); // Add the insulation layer TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", MakeInsulationFromTemplate(shRB26s3Tube), kMedInsu); voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity); TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", MakeMotherFromTemplate(shRB26s3Tube), kMedVac); voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity); /////////////////////////////////// // Fixed Point // // Drawing LHCVFX_0005 // /////////////////////////////////// const Float_t kRB26s3FixedPointL = 16.37 ; // Length of the fixed point section (0.3 cm added for welding) const Float_t kRB26s3FixedPointZ = 9.72 ; // Position of the ring (0.15 cm added for welding) const Float_t kRB26s3FixedPointD = 0.595 ; // Width of the ring const Float_t kRB26s3FixedPointR = 13.30/2. ; // Radius of the ring const Float_t kRB26s3FixedPointRi = 12.00/2. ; // Inner radius of the tube const Float_t kRB26s3FixedPointRo1 = 12.30/2. ; // Outer radius of the tube (in) const Float_t kRB26s3FixedPointRo2 = 12.40/2. ; // Outer radius of the tube (out) const Float_t kRB26s3FixedPointDs = 1.5 ; // Width of straight section behind ring const Float_t kRB26s3FixedPointDc = 3.15 ; // Width of conical section behind ring (0.15 cm added for welding) TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointZ; shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR); z0 += kRB26s3FixedPointD; shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR); shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointDs; shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointDc; shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2); z0 = kRB26s3FixedPointL; shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2); TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteel); TGeoVolume* voRB26s3FixedPointM = new TGeoVolume("RB26s3FixedPointM", MakeMotherFromTemplate(shRB26s3FixedPoint), kMedVac); voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity); /////////////////////////////////// // Split Flange // // Drawing LHCVFX_0005 // /////////////////////////////////// const Float_t kRB26s3SFlangeL = 2.13; // Length of the flange const Float_t kRB26s3SFlangeD1 = 0.57; // Length of section 1 const Float_t kRB26s3SFlangeD2 = 0.36; // Length of section 2 const Float_t kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3 const Float_t kRB26s3SFlangeRo = 17.15/2.; // Flange outer radius const Float_t kRB26s3SFlangeRi1 = 12.30/2.; // Flange inner radius section 1 const Float_t kRB26s3SFlangeRi2 = 12.00/2.; // Flange inner radius section 2 const Float_t kRB26s3SFlangeRi3 = 12.30/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD1; shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo); shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD2; shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo); shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD3; shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo); TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteel); TGeoVolume* voRB26s3SFlangeM = new TGeoVolume("RB26s3SFlangeM", MakeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVac); voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity); /////////////////////////////////// // RB26/3 Fixed Flange // // Drawing LHCVFX___0004 // /////////////////////////////////// const Float_t kRB26s3FFlangeL = 2.99; // Length of the flange const Float_t kRB26s3FFlangeD1 = 1.72; // Length of section 1 const Float_t kRB26s3FFlangeD2 = 0.30; // Length of section 2 const Float_t kRB26s3FFlangeD3 = 0.97; // Length of section 3 const Float_t kRB26s3FFlangeRo = 36.20/2.; // Flange outer radius const Float_t kRB26s3FFlangeRi1 = 30.60/2.; // Flange inner radius section 1 const Float_t kRB26s3FFlangeRi2 = 30.00/2.; // Flange inner radius section 2 const Float_t kRB26s3FFlangeRi3 = 30.60/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD1; shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo); shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD2; shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo); shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD3; shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo); TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteel); TGeoVolume* voRB26s3FFlangeM = new TGeoVolume("RB26s3FFlangeM", MakeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVac); voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity); /////////////////////////////////// // RB26/3 Axial Compensator // // Drawing LHCVC2a_0065 // /////////////////////////////////// const Float_t kRB26s3CompL = 42.0; // Length of the compensator (0.3 cm added for welding) const Float_t kRB26s3BellowRo = 34.00/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s3BellowRi = 30.10/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1] const Float_t kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1] const Float_t kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1] const Float_t kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] // Plie radius const Float_t kRB26s3PlieR = (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3NumberOfPlies * kRB26s3PlieThickness) / (4. * kRB26s3NumberOfPlies); // // The welding tubes have 3 sections with different radii and 2 transition regions. // Section 1: connection to the outside // Section 2: commection to the bellow // Section 3: between 1 and 2 const Float_t kRB26s3CompTubeInnerR1 = 30.0/2.; // Outer Connection tubes inner radius [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR1 = 30.6/2.; // Outer Connection tubes outer radius [Pos 4 + 3] const Float_t kRB26s3CompTubeInnerR2 = 29.4/2.; // Connection tubes inner radius [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR2 = 30.0/2.; // Connection tubes outer radius [Pos 4 + 3] const Float_t kRB26s3CompTubeInnerR3 = 30.6/2.; // Connection tubes inner radius at bellow [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR3 = 32.2/2.; // Connection tubes outer radius at bellow [Pos 4 + 3] const Float_t kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4] const Float_t kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4] const Float_t kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4] const Float_t kRB26s3WeldingTubeRightL1 = 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding) const Float_t kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3] const Float_t kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3] const Float_t kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3] const Float_t kRB26s3RingOuterR = 36.1/2.; // Ring inner radius [Pos 4] const Float_t kRB26s3RingL = 0.8/2.; // Ring half length [Pos 4] const Float_t kRB26s3RingZ = 3.7 ; // Ring z-position [Pos 4] const Float_t kRB26s3ProtOuterR = 36.2/2.; // Protection tube outer radius [Pos 2] const Float_t kRB26s3ProtL = 27.0/2.; // Protection tube half length [Pos 2] const Float_t kRB26s3ProtZ = 4.0 ; // Protection tube z-position [Pos 2] // Mother volume // TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6); shRB26s3Compensator->DefineSection( 0, 0.0, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 2, kRB26s3RingZ, 0., kRB26s3ProtOuterR); shRB26s3Compensator->DefineSection( 3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR); shRB26s3Compensator->DefineSection( 4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 5, kRB26s3CompL , 0., kRB26s3CompTubeOuterR1); TGeoVolume* voRB26s3Compensator = new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s3Bellow = new TGeoVolume("RB26s3Bellow", new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, kRB26s3BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s3PlieTorusU = new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR); shRB26s3PlieTorusU->SetName("RB26s3TorusU"); TGeoTube* shRB26s3PlieTubeU = new TGeoTube (kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR); shRB26s3PlieTubeU->SetName("RB26s3TubeU"); TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU"); TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s3PlieTorusL = new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR); shRB26s3PlieTorusL->SetName("RB26s3TorusL"); TGeoTube* shRB26s3PlieTubeL = new TGeoTube (kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR); shRB26s3PlieTubeL->SetName("RB26s3TubeL"); TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL"); TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume("RB26s3PlieConn1", new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle"); z0 = - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness; voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s3BellowUndL/2.+ kRB26s3PlieR; voRB26s3Bellow->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR; zsh = 4. * kRB26s3PlieR - 2. * kRB26s3PlieThickness; for (Int_t iw = 0; iw < kRB26s3NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s3Bellow->AddNode(voRB26s3Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s3PlieThickness)); } voRB26s3Compensator->AddNode(voRB26s3Bellow, 1, new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + kRB26s3BellowUndL/2.)); // // [Pos 2] Outer Protecting Tube // TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL); TGeoVolume* voRB26s3CompProtTube = new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL)); // // [Pos 3] Right Welding Tube // TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5); z0 = 0.; shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3); z0 += kRB26s3WeldingTubeT2; shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeRightL2; shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeT1; shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeRightL1; shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); TGeoVolume* voRB26s3CompRightTube = new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0)); // // [Pos 4] Left Welding Tube // TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5); z0 = 0.; shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeLeftL1; shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeT1; shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeLeftL2; shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeT2; shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3); TGeoVolume* voRB26s3CompLeftTube = new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity); // // [Pos 5] Ring // TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL); TGeoVolume* voRB26s3CompRing = new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL)); /////////////////////////////////////////// // // // RB26/4-5 // // Drawing LHCV2a_0012 [as installed] // //////////////////////////////////////////// // Pos1 Vacuum Tubes LHCVC2A__0014 // Pos2 Compensator LHCVC2A__0066 // Pos3 Fixed Point Section LHCVC2A__0016 // Pos4 Split Flange LHCVFX___0005 // Pos5 RotableFlange LHCVFX___0009 //////////////////////////////////////////// /////////////////////////////////// // RB26/4-5 Vacuum Tubes // // Drawing LHCVC2a_0014 // /////////////////////////////////// const Float_t kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11); // Section 1: straight section shRB26s45Tube->DefineSection( 0, 0.00, 30.00/2., 30.60/2.); shRB26s45Tube->DefineSection( 1, 1.20, 30.00/2., 30.60/2.); shRB26s45Tube->DefineSection( 2, 1.20, 30.00/2., 30.80/2.); shRB26s45Tube->DefineSection( 3, 25.10, 30.00/2., 30.80/2.); // Section 2: 0.932 deg opening cone shRB26s45Tube->DefineSection( 4, 486.10, 45.00/2., 45.80/2.); // Section 3: straight section 4 mm shRB26s45Tube->DefineSection( 5, 512.10, 45.00/2., 45.80/2.); // Section 4: straight section 3 mm shRB26s45Tube->DefineSection( 6, 512.10, 45.00/2., 45.60/2.); shRB26s45Tube->DefineSection( 7, 527.70, 45.00/2., 45.60/2.); // Section 4: closing cone shRB26s45Tube->DefineSection( 8, 591.30, 10.00/2., 10.60/2.); shRB26s45Tube->DefineSection( 9, 591.89, 10.00/2., 10.30/2.); shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00/2., 10.30/2.); TGeoVolume* voRB26s45Tube = new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteel); TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", MakeMotherFromTemplate(shRB26s45Tube), kMedVac); voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity); /////////////////////////////////// // RB26/5 Axial Compensator // // Drawing LHCVC2a_0066 // /////////////////////////////////// const Float_t kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding) const Float_t kRB26s5BellowRo = 12.48/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s5BellowRi = 10.32/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1] const Float_t kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1] const Float_t kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1] const Float_t kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] const Float_t kRB26s5ConnectionR = 11.2/2.; // Bellow connection radius [Pos 1] // Plie radius const Float_t kRB26s5PlieR = (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5NumberOfPlies * kRB26s5PlieThickness) / (4. * kRB26s5NumberOfPlies); const Float_t kRB26s5CompTubeInnerR = 10.00/2.; // Connection tubes inner radius [Pos 2 + 3] const Float_t kRB26s5CompTubeOuterR = 10.30/2.; // Connection tubes outer radius [Pos 2 + 3] const Float_t kRB26s5WeldingTubeLeftL = 3.70/2.; // Left connection tube half length [Pos 2] const Float_t kRB26s5WeldingTubeRightL = 13.40/2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding) const Float_t kRB26s5RingInnerR = 11.2/2.; // Ring inner radius [Pos 4] const Float_t kRB26s5RingOuterR = 16.0/2.; // Ring inner radius [Pos 4] const Float_t kRB26s5RingL = 0.4/2.; // Ring half length [Pos 4] const Float_t kRB26s5RingZ = 14.97; // Ring z-position [Pos 4] const Float_t kRB26s5ProtOuterR = 16.2/2.; // Protection tube outer radius [Pos 5] const Float_t kRB26s5ProtL = 13.0/2.; // Protection tube half length [Pos 5] const Float_t kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5] const Float_t kRB26s5DetailZR = 11.3/2.; // Detail Z max radius // Mother volume // TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8); shRB26s5Compensator->DefineSection( 0, 0.0, 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR); shRB26s5Compensator->DefineSection( 3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR); shRB26s5Compensator->DefineSection( 4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR); shRB26s5Compensator->DefineSection( 5, kRB26s5CompL - 8., 0., kRB26s5DetailZR); shRB26s5Compensator->DefineSection( 6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR); TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s5Bellow = new TGeoVolume("RB26s5Bellow", new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s5PlieTorusU = new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR); shRB26s5PlieTorusU->SetName("RB26s5TorusU"); TGeoTube* shRB26s5PlieTubeU = new TGeoTube (kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR); shRB26s5PlieTubeU->SetName("RB26s5TubeU"); TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU"); TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s5PlieTorusL = new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR); shRB26s5PlieTorusL->SetName("RB26s5TorusL"); TGeoTube* shRB26s5PlieTubeL = new TGeoTube (kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR); shRB26s5PlieTubeL->SetName("RB26s5TubeL"); TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL"); TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume("RB26s5PlieConn1", new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle"); z0 = - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness; voRB26s5Wiggle->AddNode(voRB26s5WiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s5BellowUndL/2.+ kRB26s5ConnectionPlieR; voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5ConnectionPlieR; zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness; for (Int_t iw = 0; iw < kRB26s5NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness)); } voRB26s5Compensator->AddNode(voRB26s5Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL/2.)); // // [Pos 2] Left Welding Tube // TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3); z0 = 0; shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); z0 += 2 * kRB26s5WeldingTubeLeftL - ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR); shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); z0 += ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR); shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR); TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity); // // [Pos 3] Right Welding Tube // TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11); // Detail Z shRB26s5CompRightTube->DefineSection( 0, 0. , kRB26s5CompTubeInnerR + 0.22, 11.2/2.); shRB26s5CompRightTube->DefineSection( 1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2/2.); shRB26s5CompRightTube->DefineSection( 2, 0.22, kRB26s5CompTubeInnerR , 11.2/2. - 0.22); shRB26s5CompRightTube->DefineSection( 3, 0.44, kRB26s5CompTubeInnerR , 11.2/2.); shRB26s5CompRightTube->DefineSection( 4, 1.70, kRB26s5CompTubeInnerR , 11.2/2.); shRB26s5CompRightTube->DefineSection( 5, 2.10, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection( 6, 2.80, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection( 7, 2.80, kRB26s5CompTubeInnerR , 11.3/2.); shRB26s5CompRightTube->DefineSection( 8, 3.40, kRB26s5CompTubeInnerR , 11.3/2.); // Normal pipe shRB26s5CompRightTube->DefineSection( 9, 3.50, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); TGeoVolume* voRB26s5CompRightTube = new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL)); // // [Pos 4] Ring // TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL); TGeoVolume* voRB26s5CompRing = new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL)); // // [Pos 5] Outer Protecting Tube // TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL); TGeoVolume* voRB26s5CompProtTube = new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL)); /////////////////////////////////////// // RB26/4 Fixed Point Section // // Drawing LHCVC2a_0016 // /////////////////////////////////////// const Float_t kRB26s4TubeRi = 30.30/2. ; // Tube inner radius (0.3 cm added for welding) const Float_t kRB26s4TubeRo = 30.60/2. ; // Tube outer radius const Float_t kRB26s4FixedPointL = 12.63 ; // Length of the fixed point section const Float_t kRB26s4FixedPointZ = 10.53 ; // Position of the ring (0.15 added for welding) const Float_t kRB26s4FixedPointD = 0.595 ; // Width of the ring const Float_t kRB26s4FixedPointR = 31.60/2. ; // Radius of the ring TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo); z0 += kRB26s4FixedPointZ; shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo); shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR); z0 += kRB26s4FixedPointD; shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR); shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo); z0 = kRB26s4FixedPointL; shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo); TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteel); TGeoVolume* voRB26s4FixedPointM = new TGeoVolume("RB26s4FixedPointM", MakeMotherFromTemplate(shRB26s4FixedPoint), kMedVac); voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity); /////////////////////////////////////// // RB26/4 Split Flange // // Drawing LHCVFX__0005 // /////////////////////////////////////// const Float_t kRB26s4SFlangeL = 2.99; // Length of the flange const Float_t kRB26s4SFlangeD1 = 0.85; // Length of section 1 const Float_t kRB26s4SFlangeD2 = 0.36; // Length of section 2 const Float_t kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3 const Float_t kRB26s4SFlangeRo = 36.20/2.; // Flange outer radius const Float_t kRB26s4SFlangeRi1 = 30.60/2.; // Flange inner radius section 1 const Float_t kRB26s4SFlangeRi2 = 30.00/2.; // Flange inner radius section 2 const Float_t kRB26s4SFlangeRi3 = 30.60/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD1; shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo); shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD2; shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo); shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD3; shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo); TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteel); TGeoVolume* voRB26s4SFlangeM = new TGeoVolume("RB26s4SFlangeM", MakeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVac); voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity); /////////////////////////////////////// // RB26/5 Rotable Flange // // Drawing LHCVFX__0009 // /////////////////////////////////////// const Float_t kRB26s5RFlangeL = 1.86; // Length of the flange const Float_t kRB26s5RFlangeD1 = 0.61; // Length of section 1 const Float_t kRB26s5RFlangeD2 = 0.15; // Length of section 2 const Float_t kRB26s5RFlangeD3 = 0.60; // Length of section 3 const Float_t kRB26s5RFlangeD4 = 0.50; // Length of section 4 const Float_t kRB26s5RFlangeRo = 15.20/2.; // Flange outer radius const Float_t kRB26s5RFlangeRi1 = 10.30/2.; // Flange inner radius section 1 const Float_t kRB26s5RFlangeRi2 = 10.00/2.; // Flange inner radius section 2 const Float_t kRB26s5RFlangeRi3 = 10.30/2.; // Flange inner radius section 3 const Float_t kRB26s5RFlangeRi4 = 10.50/2.; // Flange inner radius section 4 z0 = 0; TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD4; shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD3; shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD2; shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD1; shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo); TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteel); TGeoVolume* voRB26s5RFlangeM = new TGeoVolume("RB26s5RFlangeM", MakeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVac); voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity); // // Assemble RB26/1-2 // TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12"); z0 = 0.; asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity); z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL; asRB26s12->AddNode(voRB26s12TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s12TubeL; asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2CompL; z0 -= kRB26s2FFlangeD1; asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2FFlangeL; const Float_t kRB26s12L = z0; // // Assemble RB26/3 // TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3"); z0 = 0.; asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity); z0 += kRB26s3SFlangeL; z0 -= kRB26s3SFlangeD3; asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3FixedPointL; asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3TubeL; asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3CompL; z0 -= kRB26s3FFlangeD1; asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3FFlangeL; const Float_t kRB26s3L = z0; // // Assemble RB26/4-5 // TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45"); z0 = 0.; asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity); z0 += kRB26s4SFlangeL; z0 -= kRB26s4SFlangeD3; asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s4FixedPointL; asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s45TubeL; asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5CompL; z0 -= kRB26s5RFlangeD3; z0 -= kRB26s5RFlangeD4; asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5RFlangeL; const Float_t kRB26s45L = z0; // // Assemble RB26 // TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe"); z0 = 0.; asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s12L; asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3L; asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s45L; top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180)); } //___________________________________________ void AliPIPEv3::CreateMaterials() { // // Define materials for beam pipe // AliDebugClass(1,"Create PIPEv3 materials"); Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // Steel (Inox) Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; // AlBe - alloy Float_t aAlBe[2] = { 26.98, 9.01}; Float_t zAlBe[2] = { 13.00, 4.00}; Float_t wAlBe[2] = { 0.4, 0.6}; // // Polyamid Float_t aPA[4] = {16., 14., 12., 1.}; Float_t zPA[4] = { 8., 7., 6., 1.}; Float_t wPA[4] = { 1., 1., 6., 11.}; // // Air // Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; Float_t dAir1 = 1.20479E-11; // // Insulation powder // Si O Ti Al Float_t ains[4] ={28.0855, 15.9994, 47.867, 26.982}; Float_t zins[4] ={14., 8. , 22. , 13. }; Float_t wins[4] ={ 0.3019, 0.4887, 0.1914, 0.018}; // // // Anticorodal // // Al Si7 Mg 0.6 // Float_t aaco[3] ={26.982, 28.0855, 24.035}; Float_t zaco[3] ={13., 14. , 12. }; Float_t waco[3] ={ 0.924, 0.07, 0.006}; // Kapton // Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994}; Float_t zKapton[4]={1.,6.,7.,8.}; Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235}; Float_t dKapton = 1.42; // NEG coating // Ti V Zr Float_t aNEG[4] = {47.87, 50.94, 91.24}; Float_t zNEG[4] = {22.00, 23.00, 40.00}; Float_t wNEG[4] = {1./3., 1./3., 1./3.}; Float_t dNEG = 5.6; // ? // // // Berillium AliMaterial(5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7); // // Carbon AliMaterial(6, "CARBON$ ", 12.01, 6., 2.265, 18.8, 49.9); // // Aluminum AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); // // Copper AliMaterial(10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6/8.96); // // Air AliMixture(15, "AIR$ ", aAir, zAir, dAir, 4, wAir); AliMixture(35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir); // // Vacuum AliMixture(16, "VACUUM$ " , aAir, zAir, dAir1, 4, wAir); AliMixture(17, "VACUUMM$ ", aAir, zAir, dAir1, 4, wAir); // // stainless Steel AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); // // reduced density steel to approximate pump getter material AliMixture(20, "GETTER$", asteel, zsteel, 1.00, 4, wsteel); // Al-Be alloy // AliMixture(21, "AlBe$", aAlBe, zAlBe, 2.07, 2, wAlBe); // Polyamid // AliMixture(22, "PA$", aPA, zPA, 1.14, -4, wPA); // // Kapton AliMixture(23, "KAPTON", aKapton, zKapton, dKapton, 4, wKapton); // Anticorodal AliMixture(24, "ANTICORODAL", aaco, zaco, 2.66, 3, waco); // // Insulation powder AliMixture(14, "INSULATION0$", ains, zins, 0.41, 4, wins); AliMixture(34, "INSULATION1$", ains, zins, 0.41, 4, wins); AliMixture(54, "INSULATION2$", ains, zins, 0.41, 4, wins); // NEG AliMixture(25, "NEG COATING", aNEG, zNEG, dNEG, -3, wNEG); // **************** // Defines tracking media parameters. // Float_t epsil = .001; // Tracking precision, Float_t stemax = -0.01; // Maximum displacement for multiple scat Float_t tmaxfd = -20.; // Maximum angle due to field deflection Float_t deemax = -.3; // Maximum fractional energy loss, DLS Float_t stmin = -.8; // *************** // // Beryllium AliMedium(5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Carbon AliMedium(6, "C", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Aluminum AliMedium(9, "ALU", 9, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Copper AliMedium(10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Air AliMedium(15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(35, "AIR_HIGH",35, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Vacuum AliMedium(16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(17, "VACUUMM", 17, 0, isxfld, sxmgmx, 0.1, stemax, deemax, epsil, stmin); // // Steel AliMedium(19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Getter AliMedium(20, "GETTER", 20, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // AlBe - Aloy AliMedium(21, "AlBe" , 21, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Polyamid AliMedium(22, "PA" , 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Antocorodal AliMedium(24, "ANTICORODAL", 24, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Insulation Powder AliMedium(14, "INS_C0 ", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(34, "INS_C1 ", 34, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(54, "INS_C2 ", 54, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // KAPTON AliMedium(23, "KAPTON", 23, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // NEG AliMedium(25, "NEG COATING", 25, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); } TGeoPcon* AliPIPEv3::MakeMotherFromTemplate(const TGeoPcon* shape, Int_t imin, Int_t imax, Float_t r0, Int_t nz) { // // Create a mother shape from a template setting some min radii to 0 // Int_t nz0 = shape->GetNz(); // if nz > -1 the number of planes is given by nz if (nz != -1) nz0 = nz; TGeoPcon* mother = new TGeoPcon(0., 360., nz0); if (imin == -1 || imax == -1) { imin = 0; imax = shape->GetNz(); } else if (imax >= nz0) { imax = nz0 - 1; printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0); } for (Int_t i = 0; i < shape->GetNz(); i++) { Double_t rmin = shape->GetRmin(i); if ((i >= imin) && (i <= imax) ) rmin = r0; Double_t rmax = shape->GetRmax(i); Double_t z = shape->GetZ(i); mother->DefineSection(i, z, rmin, rmax); } return mother; } TGeoPcon* AliPIPEv3::MakeInsulationFromTemplate(TGeoPcon* shape) { // // Create an beam pipe insulation layer shape from a template // Int_t nz = shape->GetNz(); TGeoPcon* insu = new TGeoPcon(0., 360., nz); for (Int_t i = 0; i < nz; i++) { Double_t z = shape->GetZ(i); Double_t rmin = shape->GetRmin(i); Double_t rmax = shape->GetRmax(i); rmax += 0.5; shape->DefineSection(i, z, rmin, rmax); rmin = rmax - 0.5; insu->DefineSection(i, z, rmin, rmax); } return insu; } TGeoVolume* AliPIPEv3::MakeBellow(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t dU, Float_t rPlie, Float_t dPlie) { // nc Number of convolution // rMin Inner radius of the bellow // rMax Outer radius of the bellow // dU Undulation length // rPlie Plie radius // dPlie Plie thickness const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); char name[64], nameA[64], nameB[64], bools[64]; snprintf(name, 64, "%sBellowUS", ext); TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusU", ext); shPlieTorusU->SetName(nameA); TGeoTube* shPlieTubeU = new TGeoTube (rMax - rPlie, rMax, rPlie); snprintf(nameB, 64, "%sTubeU", ext); shPlieTubeU->SetName(nameB); snprintf(name, 64, "%sUpperPlie", ext); snprintf(bools, 64, "%s*%s", nameA, nameB); TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleU = new TGeoVolume(name, shUpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusL", ext); shPlieTorusL->SetName(nameA); TGeoTube* shPlieTubeL = new TGeoTube (rMin, rMin + rPlie, rPlie); snprintf(nameB, 64, "%sTubeL", ext); shPlieTubeL->SetName(nameB); snprintf(name, 64, "%sLowerPlie", ext); snprintf(bools, 64, "%s*%s", nameA, nameB); TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleL = new TGeoVolume(name, shLowerPlie, kMedSteel); // // Connection between upper and lower part of undulation snprintf(name, 64, "%sPlieConn1", ext); TGeoVolume* voWiggleC1 = new TGeoVolume(name, new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie/2.), kMedSteel); // // One wiggle Float_t dz = rPlie - dPlie / 2.; Float_t z0 = - dPlie / 2.; snprintf(name, 64, "%sWiggle", ext); TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name); asWiggle->AddNode(voWiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - dU / 2.+ rPlie; voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0)); z0 += rPlie; Float_t zsh = 4. * rPlie - 2. * dPlie; for (Int_t iw = 0; iw < nc; iw++) { Float_t zpos = z0 + iw * zsh; voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie)); } return voBellow; } //_______________________________________________________________________ void AliPIPEv3::AddAlignableVolumes() const { // AliInfo("Add PIPE alignable volume"); if (!gGeoManager) { AliFatal("TGeoManager doesn't exist !"); return; } TString symname("CP1"); TString volpath("/ALIC_1/CP_1/Cp1_1"); if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname.Data(),volpath.Data())); TString symname2("CP3"); TString volpath2("/ALIC_1/CP_1/Cp3_1"); if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data())) AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data())); }