/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //------------------------------------------------------------------------- // Beam pipe class for ALICE MFT upgrade // This version uses TGeo // Authors: // F. Manso // A. Morsch // R. Tieulent //------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliConst.h" #include "AliMagF.h" #include "AliPIPEv4.h" #include "AliRun.h" #include "AliLog.h" ClassImp(AliPIPEv4) //_____________________________________________________________________________ AliPIPEv4::AliPIPEv4(): AliPIPE() { // Constructor } //_____________________________________________________________________________ AliPIPEv4::AliPIPEv4(const char *name, const char *title) : AliPIPE(name,title) { // Constructor } //___________________________________________ void AliPIPEv4::CreateGeometry() { AliDebug(1,"Create PIPEv4 geometry"); // // Class describing the beam pipe geometry // Float_t z, zsh, z0; // // Rotation Matrices // const Float_t kDegRad = TMath::Pi() / 180.; // Rotation by 180 deg TGeoRotation* rot180 = new TGeoRotation("rot180", 90., 180., 90., 90., 180., 0.); TGeoRotation* rotyz = new TGeoRotation("rotyz", 90., 180., 0., 180., 90., 90.); TGeoRotation* rotxz = new TGeoRotation("rotxz", 0., 0., 90., 90., 90., 180.); //TGeoRotation* rot045 = new TGeoRotation("rot045", 90., 45., 90., 135., 0., 0.); //TGeoRotation* rot135 = new TGeoRotation("rot135", 90. ,135., 90., 225., 0., 0.); //TGeoRotation* rot225 = new TGeoRotation("rot225", 90. ,225., 90., 315., 0., 0.); //TGeoRotation* rot315 = new TGeoRotation("rot315", 90. ,315., 90., 45., 0., 0.); // // Media //const TGeoMedium* kMedSi = gGeoManager->GetMedium("PIPE_SILICON"); //FM const TGeoMedium* kMedAir = gGeoManager->GetMedium("PIPE_AIR"); const TGeoMedium* kMedAirHigh = gGeoManager->GetMedium("PIPE_AIR_HIGH"); const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); const TGeoMedium* kMedInsu = gGeoManager->GetMedium("PIPE_INS_C0"); const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); const TGeoMedium* kMedBe = gGeoManager->GetMedium("PIPE_BE"); const TGeoMedium* kMedCu = gGeoManager->GetMedium("PIPE_CU"); //const TGeoMedium* kMedKapton = gGeoManager->GetMedium("PIPE_KAPTON"); //const TGeoMedium* kMedAco = gGeoManager->GetMedium("PIPE_ANTICORODAL"); //const TGeoMedium* kMedNEG = gGeoManager->GetMedium("PIPE_NEG COATING"); //const TGeoMedium* kMedAlu = gGeoManager->GetMedium("PIPE_ALU"); // fm const TGeoMedium* kMedAlu2219 = gGeoManager->GetMedium("PIPE_AA2219"); // fm const TGeoMedium* kMedRohacell = gGeoManager->GetMedium("PIPE_ROHACELL"); const TGeoMedium* kMedPolyimide = gGeoManager->GetMedium("PIPE_POLYIMIDE"); const TGeoMedium* kMedCarbonFiber = gGeoManager->GetMedium("PIPE_M55J6K"); // Top volume TGeoVolume* top = gGeoManager->GetVolume("ALIC"); // // //////////////////////////////////////////////////////////////////////////////// // // // The Central Vacuum system // // // //////////////////////////////////////////////////////////////////////////////// // // // The ALICE central beam-pipe according to drawing LHCVC2C_0001 // Drawings of sub-elements: // // Pos 7 - Minimised Flange: LHCVFX_P0025 // Pos 6 - Standard Flange: STDVFUHV0009 // Pos 8 - Bellow: LHCVBX__0001 // // Absolute z-coordinates -82.0 - 400.0 cm // Total length: 482.0 cm // It consists of 3 main parts: // CP/2 The flange on the non-absorber side: 36.5 cm // CP/1 The central Be pipe: 405.0 cm // CP/3 The double-bellow and flange on the absorber side: 40.5 cm // /* // Starting position in z const Float_t kCPz0 = -400.0; // Length of the CP/1 section const Float_t kCP1Length = 405.0; // Length of the CP/2 section const Float_t kCP2Length = 36.5; // Length of the CP/3 section const Float_t kCP3Length = 40.5; // Position of the CP/2 section // const Float_t kCP2pos = kCPz0 + kCP2Length / 2.; // Position of the CP/3 section const Float_t kCP3pos = kCPz0 + kCP2Length + kCP1Length + kCP3Length/2.; */ //////////////////// NEW BEAM PIPE GEOMETRY FOR MuonForwardTracker , // Authors: F. Manso, R. Tieulent // Drawings from C. Gargiulo : // \\cern.ch\dfs\Workspaces\c\cgargiul\EXPERIMENT\ALICE\ALICE_MECHANICS\ALICE_DATA_PACKAGE\IN\DETECTORS\ITS_UPGRADE\1-DESIGN\3D_cad_model\R14_20140311_ALI\ // //------------------- Pipe version 4.7 March 2014 ----------------------------- TGeoVolumeAssembly * beamPipeCsideSection = new TGeoVolumeAssembly("BeamPipeCsideSection"); Float_t fBeryliumSectionOuterRadius = 1.9; Float_t fBeryliumSectionZmax = 44.4; Float_t fBeryliumSectionZmin = -44.4; Float_t fBeryliumSectionThickness = 0.08; Float_t fBellowSectionOuterRadius = 2.15; Float_t fCSideBPSOuterRadius = 2.22; Float_t fCSideBPSWallThickness = 0.15; Float_t fBellowSectionZmax = -55.35; Float_t fBellowOuterRadius = 2.8; Float_t fFirstConeAngle = 15. * TMath::DegToRad(); Float_t fChangeThicknessAngle = 45. * TMath::DegToRad(); // Float_t fCSideBPSLength = 3.53; Float_t fCSideBPSLength = 3.53+1.52; Float_t fDzFirstCone = (fCSideBPSOuterRadius - fBeryliumSectionOuterRadius) / TMath::Tan(fFirstConeAngle); // Float_t fReduceThicknessPartAfterBPSLength = 1.52; Float_t fReduceThicknessPartAfterBPSLength = 0.; Float_t fThinPartBeforeBellowLength = 1.025; Float_t fDistanceBetweenBellows = 2.5; Float_t fAdaptConeZmax = -77.43; Float_t fAdaptConeZmin = -80.6; Float_t fAdaptConeRmax = 3.0; Float_t fFlangeRmax = 4.3; Float_t fFlangeLength = 1.4; Float_t fBellowPlieRadius = 0.17; // radius of bellow plies Float_t fBellowPlieThickness = 0.03; // Thickness of bellow plies 300 microns Int_t fNBellowConvolutions = 7; Float_t fZ1 = fBeryliumSectionZmin; // z of Be - Al jonction on the C-side Float_t fZ2 = fBellowSectionZmax +fDzFirstCone ; // z of end of small diameter part (beginning of first cone before the bellow Float_t fZ3 = fBellowSectionZmax +(fCSideBPSOuterRadius - fBellowSectionOuterRadius) / TMath::Tan(fFirstConeAngle); // z of End of first cone part with 0.8mm thickness Float_t fZ4 = fBellowSectionZmax; // z of End of first Cone Float_t fZ5 = fBellowSectionZmax - fCSideBPSLength; // z of End of Beam Pipe support section Float_t fZ6 = fBellowSectionZmax - fCSideBPSLength - (fCSideBPSOuterRadius-fBellowSectionOuterRadius) / TMath::Tan(fChangeThicknessAngle); // z of End of Beam Pipe support section after reduction of thickness Float_t fZ7 = fZ6 - fReduceThicknessPartAfterBPSLength ; // Z of end of 800 microns section after Beam Pipe Support Float_t fZ8 = fZ7 - (fBeryliumSectionThickness-fBellowPlieThickness) / TMath::Tan(fChangeThicknessAngle); Float_t fZ9 = fZ7 - fThinPartBeforeBellowLength; // Z of the start of first bellow Float_t fFirstBellowZmax = fZ9; //---------------- Be pipe around the IP ---------- TGeoPcon* berylliumTube = new TGeoPcon(0., 360., 2); berylliumTube->DefineSection(0,fBeryliumSectionZmax,fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); berylliumTube->DefineSection(1,fBeryliumSectionZmin,fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); TGeoVolume* voberylliumTube = new TGeoVolume("berylliumTube",berylliumTube,kMedBe); voberylliumTube->SetLineColor(kRed); beamPipeCsideSection->AddNode(voberylliumTube,1,new TGeoTranslation(0., 0., 0.)); TGeoPcon* berylliumTubeVacuum = new TGeoPcon(0., 360., 2); berylliumTubeVacuum->DefineSection(0,fBeryliumSectionZmax, 0.,fBeryliumSectionOuterRadius-fBeryliumSectionThickness); berylliumTubeVacuum->DefineSection(1,fBeryliumSectionZmin, 0.,fBeryliumSectionOuterRadius-fBeryliumSectionThickness); TGeoVolume* voberylliumTubeVacuum = new TGeoVolume("berylliumTubeVacuum",berylliumTubeVacuum,kMedVac); voberylliumTubeVacuum->SetVisibility(0);voberylliumTubeVacuum->SetLineColor(kGreen); beamPipeCsideSection->AddNode(voberylliumTubeVacuum,1,new TGeoTranslation(0., 0., 0.)); //------------------------------------------------- //---------------- Al tube ------------------ TGeoPcon* aluBeforeBellows = new TGeoPcon(0., 360., 9); aluBeforeBellows->DefineSection(0,fZ1, fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); aluBeforeBellows->DefineSection(1,fZ2,fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); aluBeforeBellows->DefineSection(2,fZ3,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); aluBeforeBellows->DefineSection(3,fZ4,fCSideBPSOuterRadius-fCSideBPSWallThickness,fCSideBPSOuterRadius); aluBeforeBellows->DefineSection(4,fZ5,fCSideBPSOuterRadius-fCSideBPSWallThickness,fCSideBPSOuterRadius); aluBeforeBellows->DefineSection(5,fZ6,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); aluBeforeBellows->DefineSection(6,fZ7,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); aluBeforeBellows->DefineSection(7,fZ8,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); aluBeforeBellows->DefineSection(8,fZ9,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); TGeoVolume* voaluBeforeBellows = new TGeoVolume("aluBeforeBellows",aluBeforeBellows,kMedAlu2219); voaluBeforeBellows->SetLineColor(kBlue); beamPipeCsideSection->AddNode(voaluBeforeBellows,1,new TGeoTranslation(0., 0., 0.)); TGeoPcon* aluBeforeBellowsVacuum = new TGeoPcon(0., 360., 7); aluBeforeBellowsVacuum->DefineSection(0,fZ1,0.,fBeryliumSectionOuterRadius-fBeryliumSectionThickness); aluBeforeBellowsVacuum->DefineSection(1,fZ2,0.,fBeryliumSectionOuterRadius-fBeryliumSectionThickness); aluBeforeBellowsVacuum->DefineSection(2,fZ3,0.,fBellowSectionOuterRadius-fBeryliumSectionThickness); aluBeforeBellowsVacuum->DefineSection(3,fZ4,0.,fCSideBPSOuterRadius-fCSideBPSWallThickness); aluBeforeBellowsVacuum->DefineSection(4,fZ5,0.,fCSideBPSOuterRadius-fCSideBPSWallThickness); aluBeforeBellowsVacuum->DefineSection(5,fZ6,0.,fBellowSectionOuterRadius-fBeryliumSectionThickness); aluBeforeBellowsVacuum->DefineSection(6,fZ9,0.,fBellowSectionOuterRadius-fBeryliumSectionThickness); TGeoVolume* voaluBeforeBellowsVacuum = new TGeoVolume("aluBeforeBellowsVacuum",aluBeforeBellowsVacuum,kMedVac); voaluBeforeBellowsVacuum->SetVisibility(0);voaluBeforeBellowsVacuum->SetLineColor(kGreen); beamPipeCsideSection->AddNode(voaluBeforeBellowsVacuum,1,new TGeoTranslation(0., 0., 0.)); //------------------------------------------------- Float_t fBellowLength = fNBellowConvolutions * (4.*fBellowPlieRadius - 2. *fBellowPlieThickness); // ------------------ First Bellow -------------------- TGeoVolume* vobellows1 = MakeBellowCside("bellows1", fNBellowConvolutions, fBellowSectionOuterRadius-fBeryliumSectionThickness, fBellowOuterRadius, fBellowPlieRadius ,fBellowPlieThickness); beamPipeCsideSection->AddNode(vobellows1, 1, new TGeoTranslation(0., 0., fFirstBellowZmax-fBellowLength/2. - 2.*fBellowPlieRadius)); //------------------------------------------------------ Float_t fZ10 = fFirstBellowZmax - fBellowLength; // End of First bellow Float_t fZ12 = fZ10 - fThinPartBeforeBellowLength; Float_t fZ11 = fZ12 + (fBeryliumSectionThickness-fBellowPlieThickness) / TMath::Tan(fChangeThicknessAngle); // End of 300 microns thickness part after first bellow Float_t fZ13 = fZ12 - fDistanceBetweenBellows; Float_t fZ14 = fZ13 -(fBeryliumSectionThickness-fBellowPlieThickness) / TMath::Tan(fChangeThicknessAngle); Float_t fZ15 = fZ14 -fThinPartBeforeBellowLength; Float_t fSecondBellowZmax = fZ15; //---------- Al tube between the bellows ---------- TGeoPcon* tube4 = new TGeoPcon(0., 360., 6); tube4->DefineSection(0,fZ10, fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); tube4->DefineSection(1,fZ11,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); tube4->DefineSection(2,fZ12,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); tube4->DefineSection(3,fZ13,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); tube4->DefineSection(4,fZ14,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); tube4->DefineSection(5,fZ15,fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); TGeoVolume* votube4 = new TGeoVolume("votube4",tube4,kMedAlu2219); votube4->SetLineColor(kBlue); beamPipeCsideSection->AddNode(votube4,1,new TGeoTranslation(0., 0., 0.)); TGeoPcon* tube4Vacuum = new TGeoPcon(0., 360., 2); tube4Vacuum->DefineSection(0,fZ10,0., fBellowSectionOuterRadius-fBeryliumSectionThickness); tube4Vacuum->DefineSection(1,fZ15,0.,fBellowSectionOuterRadius-fBeryliumSectionThickness); TGeoVolume* votube4Vacuum = new TGeoVolume("tube4Vacuum",tube4Vacuum,kMedVac); votube4Vacuum->SetVisibility(0); beamPipeCsideSection->AddNode(votube4Vacuum,1,new TGeoTranslation(0., 0., 0.)); // ------------------ Second Bellow -------------------- TGeoVolume* vobellows2 = MakeBellowCside("bellows2", fNBellowConvolutions, fBellowSectionOuterRadius-fBeryliumSectionThickness, fBellowOuterRadius, fBellowPlieRadius ,fBellowPlieThickness); beamPipeCsideSection->AddNode(vobellows2, 1, new TGeoTranslation(0., 0., fSecondBellowZmax-fBellowLength/2. - 2.*fBellowPlieRadius)); // ----------------------------------------------------- Float_t fZ16 = fSecondBellowZmax - fBellowLength; // End of Second bellow Float_t fZ18 = fZ16 - fThinPartBeforeBellowLength; Float_t fZ17 = fZ18 + (fBeryliumSectionThickness-fBellowPlieThickness) / TMath::Tan(fChangeThicknessAngle); // End of 300 microns thickness part after first bellow Float_t fZ19 = fAdaptConeZmax; // Start of the Adpation Cone Float_t fZ20 = fAdaptConeZmin; // End of the Adpation Cone Float_t fZ21 = fAdaptConeZmin - fFlangeLength; // End of the Flange //----------- 15 deg Conical adaptator + flange ---------- TGeoPcon* adaptator = new TGeoPcon(0., 360., 7); adaptator->DefineSection(0,fZ16, fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); adaptator->DefineSection(1,fZ17, fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius-fBeryliumSectionThickness+fBellowPlieThickness); adaptator->DefineSection(2,fZ18, fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); adaptator->DefineSection(3,fZ19, fBellowSectionOuterRadius-fBeryliumSectionThickness,fBellowSectionOuterRadius); adaptator->DefineSection(4,fZ20, fAdaptConeRmax-fBeryliumSectionThickness,fAdaptConeRmax); adaptator->DefineSection(5,fZ20, fAdaptConeRmax-fBeryliumSectionThickness,fFlangeRmax); adaptator->DefineSection(6,fZ21, fAdaptConeRmax-fBeryliumSectionThickness,fFlangeRmax); TGeoVolume* voadaptator = new TGeoVolume("voadaptator",adaptator,kMedAlu2219); voadaptator->SetLineColor(kBlue); beamPipeCsideSection->AddNode(voadaptator,1,new TGeoTranslation(0., 0., 0.)); TGeoPcon* adaptatorvide = new TGeoPcon(0., 360., 4); adaptatorvide->DefineSection(0,fZ16, 0., fBellowSectionOuterRadius-fBeryliumSectionThickness); adaptatorvide->DefineSection(1,fZ19, 0., fBellowSectionOuterRadius-fBeryliumSectionThickness); adaptatorvide->DefineSection(2,fZ20, 0., fAdaptConeRmax-fBeryliumSectionThickness); adaptatorvide->DefineSection(3,fZ21, 0., fAdaptConeRmax-fBeryliumSectionThickness); TGeoVolume* voadaptatorvide = new TGeoVolume("voadaptatorvide",adaptatorvide,kMedVac); voadaptatorvide->SetVisibility(0); // voadaptatorvide->SetLineColor(kGreen); beamPipeCsideSection->AddNode(voadaptatorvide,1,new TGeoTranslation(0., 0., 0.)); //------------------------------------------------------ top->AddNode(beamPipeCsideSection,1); /////////////////////////////////// // Beam Pipe support // /////////////////////////////////// // Beam Pipe Support TGeoVolume *beamPipeSupport = new TGeoVolumeAssembly("BeamPipeSupport"); Float_t beamPipesupportZpos = fZ5; // Dimensions : Float_t supportXdim= 20.67; Float_t beamPipeRingZdim = 4.0; Float_t vespelRmax = 2.3; Float_t vespelRmin = 2.22; Float_t beampipeCarbonCollarRmin = 2.4; Float_t beampipeCarbonCollarRmax = 2.7; Float_t fixationCarbonCollarRmin = 1.5; Float_t fixationCarbonCollarRmax = 1.7; Float_t fixationCarbonCollarDZ = 2.5; Float_t skinThickness = 0.1; Float_t skinXdim = 14.25; Float_t skinYdim = 1.; Float_t skinZdim = fixationCarbonCollarDZ; Float_t carbonEarsXdim = 1.01; Float_t carbonEarsYdim = 0.2; Float_t carbonEarsZdim = fixationCarbonCollarDZ; // Support Bar TGeoVolumeAssembly *supportBar = new TGeoVolumeAssembly("BPS_SupportBar"); TGeoBBox * carbonSkinBPS = new TGeoBBox(skinXdim/2.,skinYdim/2.,skinZdim/2.); carbonSkinBPS->SetName("carbonSkinBPS"); TGeoBBox * foambarBPS = new TGeoBBox("foambarBPS",skinXdim/2.-skinThickness,skinYdim/2.-skinThickness,skinZdim/2.-skinThickness/2.); TGeoBBox * carbonEarsBPS = new TGeoBBox(carbonEarsXdim/2.,carbonEarsYdim/2.,carbonEarsZdim/2.); carbonEarsBPS->SetName("carbonEarsBPS"); TGeoTranslation * transBP1 = new TGeoTranslation("transBP1",(skinXdim+carbonEarsXdim)/2.,0.,0.); transBP1->RegisterYourself(); TGeoTranslation * transBP2 = new TGeoTranslation("transBP2",-(skinXdim+carbonEarsXdim)/2.,0.,0.); transBP2->RegisterYourself(); TGeoCompositeShape *supportBarCarbon = new TGeoCompositeShape("BPS_supportBarCarbon", "(carbonSkinBPS-foambarBPS)+carbonEarsBPS:transBP1+carbonEarsBPS:transBP2"); TGeoVolume *supportBarCarbonVol = new TGeoVolume("BPS_supportBarCarbon",supportBarCarbon,kMedCarbonFiber); supportBarCarbonVol->SetLineColor(kGray+3); supportBar->AddNode(supportBarCarbonVol, 1, new TGeoTranslation(skinXdim/2.+carbonEarsXdim+beampipeCarbonCollarRmax,0,0)); supportBar->AddNode(supportBarCarbonVol, 2, new TGeoTranslation(-(skinXdim/2.+carbonEarsXdim+beampipeCarbonCollarRmax),0,0)); TGeoVolume *foamVol = new TGeoVolume("supportBarFoam",foambarBPS,kMedRohacell); foamVol->SetLineColor(kGray); supportBar->AddNode(foamVol, 1, new TGeoTranslation(skinXdim/2.+carbonEarsXdim+beampipeCarbonCollarRmax,0,0)); supportBar->AddNode(foamVol, 2, new TGeoTranslation(-(skinXdim/2.+carbonEarsXdim+beampipeCarbonCollarRmax),0,0)); beamPipeSupport->AddNode(supportBar,1); // Fixation to wings TGeoVolumeAssembly *fixationToWings = new TGeoVolumeAssembly("BPS_fixationToWings"); Float_t delatX = 0.1; TGeoTubeSeg * fixationTube = new TGeoTubeSeg(fixationCarbonCollarRmin,fixationCarbonCollarRmax,fixationCarbonCollarDZ/2.,-90.,90.); fixationTube->SetName("fixationTube"); TGeoBBox * fixationToBar = new TGeoBBox(carbonEarsXdim/2.+delatX,carbonEarsYdim/2.,carbonEarsZdim/2.); fixationToBar->SetName("fixationToBar"); TGeoTranslation * transBP3 = new TGeoTranslation("transBP3",fixationCarbonCollarRmax+carbonEarsXdim/2.-delatX,carbonEarsYdim,0.); transBP3->RegisterYourself(); TGeoTranslation * transBP4 = new TGeoTranslation("transBP4",fixationCarbonCollarRmax+carbonEarsXdim/2.-delatX,-carbonEarsYdim,0.); transBP4->RegisterYourself(); TGeoCompositeShape *fixationToWing = new TGeoCompositeShape("fixationToWing", "fixationTube+fixationToBar:transBP3+fixationToBar:transBP4"); TGeoVolume *fixationToWingVol = new TGeoVolume("fixationToWing",fixationToWing,kMedCarbonFiber); fixationToWingVol->SetLineColor(kGray+2); fixationToWings->AddNode(fixationToWingVol,1, new TGeoTranslation(-supportXdim,0,0)); fixationToWings->AddNode(fixationToWingVol,2, new TGeoCombiTrans(+supportXdim,0,0,new TGeoRotation("rot",0.,0.,180.))); beamPipeSupport->AddNode(fixationToWings,1); // Fixation to pipe TGeoVolumeAssembly *fixationToPipe = new TGeoVolumeAssembly("fixationToPipe"); TGeoTubeSeg * pipeSupportTubeCarbon = new TGeoTubeSeg(beampipeCarbonCollarRmin,beampipeCarbonCollarRmax,fixationCarbonCollarDZ/2.,0.,180.); pipeSupportTubeCarbon->SetName("pipeSupportTubeCarbon"); TGeoBBox * fixationTubeToBar = new TGeoBBox(carbonEarsXdim/2.+delatX,carbonEarsYdim/2.,carbonEarsZdim/2.); fixationTubeToBar->SetName("fixationTubeToBar"); TGeoBBox * hole = new TGeoBBox((beampipeCarbonCollarRmax-vespelRmin)/2.,carbonEarsYdim/2.,carbonEarsZdim/2.+1e-3); hole->SetName("hole"); TGeoTranslation * transBP5 = new TGeoTranslation("transBP5",beampipeCarbonCollarRmax+carbonEarsXdim/2.-delatX,carbonEarsYdim,0.); transBP5->RegisterYourself(); TGeoTranslation * transBP6 = new TGeoTranslation("transBP6",-(beampipeCarbonCollarRmax+carbonEarsXdim/2.-delatX),carbonEarsYdim,0.); transBP6->RegisterYourself(); TGeoTranslation * transBP7 = new TGeoTranslation("transBP7",(beampipeCarbonCollarRmax+vespelRmin)/2.,0.,0.); transBP7->RegisterYourself(); TGeoTranslation * transBP8 = new TGeoTranslation("transBP8",-((beampipeCarbonCollarRmax+vespelRmin)/2.),0.,0.); transBP8->RegisterYourself(); TGeoCompositeShape *halfFixationToPipe = new TGeoCompositeShape("halfFixationToPipe", "(pipeSupportTubeCarbon-hole:transBP7-hole:transBP8)+fixationTubeToBar:transBP5+fixationTubeToBar:transBP6"); TGeoVolume *halfFixationToPipeVol = new TGeoVolume("halfFixationToPipe",halfFixationToPipe,kMedCarbonFiber); halfFixationToPipeVol->SetLineColor(kRed+2); fixationToPipe->AddNode(halfFixationToPipeVol,1); fixationToPipe->AddNode(halfFixationToPipeVol,2, new TGeoCombiTrans(0,0,0,new TGeoRotation("rot",0.,0.,180.))); beamPipeSupport->AddNode(fixationToPipe,1); // Beam Pipe Ring TGeoVolumeAssembly *beamPipeRing = new TGeoVolumeAssembly("beamPipeRing"); TGeoTube * beamPipeRingCarbon = new TGeoTube(vespelRmax,beampipeCarbonCollarRmin,beamPipeRingZdim/2.); TGeoVolume *beamPipeRingCarbonVol = new TGeoVolume("beamPipeRingCarbon",beamPipeRingCarbon,kMedCarbonFiber); beamPipeRingCarbonVol->SetLineColor(kGreen+2); beamPipeRing->AddNode(beamPipeRingCarbonVol,1, new TGeoTranslation(0.,0,(beamPipeRingZdim-fixationCarbonCollarDZ)/2.)); TGeoTube * beamPipeRingVespel = new TGeoTube(vespelRmin,vespelRmax,beamPipeRingZdim/2.); TGeoVolume *beamPipeRingVespelVol = new TGeoVolume("beamPipeRingVespel",beamPipeRingVespel,kMedPolyimide); beamPipeRingVespelVol->SetLineColor(kGreen+4); beamPipeRing->AddNode(beamPipeRingVespelVol,1, new TGeoTranslation(0.,0,(beamPipeRingZdim-fixationCarbonCollarDZ)/2.)); beamPipeSupport->AddNode(beamPipeRing,1); beamPipeSupport->SetVisibility(0); top->AddNode(beamPipeSupport,1,new TGeoTranslation(0.,0,beamPipesupportZpos+fixationCarbonCollarDZ/2.)); ///////////// END NEW BEAM PIPE GEOMETRY fOR MFT //////////////////// //////////////////////////////////////////////////////////////////////////////// // Side A section after Beryllium // !!!!!! THIS PART NEED TO BE WORKED OUT !!!!! //////////////////////////////////////////////////////////////////////////////// //---------------- Al tube ------------------ Float_t fSmallRadiusZmax =fBeryliumSectionZmax + 20.43; Float_t fLargeRadiusZmin =fSmallRadiusZmax + 2.61; Float_t fAdaptConeSideAZmin =fLargeRadiusZmin + 200.; // THIS PART NEED TO BE WORKED OUT Float_t fAluSideARmax = 2.5; TGeoPcon* aluSideA = new TGeoPcon(0., 360., 4); aluSideA->DefineSection(0,fBeryliumSectionZmax, fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); aluSideA->DefineSection(1,fSmallRadiusZmax, fBeryliumSectionOuterRadius-fBeryliumSectionThickness,fBeryliumSectionOuterRadius); aluSideA->DefineSection(2,fLargeRadiusZmin, fAluSideARmax-fBeryliumSectionThickness,fAluSideARmax); aluSideA->DefineSection(3,fAdaptConeSideAZmin, fAluSideARmax-fBeryliumSectionThickness,fAluSideARmax); TGeoVolume* voaluSideA = new TGeoVolume("aluSideA",aluSideA,kMedAlu2219); voaluSideA->SetLineColor(kBlue); top->AddNode(voaluSideA,1,new TGeoTranslation(0., 0., 0.)); TGeoPcon* aluSideAVac = new TGeoPcon(0., 360., 4); aluSideAVac->DefineSection(0,fBeryliumSectionZmax, 0., fBeryliumSectionOuterRadius-fBeryliumSectionThickness); aluSideAVac->DefineSection(1,fSmallRadiusZmax, 0., fBeryliumSectionOuterRadius-fBeryliumSectionThickness); aluSideAVac->DefineSection(2,fLargeRadiusZmin, 0., fAluSideARmax-fBeryliumSectionThickness); aluSideAVac->DefineSection(3,fAdaptConeSideAZmin, 0., fAluSideARmax-fBeryliumSectionThickness); TGeoVolume* voaluSideAVac = new TGeoVolume("aluSideAVac",aluSideAVac,kMedVac); voaluSideAVac->SetLineColor(kGreen); voaluSideAVac->SetVisibility(0); top->AddNode(voaluSideAVac,1,new TGeoTranslation(0., 0., 0.)); //------------------------------------------------- //////////////////////////////////////////////////////////////////////////////// // // // RB24/1 // // // //////////////////////////////////////////////////////////////////////////////// // // // Drawing LHCVC2U_0001 // Copper Tube RB24/1 393.5 cm // Warm module VMACA 18.0 cm // Annular Ion Pump 35.0 cm // Valve 7.5 cm // Warm module VMABC 28.0 cm // ================================ // 462.0 cm // // Copper Tube RB24/1 const Float_t kRB24CuTubeL = 393.5; const Float_t kRB24CuTubeRi = 8.0/2.; const Float_t kRB24CuTubeRo = 8.4/2.; const Float_t kRB24CuTubeFRo = 7.6; const Float_t kRB24CuTubeFL = 1.86; TGeoVolume* voRB24CuTubeM = new TGeoVolume("voRB24CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB24CuTubeL/2.), kMedVac); voRB24CuTubeM->SetVisibility(0); TGeoVolume* voRB24CuTube = new TGeoVolume("voRB24CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB24CuTubeL/2.), kMedCu); voRB24CuTubeM->AddNode(voRB24CuTube, 1, gGeoIdentity); // Air outside tube with higher transport cuts TGeoVolume* voRB24CuTubeA = new TGeoVolume("voRB24CuTubeA", new TGeoTube(25., 100., kRB24CuTubeL/2.), kMedAirHigh); voRB24CuTubeA->SetVisibility(0); // Simplified DN 100 Flange TGeoVolume* voRB24CuTubeF = new TGeoVolume("voRB24CuTubeF", new TGeoTube(kRB24CuTubeRo, kRB24CuTubeFRo, kRB24CuTubeFL/2.), kMedSteel); // Warm Module Type VMACA // LHCVMACA_0002 // // Pos 1 Warm Bellows DN100 LHCVBU__0012 // Pos 2 RF Contact D80 LHCVSR__0005 // Pos 3 Trans. Tube Flange LHCVSR__0065 // [Pos 4 Hex. Countersunk Screw Bossard BN4719] // [Pos 5 Tension spring LHCVSR__0011] // // // // Pos1 Warm Bellows DN100 // Pos1.1 Bellows LHCVBU__0006 // // // Connection Tubes // Connection tube inner r const Float_t kRB24B1ConTubeRin = 10.0/2.; // Connection tube outer r const Float_t kRB24B1ConTubeRou = 10.3/2.; // Connection tube length const Float_t kRB24B1ConTubeL = 2.5; // const Float_t kRB24B1CompL = 16.00; // Length of the compensator const Float_t kRB24B1BellowRi = 10.25/2.; // Bellow inner radius const Float_t kRB24B1BellowRo = 11.40/2.; // Bellow outer radius const Int_t kRB24B1NumberOfPlies = 27; // Number of plies const Float_t kRB24B1BellowUndL = 11.00; // Length of undulated region const Float_t kRB24B1PlieThickness = 0.015; // Plie thickness const Float_t kRB24B1PlieRadius = (kRB24B1BellowUndL + (2. * kRB24B1NumberOfPlies - 2.) * kRB24B1PlieThickness) / (4. * kRB24B1NumberOfPlies); const Float_t kRB24B1ProtTubeThickness = 0.02; // Thickness of the protection tube const Float_t kRB24B1ProtTubeLength = 4.2; // Length of the protection tube const Float_t kRB24B1RFlangeL = 1.86; // Length of the flanges const Float_t kRB24B1RFlangeLO = 0.26; // Flange overlap const Float_t kRB24B1RFlangeRO = 11.18/2; // Inner radius at Flange overlap const Float_t kRB24B1RFlangeRou = 15.20/2.; // Outer radius of flange const Float_t kRB24B1RFlangeRecess = 0.98; // Flange recess const Float_t kRB24B1L = kRB24B1CompL + 2. * (kRB24B1RFlangeL - kRB24B1RFlangeRecess); /// // // Bellow mother volume TGeoPcon* shRB24B1BellowM = new TGeoPcon(0., 360., 14); // Connection Tube and Flange z = 0.; shRB24B1BellowM->DefineSection( 0, z, 0., kRB24B1RFlangeRou); z += kRB24B1RFlangeLO; shRB24B1BellowM->DefineSection( 1, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection( 2, z, 0., kRB24B1RFlangeRou); z = kRB24B1RFlangeL; shRB24B1BellowM->DefineSection( 3, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection( 4, z, 0., kRB24B1ConTubeRou); z = kRB24B1ConTubeL + kRB24B1RFlangeL - kRB24B1RFlangeRecess; shRB24B1BellowM->DefineSection( 5, z, 0., kRB24B1ConTubeRou); // Plie shRB24B1BellowM->DefineSection( 6, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness); z += kRB24B1BellowUndL; shRB24B1BellowM->DefineSection( 7, z, 0., kRB24B1BellowRo + kRB24B1ProtTubeThickness); shRB24B1BellowM->DefineSection( 8, z, 0., kRB24B1ConTubeRou); // Connection Tube and Flange z = kRB24B1L - shRB24B1BellowM->GetZ(3); shRB24B1BellowM->DefineSection( 9, z, 0., kRB24B1ConTubeRou); shRB24B1BellowM->DefineSection(10, z, 0., kRB24B1RFlangeRou); z = kRB24B1L - shRB24B1BellowM->GetZ(1); shRB24B1BellowM->DefineSection(11, z, 0., kRB24B1RFlangeRou); shRB24B1BellowM->DefineSection(12, z, 0., kRB24B1RFlangeRou); z = kRB24B1L - shRB24B1BellowM->GetZ(0); shRB24B1BellowM->DefineSection(13, z, 0., kRB24B1RFlangeRou); TGeoVolume* voRB24B1BellowM = new TGeoVolume("RB24B1BellowM", shRB24B1BellowM, kMedVac); voRB24B1BellowM->SetVisibility(0); // // Bellow Section TGeoVolume* voRB24B1Bellow = MakeBellow("RB24B1", kRB24B1NumberOfPlies, kRB24B1BellowRi, kRB24B1BellowRo, kRB24B1BellowUndL, kRB24B1PlieRadius ,kRB24B1PlieThickness); voRB24B1Bellow->SetVisibility(0); // // End Parts (connection tube) TGeoVolume* voRB24B1CT = new TGeoVolume("RB24B1CT", new TGeoTube(kRB24B1ConTubeRin, kRB24B1ConTubeRou, kRB24B1ConTubeL/2.), kMedSteel); // // Protection Tube TGeoVolume* voRB24B1PT = new TGeoVolume("RB24B1PT", new TGeoTube(kRB24B1BellowRo, kRB24B1BellowRo + kRB24B1ProtTubeThickness, kRB24B1ProtTubeLength / 2.), kMedSteel); z = kRB24B1ConTubeL/2. + (kRB24B1RFlangeL - kRB24B1RFlangeRecess); voRB24B1BellowM->AddNode(voRB24B1CT, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1ConTubeL/2.+ kRB24B1BellowUndL/2.); voRB24B1BellowM->AddNode(voRB24B1Bellow, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1BellowUndL/2. + kRB24B1ConTubeL/2); voRB24B1BellowM->AddNode(voRB24B1CT, 2, new TGeoTranslation(0., 0., z)); z = kRB24B1ConTubeL + kRB24B1ProtTubeLength / 2. + 1. + kRB24B1RFlangeLO; voRB24B1BellowM->AddNode(voRB24B1PT, 1, new TGeoTranslation(0., 0., z)); z += kRB24B1ProtTubeLength + 0.6; voRB24B1BellowM->AddNode(voRB24B1PT, 2, new TGeoTranslation(0., 0., z)); // Pos 1/2 Rotatable Flange LHCVBU__0013 // Pos 1/3 Flange DN100/103 LHCVBU__0018 // The two flanges can be represented by the same volume // Outer Radius (including the outer movable ring). // The inner ring has a diameter of 12.04 cm TGeoPcon* shRB24B1RFlange = new TGeoPcon(0., 360., 10); z = 0.; shRB24B1RFlange->DefineSection(0, z, 10.30/2., kRB24B1RFlangeRou); z += 0.55; // 5.5 mm added for outer ring z += 0.43; shRB24B1RFlange->DefineSection(1, z, 10.30/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(2, z, 10.06/2., kRB24B1RFlangeRou); z += 0.15; shRB24B1RFlange->DefineSection(3, z, 10.06/2., kRB24B1RFlangeRou); // In reality this part is rounded shRB24B1RFlange->DefineSection(4, z, 10.91/2., kRB24B1RFlangeRou); z += 0.15; shRB24B1RFlange->DefineSection(5, z, 10.91/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(6, z, 10.06/2., kRB24B1RFlangeRou); z += 0.32; shRB24B1RFlange->DefineSection(7, z, 10.06/2., kRB24B1RFlangeRou); shRB24B1RFlange->DefineSection(8, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou); z += kRB24B1RFlangeLO; shRB24B1RFlange->DefineSection(9, z, kRB24B1RFlangeRO, kRB24B1RFlangeRou); TGeoVolume* voRB24B1RFlange = new TGeoVolume("RB24B1RFlange", shRB24B1RFlange, kMedSteel); z = kRB24B1L - kRB24B1RFlangeL; voRB24B1BellowM->AddNode(voRB24B1RFlange, 1, new TGeoTranslation(0., 0., z)); z = kRB24B1RFlangeL; voRB24B1BellowM->AddNode(voRB24B1RFlange, 2, new TGeoCombiTrans(0., 0., z, rot180)); // // Pos 2 RF Contact D80 LHCVSR__0005 // // Pos 2.1 RF Contact Flange LHCVSR__0003 // TGeoPcon* shRB24B1RCTFlange = new TGeoPcon(0., 360., 6); const Float_t kRB24B1RCTFlangeRin = 8.06/2. + 0.05; // Inner radius const Float_t kRB24B1RCTFlangeL = 1.45; // Length z = 0.; shRB24B1RCTFlange->DefineSection(0, z, kRB24B1RCTFlangeRin, 8.20/2.); z += 0.15; shRB24B1RCTFlange->DefineSection(1, z, kRB24B1RCTFlangeRin, 8.20/2.); shRB24B1RCTFlange->DefineSection(2, z, kRB24B1RCTFlangeRin, 8.60/2.); z += 1.05; shRB24B1RCTFlange->DefineSection(3, z, kRB24B1RCTFlangeRin, 8.60/2.); shRB24B1RCTFlange->DefineSection(4, z, kRB24B1RCTFlangeRin, 11.16/2.); z += 0.25; shRB24B1RCTFlange->DefineSection(5, z, kRB24B1RCTFlangeRin, 11.16/2.); TGeoVolume* voRB24B1RCTFlange = new TGeoVolume("RB24B1RCTFlange", shRB24B1RCTFlange, kMedCu); z = kRB24B1L - kRB24B1RCTFlangeL; voRB24B1BellowM->AddNode(voRB24B1RCTFlange, 1, new TGeoTranslation(0., 0., z)); // // Pos 2.2 RF-Contact LHCVSR__0004 // TGeoPcon* shRB24B1RCT = new TGeoPcon(0., 360., 3); const Float_t kRB24B1RCTRin = 8.00/2.; // Inner radius const Float_t kRB24B1RCTCRin = 8.99/2.; // Max. inner radius conical section const Float_t kRB24B1RCTL = 11.78; // Length const Float_t kRB24B1RCTSL = 10.48; // Length of straight section const Float_t kRB24B1RCTd = 0.03; // Thickness z = 0; shRB24B1RCT->DefineSection(0, z, kRB24B1RCTCRin, kRB24B1RCTCRin + kRB24B1RCTd); z = kRB24B1RCTL - kRB24B1RCTSL; // In the (VSR0004) this section is straight in (LHCVC2U_0001) it is conical ???? shRB24B1RCT->DefineSection(1, z, kRB24B1RCTRin + 0.35, kRB24B1RCTRin + 0.35 + kRB24B1RCTd); z = kRB24B1RCTL - 0.03; shRB24B1RCT->DefineSection(2, z, kRB24B1RCTRin, kRB24B1RCTRin + kRB24B1RCTd); TGeoVolume* voRB24B1RCT = new TGeoVolume("RB24B1RCT", shRB24B1RCT, kMedCu); z = kRB24B1L - kRB24B1RCTL - 0.45; voRB24B1BellowM->AddNode(voRB24B1RCT, 1, new TGeoTranslation(0., 0., z)); // // Pos 3 Trans. Tube Flange LHCVSR__0065 // // Pos 3.1 Transition Tube D53 LHCVSR__0064 // Pos 3.2 Transition Flange LHCVSR__0060 // Pos 3.3 Transition Tube LHCVSR__0058 TGeoPcon* shRB24B1TTF = new TGeoPcon(0., 360., 7); // Flange z = 0.; shRB24B1TTF->DefineSection(0, z, 6.30/2., 11.16/2.); z += 0.25; shRB24B1TTF->DefineSection(1, z, 6.30/2., 11.16/2.); shRB24B1TTF->DefineSection(2, z, 6.30/2., 9.3/2.); z += 0.55; shRB24B1TTF->DefineSection(3, z, 6.30/2., 9.3/2.); // Tube shRB24B1TTF->DefineSection(4, z, 6.30/2., 6.7/2.); z += 5.80; shRB24B1TTF->DefineSection(5, z, 6.30/2., 6.7/2.); // Transition Tube z += 3.75; shRB24B1TTF->DefineSection(6, z, 8.05/2., 8.45/2.); TGeoVolume* voRB24B1TTF = new TGeoVolume("RB24B1TTF", shRB24B1TTF, kMedSteel); z = 0.; voRB24B1BellowM->AddNode(voRB24B1TTF, 1, new TGeoTranslation(0., 0., z)); // Annular Ion Pump // LHCVC2U_0003 // // Pos 1 Rotable Flange LHCVFX__0031 // Pos 2 RF Screen Tube LHCVC2U_0005 // Pos 3 Shell LHCVC2U_0007 // Pos 4 Extruded Shell LHCVC2U_0006 // Pos 5 Feedthrough Tube LHCVC2U_0004 // Pos 6 Tubulated Flange STDVFUHV0021 // Pos 7 Fixed Flange LHCVFX__0032 // Pos 8 Pumping Elements // // Pos 1 Rotable Flange LHCVFX__0031 // pos 7 Fixed Flange LHCVFX__0032 // // Mother volume const Float_t kRB24AIpML = 35.; TGeoVolume* voRB24AIpM = new TGeoVolume("voRB24AIpM", new TGeoTube(0., 10., kRB24AIpML/2.), kMedAir); voRB24AIpM->SetVisibility(0); // // Length 35 cm // Flange 2 x 1.98 = 3.96 // Tube = 32.84 //========================== // 36.80 // Overlap 2 * 0.90 = 1.80 const Float_t kRB24IpRFD1 = 0.68; // Length of section 1 const Float_t kRB24IpRFD2 = 0.30; // Length of section 2 const Float_t kRB24IpRFD3 = 0.10; // Length of section 3 const Float_t kRB24IpRFD4 = 0.35; // Length of section 4 const Float_t kRB24IpRFD5 = 0.55; // Length of section 5 const Float_t kRB24IpRFRo = 15.20/2.; // Flange outer radius const Float_t kRB24IpRFRi1 = 6.30/2.; // Flange inner radius section 1 const Float_t kRB24IpRFRi2 = 6.00/2.; // Flange inner radius section 2 const Float_t kRB24IpRFRi3 = 5.84/2.; // Flange inner radius section 3 const Float_t kRB24IpRFRi4 = 6.00/2.; // Flange inner radius section 1 const Float_t kRB24IpRFRi5 = 10.50/2.; // Flange inner radius section 2 TGeoPcon* shRB24IpRF = new TGeoPcon(0., 360., 9); z0 = 0.; shRB24IpRF->DefineSection(0, z0, kRB24IpRFRi1, kRB24IpRFRo); z0 += kRB24IpRFD1; shRB24IpRF->DefineSection(1, z0, kRB24IpRFRi2, kRB24IpRFRo); z0 += kRB24IpRFD2; shRB24IpRF->DefineSection(2, z0, kRB24IpRFRi2, kRB24IpRFRo); shRB24IpRF->DefineSection(3, z0, kRB24IpRFRi3, kRB24IpRFRo); z0 += kRB24IpRFD3; shRB24IpRF->DefineSection(4, z0, kRB24IpRFRi3, kRB24IpRFRo); shRB24IpRF->DefineSection(5, z0, kRB24IpRFRi4, kRB24IpRFRo); z0 += kRB24IpRFD4; shRB24IpRF->DefineSection(6, z0, kRB24IpRFRi4, kRB24IpRFRo); shRB24IpRF->DefineSection(7, z0, kRB24IpRFRi5, kRB24IpRFRo); z0 += kRB24IpRFD5; shRB24IpRF->DefineSection(8, z0, kRB24IpRFRi5, kRB24IpRFRo); TGeoVolume* voRB24IpRF = new TGeoVolume("RB24IpRF", shRB24IpRF, kMedSteel); // // Pos 2 RF Screen Tube LHCVC2U_0005 // // // Tube Float_t kRB24IpSTTL = 32.84; // Total length of the tube Float_t kRB24IpSTTRi = 5.80/2.; // Inner Radius Float_t kRB24IpSTTRo = 6.00/2.; // Outer Radius TGeoVolume* voRB24IpSTT = new TGeoVolume("RB24IpSTT", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTTL/2.), kMedSteel); // Screen Float_t kRB24IpSTCL = 0.4; // Lenth of the crochet detail // Length of the screen Float_t kRB24IpSTSL = 9.00 - 2. * kRB24IpSTCL; // Rel. position of the screen Float_t kRB24IpSTSZ = 7.00 + kRB24IpSTCL; TGeoVolume* voRB24IpSTS = new TGeoVolume("RB24IpSTS", new TGeoTube(kRB24IpSTTRi, kRB24IpSTTRo, kRB24IpSTSL/2.), kMedSteel); // Vacuum TGeoVolume* voRB24IpSTV = new TGeoVolume("RB24IpSTV", new TGeoTube(0., kRB24IpSTTRi, kRB24AIpML/2.), kMedVac); // voRB24IpSTT->AddNode(voRB24IpSTS, 1, new TGeoTranslation(0., 0., kRB24IpSTSZ - kRB24IpSTTL/2. + kRB24IpSTSL/2.)); // Crochets // Inner radius Float_t kRB24IpSTCRi = kRB24IpSTTRo + 0.25; // Outer radius Float_t kRB24IpSTCRo = kRB24IpSTTRo + 0.35; // Length of 1stsection Float_t kRB24IpSTCL1 = 0.15; // Length of 2nd section Float_t kRB24IpSTCL2 = 0.15; // Length of 3rd section Float_t kRB24IpSTCL3 = 0.10; // Rel. position of 1st Crochet TGeoPcon* shRB24IpSTC = new TGeoPcon(0., 360., 5); z0 = 0; shRB24IpSTC->DefineSection(0, z0, kRB24IpSTCRi, kRB24IpSTCRo); z0 += kRB24IpSTCL1; shRB24IpSTC->DefineSection(1, z0, kRB24IpSTCRi, kRB24IpSTCRo); shRB24IpSTC->DefineSection(2, z0, kRB24IpSTTRo, kRB24IpSTCRo); z0 += kRB24IpSTCL2; shRB24IpSTC->DefineSection(3, z0, kRB24IpSTTRo, kRB24IpSTCRo); z0 += kRB24IpSTCL3; shRB24IpSTC->DefineSection(4, z0, kRB24IpSTTRo, kRB24IpSTTRo + 0.001); TGeoVolume* voRB24IpSTC = new TGeoVolume("RB24IpSTC", shRB24IpSTC, kMedSteel); // Pos 3 Shell LHCVC2U_0007 // Pos 4 Extruded Shell LHCVC2U_0006 Float_t kRB24IpShellL = 4.45; // Length of the Shell Float_t kRB24IpShellD = 0.10; // Wall thickness of the shell Float_t kRB24IpShellCTRi = 6.70/2.; // Inner radius of the connection tube Float_t kRB24IpShellCTL = 1.56; // Length of the connection tube Float_t kRB24IpShellCARi = 17.80/2.; // Inner radius of the cavity Float_t kRB24IpShellCCRo = 18.20/2.; // Inner radius at the centre TGeoPcon* shRB24IpShell = new TGeoPcon(0., 360., 7); z0 = 0; shRB24IpShell->DefineSection(0, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD); z0 += kRB24IpShellCTL; shRB24IpShell->DefineSection(1, z0, kRB24IpShellCTRi, kRB24IpShellCTRi + kRB24IpShellD); shRB24IpShell->DefineSection(2, z0, kRB24IpShellCTRi, kRB24IpShellCARi + kRB24IpShellD); z0 += kRB24IpShellD; shRB24IpShell->DefineSection(3, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD); z0 = kRB24IpShellL - kRB24IpShellD; shRB24IpShell->DefineSection(4, z0, kRB24IpShellCARi, kRB24IpShellCARi + kRB24IpShellD); shRB24IpShell->DefineSection(5, z0, kRB24IpShellCARi, kRB24IpShellCCRo); z0 = kRB24IpShellL; shRB24IpShell->DefineSection(6, z0, kRB24IpShellCARi, kRB24IpShellCCRo); TGeoVolume* voRB24IpShell = new TGeoVolume("RB24IpShell", shRB24IpShell, kMedSteel); TGeoPcon* shRB24IpShellM = MakeMotherFromTemplate(shRB24IpShell, 0, 6, kRB24IpShellCTRi , 13); for (Int_t i = 0; i < 6; i++) { z = 2. * kRB24IpShellL - shRB24IpShellM->GetZ(5-i); Float_t rmin = shRB24IpShellM->GetRmin(5-i); Float_t rmax = shRB24IpShellM->GetRmax(5-i); shRB24IpShellM->DefineSection(7+i, z, rmin, rmax); } TGeoVolume* voRB24IpShellM = new TGeoVolume("RB24IpShellM", shRB24IpShellM, kMedVac); voRB24IpShellM->SetVisibility(0); voRB24IpShellM->AddNode(voRB24IpShell, 1, gGeoIdentity); voRB24IpShellM->AddNode(voRB24IpShell, 2, new TGeoCombiTrans(0., 0., 2. * kRB24IpShellL, rot180)); // // Pos 8 Pumping Elements // // Anode array TGeoVolume* voRB24IpPE = new TGeoVolume("voRB24IpPE", new TGeoTube(0.9, 1., 2.54/2.), kMedSteel); Float_t kRB24IpPEAR = 5.5; for (Int_t i = 0; i < 15; i++) { Float_t phi = Float_t(i) * 24.; Float_t x = kRB24IpPEAR * TMath::Cos(kDegRad * phi); Float_t y = kRB24IpPEAR * TMath::Sin(kDegRad * phi); voRB24IpShellM->AddNode(voRB24IpPE, i+1, new TGeoTranslation(x, y, kRB24IpShellL)); } // // Cathodes // // Here we could add some Ti strips // Postioning of elements voRB24AIpM->AddNode(voRB24IpRF, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2.)); voRB24AIpM->AddNode(voRB24IpRF, 2, new TGeoCombiTrans (0., 0., +kRB24AIpML/2., rot180)); voRB24AIpM->AddNode(voRB24IpSTT, 1, new TGeoTranslation(0., 0., 0.)); voRB24AIpM->AddNode(voRB24IpSTV, 1, new TGeoTranslation(0., 0., 0.)); voRB24AIpM->AddNode(voRB24IpShellM, 1, new TGeoTranslation(0., 0., -kRB24AIpML/2. + 8.13)); voRB24AIpM->AddNode(voRB24IpSTC, 1, new TGeoTranslation(0., 0., 8.13 - kRB24AIpML/2.)); voRB24AIpM->AddNode(voRB24IpSTC, 2, new TGeoCombiTrans (0., 0., 8.14 + 8.9 - kRB24AIpML/2., rot180)); // // Valve // VAC Series 47 DN 63 with manual actuator // const Float_t kRB24ValveWz = 7.5; const Float_t kRB24ValveDN = 10.0/2.; // // Body containing the valve plate // const Float_t kRB24ValveBoWx = 15.6; const Float_t kRB24ValveBoWy = (21.5 + 23.1 - 5.); const Float_t kRB24ValveBoWz = 4.6; const Float_t kRB24ValveBoD = 0.5; TGeoVolume* voRB24ValveBoM = new TGeoVolume("RB24ValveBoM", new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedAir); voRB24ValveBoM->SetVisibility(0); TGeoVolume* voRB24ValveBo = new TGeoVolume("RB24ValveBo", new TGeoBBox( kRB24ValveBoWx/2., kRB24ValveBoWy/2., kRB24ValveBoWz/2.), kMedSteel); voRB24ValveBoM->AddNode(voRB24ValveBo, 1, gGeoIdentity); // // Inner volume // TGeoVolume* voRB24ValveBoI = new TGeoVolume("RB24ValveBoI", new TGeoBBox( kRB24ValveBoWx/2. - kRB24ValveBoD, kRB24ValveBoWy/2. - kRB24ValveBoD/2., kRB24ValveBoWz/2. - kRB24ValveBoD), kMedVac); voRB24ValveBo->AddNode(voRB24ValveBoI, 1, new TGeoTranslation(0., kRB24ValveBoD/2., 0.)); // // Opening and Flanges const Float_t kRB24ValveFlRo = 18./2.; const Float_t kRB24ValveFlD = 1.45; TGeoVolume* voRB24ValveBoA = new TGeoVolume("RB24ValveBoA", new TGeoTube(0., kRB24ValveDN/2., kRB24ValveBoD/2.), kMedVac); voRB24ValveBo->AddNode(voRB24ValveBoA, 1, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, -kRB24ValveBoWz/2. + kRB24ValveBoD/2.)); voRB24ValveBo->AddNode(voRB24ValveBoA, 2, new TGeoTranslation(0., - kRB24ValveBoWy/2. + 21.5, +kRB24ValveBoWz/2. - kRB24ValveBoD/2.)); TGeoVolume* voRB24ValveFl = new TGeoVolume("RB24ValveFl", new TGeoTube(kRB24ValveDN/2., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedSteel); TGeoVolume* voRB24ValveFlI = new TGeoVolume("RB24ValveFlI", new TGeoTube(0., kRB24ValveFlRo, kRB24ValveFlD/2.), kMedVac); voRB24ValveFlI->AddNode(voRB24ValveFl, 1, gGeoIdentity); // // Actuator Flange const Float_t kRB24ValveAFlWx = 18.9; const Float_t kRB24ValveAFlWy = 5.0; const Float_t kRB24ValveAFlWz = 7.7; TGeoVolume* voRB24ValveAFl = new TGeoVolume("RB24ValveAFl", new TGeoBBox(kRB24ValveAFlWx/2., kRB24ValveAFlWy/2., kRB24ValveAFlWz/2.), kMedSteel); // // Actuator Tube const Float_t kRB24ValveATRo = 9.7/2.; const Float_t kRB24ValveATH = 16.6; TGeoVolume* voRB24ValveAT = new TGeoVolume("RB24ValveAT", new TGeoTube(kRB24ValveATRo - 2. * kRB24ValveBoD,kRB24ValveATRo, kRB24ValveATH/2.), kMedSteel); // // Manual Actuator (my best guess) TGeoVolume* voRB24ValveMA1 = new TGeoVolume("RB24ValveMA1", new TGeoCone(2.5/2., 0., 0.5, 4.5, 5.), kMedSteel); TGeoVolume* voRB24ValveMA2 = new TGeoVolume("RB24ValveMA2", new TGeoTorus(5., 0., 1.25), kMedSteel); TGeoVolume* voRB24ValveMA3 = new TGeoVolume("RB24ValveMA3", new TGeoTube (0., 1.25, 2.5), kMedSteel); // // Position all volumes Float_t y0; TGeoVolumeAssembly* voRB24ValveMo = new TGeoVolumeAssembly("RB24ValveMo"); voRB24ValveMo->AddNode(voRB24ValveFl, 1, new TGeoTranslation(0., 0., - 7.5/2. + kRB24ValveFlD/2.)); voRB24ValveMo->AddNode(voRB24ValveFl, 2, new TGeoTranslation(0., 0., + 7.5/2. - kRB24ValveFlD/2.)); y0 = -21.5; voRB24ValveMo->AddNode(voRB24ValveBoM, 1, new TGeoTranslation(0., y0 + kRB24ValveBoWy/2., 0.)); y0 += kRB24ValveBoWy; voRB24ValveMo->AddNode(voRB24ValveAFl, 1, new TGeoTranslation(0., y0 + kRB24ValveAFlWy/2., 0.)); y0 += kRB24ValveAFlWy; voRB24ValveMo->AddNode(voRB24ValveAT, 1, new TGeoCombiTrans(0., y0 + kRB24ValveATH/2., 0., rotyz)); y0 += kRB24ValveATH; voRB24ValveMo->AddNode(voRB24ValveMA1, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz)); y0 += 2.5; voRB24ValveMo->AddNode(voRB24ValveMA2, 1, new TGeoCombiTrans(0., y0 + 2.5/2., 0., rotyz)); y0 += 2.5; voRB24ValveMo->AddNode(voRB24ValveMA3, 1, new TGeoCombiTrans(5./TMath::Sqrt(2.), y0 + 5.0/2., 5./TMath::Sqrt(2.), rotyz)); // // Warm Module Type VMABC // LHCVMABC_0002 // // // // Flange 1.00 // Central Piece 11.50 // Bellow 14.50 // End Flange 1.00 //=================================== // Total 28.00 // // Pos 1 Warm Bellows DN100 LHCVBU__0016 // Pos 2 Trans. Tube Flange LHCVSR__0062 // Pos 3 RF Contact D63 LHCVSR__0057 // [Pos 4 Hex. Countersunk Screw Bossard BN4719] // [Pos 5 Tension spring LHCVSR__00239] // // Pos 1 Warm Bellows DN100 LHCVBU__0016 // Pos 1.1 Right Body 2 Ports with Support LHCVBU__0014 // // Tube 1 const Float_t kRB24VMABCRBT1Ri = 10.0/2.; const Float_t kRB24VMABCRBT1Ro = 10.3/2.; const Float_t kRB24VMABCRBT1L = 11.5; const Float_t kRB24VMABCRBT1L2 = 8.; const Float_t kRB24VMABCL = 28.; TGeoTube* shRB24VMABCRBT1 = new TGeoTube(kRB24VMABCRBT1Ri, kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1->SetName("RB24VMABCRBT1"); TGeoTube* shRB24VMABCRBT1o = new TGeoTube(0., kRB24VMABCRBT1Ro, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1o->SetName("RB24VMABCRBT1o"); TGeoTube* shRB24VMABCRBT1o2 = new TGeoTube(0., kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L/2.); shRB24VMABCRBT1o2->SetName("RB24VMABCRBT1o2"); // Lower inforcement TGeoVolume* voRB24VMABCRBT12 = new TGeoVolume("RB24VMABCRBT12", new TGeoTubeSeg(kRB24VMABCRBT1Ro, kRB24VMABCRBT1Ro + 0.3, kRB24VMABCRBT1L2/2., 220., 320.) , kMedSteel); // // Tube 2 const Float_t kRB24VMABCRBT2Ri = 6.0/2.; const Float_t kRB24VMABCRBT2Ro = 6.3/2.; const Float_t kRB24VMABCRBF2Ro = 11.4/2.; const Float_t kRB24VMABCRBT2L = 5.95 + 2.; // 2. cm added for welding const Float_t kRB24VMABCRBF2L = 1.75; TGeoTube* shRB24VMABCRBT2 = new TGeoTube(kRB24VMABCRBT2Ri, kRB24VMABCRBT2Ro, kRB24VMABCRBT2L/2.); shRB24VMABCRBT2->SetName("RB24VMABCRBT2"); TGeoTube* shRB24VMABCRBT2i = new TGeoTube(0., kRB24VMABCRBT2Ri, kRB24VMABCRBT2L/2. + 2.); shRB24VMABCRBT2i->SetName("RB24VMABCRBT2i"); TGeoCombiTrans* tRBT2 = new TGeoCombiTrans(-11.5 + kRB24VMABCRBT2L/2., 0., 7.2 - kRB24VMABCRBT1L/2. , rotxz); tRBT2->SetName("tRBT2"); tRBT2->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT2c = new TGeoCompositeShape("shRB24VMABCRBT2c","RB24VMABCRBT2:tRBT2-RB24VMABCRBT1o"); TGeoVolume* voRB24VMABCRBT2 = new TGeoVolume("shRB24VMABCRBT2", shRB24VMABCRBT2c, kMedSteel); // Flange // Pos 1.4 Flange DN63 LHCVBU__0008 TGeoVolume* voRB24VMABCRBF2 = new TGeoVolume("RB24VMABCRBF2", new TGeoTube(kRB24VMABCRBT2Ro, kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel); // DN63 Blank Flange (my best guess) TGeoVolume* voRB24VMABCRBF2B = new TGeoVolume("RB24VMABCRBF2B", new TGeoTube(0., kRB24VMABCRBF2Ro, kRB24VMABCRBF2L/2.), kMedSteel); // // Tube 3 const Float_t kRB24VMABCRBT3Ri = 3.5/2.; const Float_t kRB24VMABCRBT3Ro = 3.8/2.; const Float_t kRB24VMABCRBF3Ro = 7.0/2.; const Float_t kRB24VMABCRBT3L = 4.95 + 2.; // 2. cm added for welding const Float_t kRB24VMABCRBF3L = 1.27; TGeoTube* shRB24VMABCRBT3 = new TGeoTube(kRB24VMABCRBT3Ri, kRB24VMABCRBT3Ro, kRB24VMABCRBT3L/2); shRB24VMABCRBT3->SetName("RB24VMABCRBT3"); TGeoTube* shRB24VMABCRBT3i = new TGeoTube(0., kRB24VMABCRBT3Ri, kRB24VMABCRBT3L/2. + 2.); shRB24VMABCRBT3i->SetName("RB24VMABCRBT3i"); TGeoCombiTrans* tRBT3 = new TGeoCombiTrans(0., 10.5 - kRB24VMABCRBT3L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz); tRBT3->SetName("tRBT3"); tRBT3->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT3c = new TGeoCompositeShape("shRB24VMABCRBT3c","RB24VMABCRBT3:tRBT3-RB24VMABCRBT1o"); TGeoVolume* voRB24VMABCRBT3 = new TGeoVolume("shRB24VMABCRBT3", shRB24VMABCRBT3c, kMedSteel); // Flange // Pos 1.4 Flange DN35 LHCVBU__0007 TGeoVolume* voRB24VMABCRBF3 = new TGeoVolume("RB24VMABCRBF3", new TGeoTube(kRB24VMABCRBT3Ro, kRB24VMABCRBF3Ro, kRB24VMABCRBF3L/2.), kMedSteel); // // Tube 4 const Float_t kRB24VMABCRBT4Ri = 6.0/2.; const Float_t kRB24VMABCRBT4Ro = 6.4/2.; const Float_t kRB24VMABCRBT4L = 6.6; TGeoTube* shRB24VMABCRBT4 = new TGeoTube(kRB24VMABCRBT4Ri, kRB24VMABCRBT4Ro, kRB24VMABCRBT4L/2.); shRB24VMABCRBT4->SetName("RB24VMABCRBT4"); TGeoCombiTrans* tRBT4 = new TGeoCombiTrans(0.,-11.+kRB24VMABCRBT4L/2., 7.2 - kRB24VMABCRBT1L/2. , rotyz); tRBT4->SetName("tRBT4"); tRBT4->RegisterYourself(); TGeoCompositeShape* shRB24VMABCRBT4c = new TGeoCompositeShape("shRB24VMABCRBT4c","RB24VMABCRBT4:tRBT4-RB24VMABCRBT1o2"); TGeoVolume* voRB24VMABCRBT4 = new TGeoVolume("shRB24VMABCRBT4", shRB24VMABCRBT4c, kMedSteel); TGeoCompositeShape* shRB24VMABCRB = new TGeoCompositeShape("shRB24VMABCRB", "RB24VMABCRBT1-(RB24VMABCRBT2i:tRBT2+RB24VMABCRBT3i:tRBT3)"); TGeoVolume* voRB24VMABCRBI = new TGeoVolume("RB24VMABCRBI", shRB24VMABCRB, kMedSteel); // // Plate const Float_t kRB24VMABCRBBx = 16.0; const Float_t kRB24VMABCRBBy = 1.5; const Float_t kRB24VMABCRBBz = 15.0; // Relative position of tubes const Float_t kRB24VMABCTz = 7.2; // Relative position of plate const Float_t kRB24VMABCPz = 3.6; const Float_t kRB24VMABCPy = -12.5; TGeoVolume* voRB24VMABCRBP = new TGeoVolume("RB24VMABCRBP", new TGeoBBox(kRB24VMABCRBBx/2., kRB24VMABCRBBy/2., kRB24VMABCRBBz/2.), kMedSteel); // // Pirani Gauge (my best guess) // TGeoPcon* shRB24VMABCPirani = new TGeoPcon(0., 360., 15); // DN35/16 Coupling z = 0; shRB24VMABCPirani->DefineSection( 0, z, 0.8 , kRB24VMABCRBF3Ro); z += kRB24VMABCRBF3L; // 1.3 shRB24VMABCPirani->DefineSection( 1, z, 0.8 , kRB24VMABCRBF3Ro); shRB24VMABCPirani->DefineSection( 2, z, 0.8 , 1.0); // Pipe z += 2.8; shRB24VMABCPirani->DefineSection( 3, z, 0.8 , 1.0); // Flange shRB24VMABCPirani->DefineSection( 4, z, 0.8 , 1.75); z += 1.6; shRB24VMABCPirani->DefineSection( 5, z, 0.8 , 1.75); shRB24VMABCPirani->DefineSection( 6, z, 0.8 , 1.0); z += 5.2; shRB24VMABCPirani->DefineSection( 7, z, 0.8 , 1.0); shRB24VMABCPirani->DefineSection( 8, z, 0.8 , 2.5); z += 2.0; shRB24VMABCPirani->DefineSection( 9, z, 0.80, 2.50); shRB24VMABCPirani->DefineSection(10, z, 1.55, 1.75); z += 5.7; shRB24VMABCPirani->DefineSection(11, z, 1.55, 1.75); shRB24VMABCPirani->DefineSection(11, z, 0.00, 1.75); z += 0.2; shRB24VMABCPirani->DefineSection(12, z, 0.00, 1.75); shRB24VMABCPirani->DefineSection(13, z, 0.00, 0.75); z += 0.5; shRB24VMABCPirani->DefineSection(14, z, 0.00, 0.75); TGeoVolume* voRB24VMABCPirani = new TGeoVolume("RB24VMABCPirani", shRB24VMABCPirani, kMedSteel); // // // // // Positioning of elements TGeoVolumeAssembly* voRB24VMABCRB = new TGeoVolumeAssembly("RB24VMABCRB"); // voRB24VMABCRB->AddNode(voRB24VMABCRBI, 1, gGeoIdentity); // Plate voRB24VMABCRB->AddNode(voRB24VMABCRBP, 1, new TGeoTranslation(0., kRB24VMABCPy + kRB24VMABCRBBy /2., kRB24VMABCRBBz/2. - kRB24VMABCRBT1L/2. + kRB24VMABCPz)); // Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBT2, 1, gGeoIdentity); // Flange Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBF2, 1, new TGeoCombiTrans(kRB24VMABCPy + kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz)); // Blank Flange Tube 2 voRB24VMABCRB->AddNode(voRB24VMABCRBF2B, 1, new TGeoCombiTrans(kRB24VMABCPy- kRB24VMABCRBF2L/2., 0., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotxz)); // Tube 3 voRB24VMABCRB->AddNode(voRB24VMABCRBT3, 1, gGeoIdentity); // Flange Tube 3 voRB24VMABCRB->AddNode(voRB24VMABCRBF3, 1, new TGeoCombiTrans(0., 11.2 - kRB24VMABCRBF3L/2., kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz)); // Pirani Gauge voRB24VMABCRB->AddNode(voRB24VMABCPirani, 1, new TGeoCombiTrans(0., 11.2, kRB24VMABCTz - kRB24VMABCRBT1L/2., rotyz)); // Tube 4 voRB24VMABCRB->AddNode(voRB24VMABCRBT4, 1, gGeoIdentity); // Inforcement voRB24VMABCRB->AddNode(voRB24VMABCRBT12, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L2/2. - kRB24VMABCRBT1L/2. + 2.8)); // Pos 1.3 Bellows with end part LHCVBU__0002 // // Connection Tube // Connection tube inner r const Float_t kRB24VMABBEConTubeRin = 10.0/2.; // Connection tube outer r const Float_t kRB24VMABBEConTubeRou = 10.3/2.; // Connection tube length const Float_t kRB24VMABBEConTubeL1 = 0.9; const Float_t kRB24VMABBEConTubeL2 = 2.6; // const Float_t RB24VMABBEBellowL = kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 + kRB24B1BellowUndL; // Mother volume TGeoPcon* shRB24VMABBEBellowM = new TGeoPcon(0., 360., 6); // Connection Tube and Flange z = 0.; shRB24VMABBEBellowM->DefineSection( 0, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); z += kRB24VMABBEConTubeL1; shRB24VMABBEBellowM->DefineSection( 1, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); shRB24VMABBEBellowM->DefineSection( 2, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness); z += kRB24B1BellowUndL; shRB24VMABBEBellowM->DefineSection( 3, z, kRB24B1BellowRi, kRB24B1BellowRo + kRB24B1ProtTubeThickness); shRB24VMABBEBellowM->DefineSection( 4, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); z += kRB24VMABBEConTubeL2; shRB24VMABBEBellowM->DefineSection( 5, z, kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou); TGeoVolume* voRB24VMABBEBellowM = new TGeoVolume("RB24VMABBEBellowM", shRB24VMABBEBellowM, kMedVac); voRB24VMABBEBellowM->SetVisibility(0); // Connection tube left TGeoVolume* voRB24VMABBECT1 = new TGeoVolume("RB24VMABBECT1", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL1/2.), kMedSteel); // Connection tube right TGeoVolume* voRB24VMABBECT2 = new TGeoVolume("RB24VMABBECT2", new TGeoTube(kRB24VMABBEConTubeRin, kRB24VMABBEConTubeRou,kRB24VMABBEConTubeL2/2.), kMedSteel); z = kRB24VMABBEConTubeL1/2.; voRB24VMABBEBellowM->AddNode(voRB24VMABBECT1, 1, new TGeoTranslation(0., 0., z)); z += kRB24VMABBEConTubeL1/2.; z += kRB24B1BellowUndL/2.; voRB24VMABBEBellowM->AddNode(voRB24B1Bellow, 2, new TGeoTranslation(0., 0., z)); z += kRB24B1BellowUndL/2.; z += kRB24VMABBEConTubeL2/2.; voRB24VMABBEBellowM->AddNode(voRB24VMABBECT2, 1, new TGeoTranslation(0., 0., z)); z += kRB24VMABBEConTubeL2/2.; voRB24VMABCRB->AddNode(voRB24VMABBEBellowM, 1, new TGeoTranslation(0., 0., kRB24VMABCRBT1L/2.)); // Pos 1.2 Rotable flange LHCVBU__0013[*] // Front voRB24VMABCRB->AddNode(voRB24B1RFlange, 3, new TGeoCombiTrans(0., 0., - kRB24VMABCRBT1L/2. + 0.86, rot180)); // End z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL +kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2; voRB24VMABCRB->AddNode(voRB24B1RFlange, 4, new TGeoTranslation(0., 0., z - 0.86)); // Pos 2 Trans. Tube Flange LHCVSR__0062 // Pos 2.1 Transition Tube LHCVSR__0063 // Pos 2.2 Transition Flange LHCVSR__0060 // // Transition Tube with Flange TGeoPcon* shRB24VMABCTT = new TGeoPcon(0., 360., 7); z = 0.; shRB24VMABCTT->DefineSection(0, z, 6.3/2., 11.16/2.); z += 0.25; shRB24VMABCTT->DefineSection(1, z, 6.3/2., 11.16/2.); shRB24VMABCTT->DefineSection(2, z, 6.3/2., 9.30/2.); z += 0.25; shRB24VMABCTT->DefineSection(3, z, 6.3/2., 9.30/2.); shRB24VMABCTT->DefineSection(4, z, 6.3/2., 6.70/2.); z += (20.35 - 0.63); shRB24VMABCTT->DefineSection(5, z, 6.3/2., 6.7/2.); z += 0.63; shRB24VMABCTT->DefineSection(6, z, 6.3/2., 6.7/2.); TGeoVolume* voRB24VMABCTT = new TGeoVolume("RB24VMABCTT", shRB24VMABCTT, kMedSteel); voRB24VMABCRB->AddNode(voRB24VMABCTT, 1, new TGeoTranslation(0., 0., - kRB24VMABCRBT1L/2.-1.)); // Pos 3 RF Contact D63 LHCVSR__0057 // Pos 3.1 RF Contact Flange LHCVSR__0017 // TGeoPcon* shRB24VMABCCTFlange = new TGeoPcon(0., 360., 6); const Float_t kRB24VMABCCTFlangeRin = 6.36/2.; // Inner radius const Float_t kRB24VMABCCTFlangeL = 1.30; // Length z = 0.; shRB24VMABCCTFlange->DefineSection(0, z, kRB24VMABCCTFlangeRin, 6.5/2.); z += 0.15; shRB24VMABCCTFlange->DefineSection(1, z, kRB24VMABCCTFlangeRin, 6.5/2.); shRB24VMABCCTFlange->DefineSection(2, z, kRB24VMABCCTFlangeRin, 6.9/2.); z += 0.9; shRB24VMABCCTFlange->DefineSection(3, z, kRB24VMABCCTFlangeRin, 6.9/2.); shRB24VMABCCTFlange->DefineSection(4, z, kRB24VMABCCTFlangeRin, 11.16/2.); z += 0.25; shRB24VMABCCTFlange->DefineSection(5, z, kRB24VMABCCTFlangeRin, 11.16/2.); TGeoVolume* voRB24VMABCCTFlange = new TGeoVolume("RB24VMABCCTFlange", shRB24VMABCCTFlange, kMedCu); // // Pos 3.2 RF-Contact LHCVSR__0056 // TGeoPcon* shRB24VMABCCT = new TGeoPcon(0., 360., 4); const Float_t kRB24VMABCCTRin = 6.30/2.; // Inner radius const Float_t kRB24VMABCCTCRin = 7.29/2.; // Max. inner radius conical section const Float_t kRB24VMABCCTL = 11.88; // Length const Float_t kRB24VMABCCTSL = 10.48; // Length of straight section const Float_t kRB24VMABCCTd = 0.03; // Thickness z = 0; shRB24VMABCCT->DefineSection(0, z, kRB24VMABCCTCRin, kRB24VMABCCTCRin + kRB24VMABCCTd); z = kRB24VMABCCTL - kRB24VMABCCTSL; shRB24VMABCCT->DefineSection(1, z, kRB24VMABCCTRin + 0.35, kRB24VMABCCTRin + 0.35 + kRB24VMABCCTd); z = kRB24VMABCCTL - kRB24VMABCCTFlangeL; shRB24VMABCCT->DefineSection(2, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd); z = kRB24VMABCCTL; shRB24VMABCCT->DefineSection(3, z, kRB24VMABCCTRin, kRB24VMABCCTRin + kRB24VMABCCTd); TGeoVolume* voRB24VMABCCT = new TGeoVolume("RB24VMABCCT", shRB24VMABCCT, kMedCu); TGeoVolumeAssembly* voRB24VMABRFCT = new TGeoVolumeAssembly("RB24VMABRFCT"); voRB24VMABRFCT->AddNode(voRB24VMABCCT, 1, gGeoIdentity); voRB24VMABRFCT->AddNode( voRB24VMABCCTFlange, 1, new TGeoTranslation(0., 0., kRB24VMABCCTL - kRB24VMABCCTFlangeL)); z = kRB24VMABCRBT1L/2. + kRB24B1BellowUndL + kRB24VMABBEConTubeL1 + kRB24VMABBEConTubeL2 - kRB24VMABCCTL + 1.; voRB24VMABCRB->AddNode(voRB24VMABRFCT, 1, new TGeoTranslation(0., 0., z)); // // Assembling RB24/1 // TGeoVolumeAssembly* voRB24 = new TGeoVolumeAssembly("RB24"); // Cu Tube with two simplified flanges voRB24->AddNode(voRB24CuTubeM, 1, gGeoIdentity); voRB24->AddNode(voRB24CuTubeA, 1, gGeoIdentity); z = - kRB24CuTubeL/2 + kRB24CuTubeFL/2.; voRB24->AddNode(voRB24CuTubeF, 1, new TGeoTranslation(0., 0., z)); z = + kRB24CuTubeL/2 - kRB24CuTubeFL/2.; voRB24->AddNode(voRB24CuTubeF, 2, new TGeoTranslation(0., 0., z)); // VMABC close to compensator magnet z = - kRB24CuTubeL/2. - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.; voRB24->AddNode(voRB24VMABCRB, 2, new TGeoTranslation(0., 0., z)); // Bellow z = kRB24CuTubeL/2; voRB24->AddNode(voRB24B1BellowM, 1, new TGeoTranslation(0., 0., z)); z += (kRB24B1L + kRB24AIpML/2.); // Annular ion pump voRB24->AddNode(voRB24AIpM, 1, new TGeoTranslation(0., 0., z)); z += (kRB24AIpML/2. + kRB24ValveWz/2.); // Valve voRB24->AddNode(voRB24ValveMo, 1, new TGeoTranslation(0., 0., z)); z += (kRB24ValveWz/2.+ kRB24VMABCRBT1L/2. + 1.); // VMABC close to forward detectors voRB24->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z)); // // RB24/2 // // Copper Tube RB24/2 const Float_t kRB242CuTubeL = 330.0; TGeoVolume* voRB242CuTubeM = new TGeoVolume("voRB242CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB242CuTubeL/2.), kMedVac); voRB24CuTubeM->SetVisibility(0); TGeoVolume* voRB242CuTube = new TGeoVolume("voRB242CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB242CuTubeL/2.), kMedCu); voRB242CuTubeM->AddNode(voRB242CuTube, 1, gGeoIdentity); TGeoVolumeAssembly* voRB242 = new TGeoVolumeAssembly("RB242"); voRB242->AddNode(voRB242CuTube, 1, gGeoIdentity); z = - kRB242CuTubeL/2 + kRB24CuTubeFL/2.; voRB242->AddNode(voRB24CuTubeF, 3, new TGeoTranslation(0., 0., z)); z = + kRB242CuTubeL/2 - kRB24CuTubeFL/2.; voRB242->AddNode(voRB24CuTubeF, 4, new TGeoTranslation(0., 0., z)); z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL/2.; voRB24->AddNode(voRB242, 1, new TGeoTranslation(0., 0., z)); // // RB24/3 // // Copper Tube RB24/3 const Float_t kRB243CuTubeL = 303.35; TGeoVolume* voRB243CuTubeM = new TGeoVolume("voRB243CuTubeM", new TGeoTube(0., kRB24CuTubeRo, kRB243CuTubeL/2.), kMedVac); voRB24CuTubeM->SetVisibility(0); TGeoVolume* voRB243CuTube = new TGeoVolume("voRB243CuTube", new TGeoTube(kRB24CuTubeRi, kRB24CuTubeRo, kRB243CuTubeL/2.), kMedCu); voRB243CuTubeM->AddNode(voRB243CuTube, 1, gGeoIdentity); TGeoVolumeAssembly* voRB243 = new TGeoVolumeAssembly("RB243"); TGeoVolumeAssembly* voRB243A = new TGeoVolumeAssembly("RB243A"); voRB243A->AddNode(voRB243CuTube, 1, gGeoIdentity); z = - kRB243CuTubeL/2 + kRB24CuTubeFL/2.; voRB243A->AddNode(voRB24CuTubeF, 5, new TGeoTranslation(0., 0., z)); z = + kRB243CuTubeL/2 - kRB24CuTubeFL/2.; voRB243A->AddNode(voRB24CuTubeF, 6, new TGeoTranslation(0., 0., z)); z = + kRB243CuTubeL/2; voRB243A->AddNode(voRB24B1BellowM, 2, new TGeoTranslation(0., 0., z)); z = - kRB243CuTubeL/2. - kRB24B1L; voRB243->AddNode(voRB243A, 1, new TGeoTranslation(0., 0., z)); z = - (1.5 * kRB243CuTubeL + 2. * kRB24B1L); voRB243->AddNode(voRB243A, 2, new TGeoTranslation(0., 0., z)); z = - 2. * (kRB243CuTubeL + kRB24B1L) - (kRB24VMABCL - kRB24VMABCRBT1L/2) + 1.; voRB243->AddNode(voRB24VMABCRB, 3, new TGeoTranslation(0., 0., z)); z = - kRB24CuTubeL/2 - kRB24VMABCL - kRB242CuTubeL; voRB24->AddNode(voRB243, 1, new TGeoTranslation(0., 0., z)); // // top->AddNode(voRB24, 1, new TGeoCombiTrans(0., 0., kRB24CuTubeL/2 + 88.5 + 400., rot180)); // //////////////////////////////////////////////////////////////////////////////// // // // The Absorber Vacuum system // // // //////////////////////////////////////////////////////////////////////////////// // // Rotable Flange starts at: 82.00 cm from IP // Length of rotable flange section: 10.68 cm // Weld 0.08 cm // Length of straight section 207.21 cm // ======================================================================= // 299.97 cm [0.03 cm missing ?] // Length of opening cone 252.09 cm // Weld 0.15 cm // Length of compensator 30.54 cm // Weld 0.15 cm // Length of fixed flange 2.13 - 0.97 1.16 cm // ======================================================================= // 584.06 cm [584.80 installed] [0.74 cm missing] // RB26/3 // Length of split flange 2.13 - 1.2 0.93 cm // Weld 0.15 cm // Length of fixed point section 16.07 cm // Weld 0.15 cm // Length of opening cone 629.20 cm // Weld 0.30 cm // Kength of the compensator 41.70 cm // Weld 0.30 cm // Length of fixed flange 2.99 - 1.72 1.27 cm // ================================================= // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much] // // RB26/4-5 // Length of split flange 2.13 - 1.2 0.93 cm // Weld 0.15 cm // Length of fixed point section 16.07 cm // Weld 0.15 cm // Length of opening cone 629.20 cm // Weld 0.30 cm // Length of closing cone // Weld // Lenth of straight section // Kength of the compensator 41.70 cm // Weld 0.30 cm // Length of fixed flange 2.99 - 1.72 1.27 cm // ================================================= // Length of RB26/3 690.07 cm [689.20 installed] [0.87 cm too much] /////////////////////////////////////////// // // // RB26/1-2 // // Drawing LHCV2a_0050 [as installed] // // Drawing LHCV2a_0008 // // Drawing LHCV2a_0001 // /////////////////////////////////////////// // Pos1 Vacuum Tubes LHCVC2A__0010 // Pos2 Compensator LHCVC2A__0064 // Pos3 Rotable Flange LHCVFX___0016 // Pos4 Fixed Flange LHCVFX___0006 // Pos5 Bellow Tooling LHCVFX___0003 // // // /////////////////////////////////// // RB26/1-2 Vacuum Tubes // // Drawing LHCVC2a_0010 // /////////////////////////////////// const Float_t kRB26s12TubeL = 459.45; // 0.15 cm added for welding // // Add 1 cm on outer diameter for insulation // TGeoPcon* shRB26s12Tube = new TGeoPcon(0., 360., 5); // Section 1: straight section shRB26s12Tube->DefineSection(0, 0.00, 5.84/2., 6.00/2.); shRB26s12Tube->DefineSection(1, 207.21, 5.84/2., 6.00/2.); // Section 2: 0.72 deg opening cone shRB26s12Tube->DefineSection(2, 207.21, 5.84/2., 6.14/2.); shRB26s12Tube->DefineSection(3, 452.30, 12.00/2., 12.30/2.); shRB26s12Tube->DefineSection(4, kRB26s12TubeL, 12.00/2., 12.30/2.); TGeoVolume* voRB26s12Tube = new TGeoVolume("RB26s12Tube", shRB26s12Tube, kMedSteel); // Add the insulation layer TGeoVolume* voRB26s12TubeIns = new TGeoVolume("RB26s12TubeIns", MakeInsulationFromTemplate(shRB26s12Tube), kMedInsu); voRB26s12Tube->AddNode(voRB26s12TubeIns, 1, gGeoIdentity); TGeoVolume* voRB26s12TubeM = new TGeoVolume("RB26s12TubeM", MakeMotherFromTemplate(shRB26s12Tube), kMedVac); voRB26s12TubeM->AddNode(voRB26s12Tube, 1, gGeoIdentity); /////////////////////////////////// // RB26/2 Axial Compensator // // Drawing LHCVC2a_0064 // /////////////////////////////////// const Float_t kRB26s2CompL = 30.65; // Length of the compensator const Float_t kRB26s2BellowRo = 14.38/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s2BellowRi = 12.12/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s2NumberOfPlies = 14; // Number of plies [Pos 1] const Float_t kRB26s2BellowUndL = 10.00; // Length of undulated region [Pos 1] [+10 mm installed including pretension ?] const Float_t kRB26s2PlieThickness = 0.025; // Plie thickness [Pos 1] const Float_t kRB26s2ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] // Plie radius const Float_t kRB26s2PlieR = (kRB26s2BellowUndL - 4. * kRB26s2ConnectionPlieR + 2. * kRB26s2PlieThickness + (2. * kRB26s2NumberOfPlies - 2.) * kRB26s2PlieThickness) / (4. * kRB26s2NumberOfPlies - 2.); const Float_t kRB26s2CompTubeInnerR = 12.00/2.; // Connection tubes inner radius [Pos 2 + 3] const Float_t kRB26s2CompTubeOuterR = 12.30/2.; // Connection tubes outer radius [Pos 2 + 3] const Float_t kRB26s2WeldingTubeLeftL = 9.00/2.; // Left connection tube half length [Pos 2] const Float_t kRB26s2WeldingTubeRightL = 11.65/2.; // Right connection tube half length [Pos 3] [+ 0.15 cm for welding] const Float_t kRB26s2RingOuterR = 18.10/2.; // Ring inner radius [Pos 4] const Float_t kRB26s2RingL = 0.40/2.; // Ring half length [Pos 4] const Float_t kRB26s2RingZ = 6.50 ; // Ring z-position [Pos 4] const Float_t kRB26s2ProtOuterR = 18.20/2.; // Protection tube outer radius [Pos 5] const Float_t kRB26s2ProtL = 15.00/2.; // Protection tube half length [Pos 5] const Float_t kRB26s2ProtZ = 6.70 ; // Protection tube z-position [Pos 5] // Mother volume // TGeoPcon* shRB26s2Compensator = new TGeoPcon(0., 360., 6); shRB26s2Compensator->DefineSection( 0, 0.0, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 1, kRB26s2RingZ, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 2, kRB26s2RingZ, 0., kRB26s2ProtOuterR); shRB26s2Compensator->DefineSection( 3, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2ProtOuterR); shRB26s2Compensator->DefineSection( 4, kRB26s2ProtZ + 2. * kRB26s2ProtL, 0., kRB26s2CompTubeOuterR); shRB26s2Compensator->DefineSection( 5, kRB26s2CompL , 0., kRB26s2CompTubeOuterR); TGeoVolume* voRB26s2Compensator = new TGeoVolume("RB26s2Compensator", shRB26s2Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s2Bellow = new TGeoVolume("RB26s2Bellow", new TGeoTube(kRB26s2BellowRi, kRB26s2BellowRo, kRB26s2BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s2PlieTorusU = new TGeoTorus(kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR); shRB26s2PlieTorusU->SetName("RB26s2TorusU"); TGeoTube* shRB26s2PlieTubeU = new TGeoTube (kRB26s2BellowRo - kRB26s2PlieR, kRB26s2BellowRo, kRB26s2PlieR); shRB26s2PlieTubeU->SetName("RB26s2TubeU"); TGeoCompositeShape* shRB26s2UpperPlie = new TGeoCompositeShape("RB26s2UpperPlie", "RB26s2TorusU*RB26s2TubeU"); TGeoVolume* voRB26s2WiggleU = new TGeoVolume("RB26s2UpperPlie", shRB26s2UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s2PlieTorusL = new TGeoTorus(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR - kRB26s2PlieThickness, kRB26s2PlieR); shRB26s2PlieTorusL->SetName("RB26s2TorusL"); TGeoTube* shRB26s2PlieTubeL = new TGeoTube (kRB26s2BellowRi, kRB26s2BellowRi + kRB26s2PlieR, kRB26s2PlieR); shRB26s2PlieTubeL->SetName("RB26s2TubeL"); TGeoCompositeShape* shRB26s2LowerPlie = new TGeoCompositeShape("RB26s2LowerPlie", "RB26s2TorusL*RB26s2TubeL"); TGeoVolume* voRB26s2WiggleL = new TGeoVolume("RB26s2LowerPlie", shRB26s2LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s2WiggleC1 = new TGeoVolume("RB26s2PlieConn1", new TGeoTube(kRB26s2BellowRi + kRB26s2PlieR, kRB26s2BellowRo - kRB26s2PlieR, kRB26s2PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s2Wiggle = new TGeoVolumeAssembly("RB26s2Wiggle"); z0 = - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness / 2.; voRB26s2Wiggle->AddNode(voRB26s2WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s2PlieR - kRB26s2PlieThickness; voRB26s2Wiggle->AddNode(voRB26s2WiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s2BellowUndL/2.+ kRB26s2ConnectionPlieR; voRB26s2Bellow->AddNode(voRB26s2WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2ConnectionPlieR; zsh = 4. * kRB26s2PlieR - 2. * kRB26s2PlieThickness; for (Int_t iw = 0; iw < kRB26s2NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s2Bellow->AddNode(voRB26s2Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s2PlieThickness)); } voRB26s2Compensator->AddNode(voRB26s2Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s2WeldingTubeLeftL + kRB26s2BellowUndL/2.)); // // [Pos 2] Left Welding Tube // TGeoTube* shRB26s2CompLeftTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeLeftL); TGeoVolume* voRB26s2CompLeftTube = new TGeoVolume("RB26s2CompLeftTube", shRB26s2CompLeftTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompLeftTube, 1, new TGeoTranslation(0., 0., kRB26s2WeldingTubeLeftL)); // // [Pos 3] Right Welding Tube // TGeoTube* shRB26s2CompRightTube = new TGeoTube(kRB26s2CompTubeInnerR, kRB26s2CompTubeOuterR, kRB26s2WeldingTubeRightL); TGeoVolume* voRB26s2CompRightTube = new TGeoVolume("RB26s2CompRightTube", shRB26s2CompRightTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s2CompL - kRB26s2WeldingTubeRightL)); // // [Pos 4] Ring // TGeoTube* shRB26s2CompRing = new TGeoTube(kRB26s2CompTubeOuterR, kRB26s2RingOuterR, kRB26s2RingL); TGeoVolume* voRB26s2CompRing = new TGeoVolume("RB26s2CompRing", shRB26s2CompRing, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompRing, 1, new TGeoTranslation(0., 0., kRB26s2RingZ + kRB26s2RingL)); // // [Pos 5] Outer Protecting Tube // TGeoTube* shRB26s2CompProtTube = new TGeoTube(kRB26s2RingOuterR, kRB26s2ProtOuterR, kRB26s2ProtL); TGeoVolume* voRB26s2CompProtTube = new TGeoVolume("RB26s2CompProtTube", shRB26s2CompProtTube, kMedSteel); voRB26s2Compensator->AddNode(voRB26s2CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s2ProtZ + kRB26s2ProtL)); /////////////////////////////////// // Rotable Flange // // Drawing LHCVFX_0016 // /////////////////////////////////// const Float_t kRB26s1RFlangeTubeRi = 5.84/2.; // Tube inner radius const Float_t kRB26s1RFlangeTubeRo = 6.00/2.; // Tube outer radius // Pos 1 Clamp Ring LHCVFX__0015 const Float_t kRB26s1RFlangeCrL = 1.40 ; // Lenth of the clamp ring const Float_t kRB26s1RFlangeCrRi1 = 6.72/2.; // Ring inner radius section 1 const Float_t kRB26s1RFlangeCrRi2 = 6.06/2.; // Ring inner radius section 2 const Float_t kRB26s1RFlangeCrRo = 8.60/2.;// Ring outer radius const Float_t kRB26s1RFlangeCrD = 0.800 ; // Width section 1 TGeoPcon* shRB26s1RFlangeCr = new TGeoPcon(0., 360., 4); z0 = 0.; shRB26s1RFlangeCr->DefineSection(0, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo); z0 += kRB26s1RFlangeCrD; shRB26s1RFlangeCr->DefineSection(1, z0, kRB26s1RFlangeCrRi1, kRB26s1RFlangeCrRo); shRB26s1RFlangeCr->DefineSection(2, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo); z0 = kRB26s1RFlangeCrL; shRB26s1RFlangeCr->DefineSection(3, z0, kRB26s1RFlangeCrRi2, kRB26s1RFlangeCrRo); TGeoVolume* voRB26s1RFlangeCr = new TGeoVolume("RB26s1RFlangeCr", shRB26s1RFlangeCr, kMedSteel); // Pos 2 Insert LHCVFX__0015 const Float_t kRB26s1RFlangeIsL = 4.88 ; // Lenth of the insert const Float_t kRB26s1RFlangeIsR = 6.70/2. ; // Ring radius const Float_t kRB26s1RFlangeIsD = 0.80 ; // Ring Width TGeoPcon* shRB26s1RFlangeIs = new TGeoPcon(0., 360., 4); z0 = 0.; shRB26s1RFlangeIs->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR); z0 += kRB26s1RFlangeIsD; shRB26s1RFlangeIs->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeIsR); shRB26s1RFlangeIs->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL; shRB26s1RFlangeIs->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlangeIs = new TGeoVolume("RB26s1RFlangeIs", shRB26s1RFlangeIs, kMedSteel); // 4.88 + 3.7 = 8.58 (8.7 to avoid overlap) // Pos 3 Fixed Point Section LHCVC2A_0021 const Float_t kRB26s1RFlangeFpL = 5.88 ; // Length of the fixed point section (0.08 cm added for welding) const Float_t kRB26s1RFlangeFpZ = 3.82 ; // Position of the ring const Float_t kRB26s1RFlangeFpD = 0.59 ; // Width of the ring const Float_t kRB26s1RFlangeFpR = 7.00/2. ; // Radius of the ring TGeoPcon* shRB26s1RFlangeFp = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s1RFlangeFp->DefineSection(0, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 += kRB26s1RFlangeFpZ; shRB26s1RFlangeFp->DefineSection(1, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); shRB26s1RFlangeFp->DefineSection(2, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR); z0 += kRB26s1RFlangeFpD; shRB26s1RFlangeFp->DefineSection(3, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeFpR); shRB26s1RFlangeFp->DefineSection(4, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeFpL; shRB26s1RFlangeFp->DefineSection(5, z0, kRB26s1RFlangeTubeRi, kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlangeFp = new TGeoVolume("RB26s1RFlangeFp", shRB26s1RFlangeFp, kMedSteel); // Put everything in a mother volume TGeoPcon* shRB26s1RFlange = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s1RFlange->DefineSection(0, z0, 0., kRB26s1RFlangeCrRo); z0 += kRB26s1RFlangeCrL; shRB26s1RFlange->DefineSection(1, z0, 0., kRB26s1RFlangeCrRo); shRB26s1RFlange->DefineSection(2, z0, 0., kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpZ; shRB26s1RFlange->DefineSection(3, z0, 0., kRB26s1RFlangeTubeRo); shRB26s1RFlange->DefineSection(4, z0, 0., kRB26s1RFlangeFpR); z0 += kRB26s1RFlangeFpD; shRB26s1RFlange->DefineSection(5, z0, 0., kRB26s1RFlangeFpR); shRB26s1RFlange->DefineSection(6, z0, 0., kRB26s1RFlangeTubeRo); z0 = kRB26s1RFlangeIsL + kRB26s1RFlangeFpL; shRB26s1RFlange->DefineSection(7, z0, 0., kRB26s1RFlangeTubeRo); TGeoVolume* voRB26s1RFlange = new TGeoVolume("RB26s1RFlange", shRB26s1RFlange, kMedVac); voRB26s1RFlange->AddNode(voRB26s1RFlangeIs, 1, gGeoIdentity); voRB26s1RFlange->AddNode(voRB26s1RFlangeCr, 1, gGeoIdentity); voRB26s1RFlange->AddNode(voRB26s1RFlangeFp, 1, new TGeoTranslation(0., 0., kRB26s1RFlangeIsL)); /////////////////////////////////// // Fixed Flange // // Drawing LHCVFX_0006 // /////////////////////////////////// const Float_t kRB26s2FFlangeL = 2.13; // Length of the flange const Float_t kRB26s2FFlangeD1 = 0.97; // Length of section 1 const Float_t kRB26s2FFlangeD2 = 0.29; // Length of section 2 const Float_t kRB26s2FFlangeD3 = 0.87; // Length of section 3 const Float_t kRB26s2FFlangeRo = 17.15/2.; // Flange outer radius const Float_t kRB26s2FFlangeRi1 = 12.30/2.; // Flange inner radius section 1 const Float_t kRB26s2FFlangeRi2 = 12.00/2.; // Flange inner radius section 2 const Float_t kRB26s2FFlangeRi3 = 12.30/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s2FFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s2FFlange->DefineSection(0, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD1; shRB26s2FFlange->DefineSection(1, z0, kRB26s2FFlangeRi1, kRB26s2FFlangeRo); shRB26s2FFlange->DefineSection(2, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD2; shRB26s2FFlange->DefineSection(3, z0, kRB26s2FFlangeRi2, kRB26s2FFlangeRo); shRB26s2FFlange->DefineSection(4, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo); z0 += kRB26s2FFlangeD3; shRB26s2FFlange->DefineSection(5, z0, kRB26s2FFlangeRi3, kRB26s2FFlangeRo); TGeoVolume* voRB26s2FFlange = new TGeoVolume("RB26s2FFlange", shRB26s2FFlange, kMedSteel); TGeoVolume* voRB26s2FFlangeM = new TGeoVolume("RB26s2FFlangeM", MakeMotherFromTemplate(shRB26s2FFlange, 2, 5), kMedVac); voRB26s2FFlangeM->AddNode(voRB26s2FFlange, 1, gGeoIdentity); //////////////////////////////////////// // // // RB26/3 // // Drawing LHCV2a_0048 // // Drawing LHCV2a_0002 // //////////////////////////////////////// // // Pos 1 Vacuum Tubes LHCVC2A__0003 // Pos 2 Fixed Point LHCVFX___0005 // Pos 3 Split Flange LHCVFX___0007 // Pos 4 Fixed Flange LHCVFX___0004 // Pos 5 Axial Compensator LHCVC2A__0065 // // // // /////////////////////////////////// // Vacuum Tube // // Drawing LHCVC2A_0003 // /////////////////////////////////// const Float_t kRB26s3TubeL = 629.35 + 0.3; // 0.3 cm added for welding const Float_t kRB26s3TubeR1 = 12./2.; const Float_t kRB26s3TubeR2 = kRB26s3TubeR1 + 215.8 * TMath::Tan(0.829 / 180. * TMath::Pi()); TGeoPcon* shRB26s3Tube = new TGeoPcon(0., 360., 7); // Section 1: straight section shRB26s3Tube->DefineSection(0, 0.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15); shRB26s3Tube->DefineSection(1, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.15); // Section 2: 0.829 deg opening cone shRB26s3Tube->DefineSection(2, 2.00, kRB26s3TubeR1, kRB26s3TubeR1 + 0.20); shRB26s3Tube->DefineSection(3, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.20); shRB26s3Tube->DefineSection(4, 217.80, kRB26s3TubeR2, kRB26s3TubeR2 + 0.30); shRB26s3Tube->DefineSection(5, 622.20, 30.00/2., 30.60/2.); shRB26s3Tube->DefineSection(6, kRB26s3TubeL, 30.00/2., 30.60/2.); TGeoVolume* voRB26s3Tube = new TGeoVolume("RB26s3Tube", shRB26s3Tube, kMedSteel); // Add the insulation layer TGeoVolume* voRB26s3TubeIns = new TGeoVolume("RB26s3TubeIns", MakeInsulationFromTemplate(shRB26s3Tube), kMedInsu); voRB26s3Tube->AddNode(voRB26s3TubeIns, 1, gGeoIdentity); TGeoVolume* voRB26s3TubeM = new TGeoVolume("RB26s3TubeM", MakeMotherFromTemplate(shRB26s3Tube), kMedVac); voRB26s3TubeM->AddNode(voRB26s3Tube, 1, gGeoIdentity); /////////////////////////////////// // Fixed Point // // Drawing LHCVFX_0005 // /////////////////////////////////// const Float_t kRB26s3FixedPointL = 16.37 ; // Length of the fixed point section (0.3 cm added for welding) const Float_t kRB26s3FixedPointZ = 9.72 ; // Position of the ring (0.15 cm added for welding) const Float_t kRB26s3FixedPointD = 0.595 ; // Width of the ring const Float_t kRB26s3FixedPointR = 13.30/2. ; // Radius of the ring const Float_t kRB26s3FixedPointRi = 12.00/2. ; // Inner radius of the tube const Float_t kRB26s3FixedPointRo1 = 12.30/2. ; // Outer radius of the tube (in) const Float_t kRB26s3FixedPointRo2 = 12.40/2. ; // Outer radius of the tube (out) const Float_t kRB26s3FixedPointDs = 1.5 ; // Width of straight section behind ring const Float_t kRB26s3FixedPointDc = 3.15 ; // Width of conical section behind ring (0.15 cm added for welding) TGeoPcon* shRB26s3FixedPoint = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s3FixedPoint->DefineSection(0, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointZ; shRB26s3FixedPoint->DefineSection(1, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); shRB26s3FixedPoint->DefineSection(2, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR); z0 += kRB26s3FixedPointD; shRB26s3FixedPoint->DefineSection(3, z0, kRB26s3FixedPointRi, kRB26s3FixedPointR); shRB26s3FixedPoint->DefineSection(4, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointDs; shRB26s3FixedPoint->DefineSection(5, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo1); z0 += kRB26s3FixedPointDc; shRB26s3FixedPoint->DefineSection(6, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2); z0 = kRB26s3FixedPointL; shRB26s3FixedPoint->DefineSection(7, z0, kRB26s3FixedPointRi, kRB26s3FixedPointRo2); TGeoVolume* voRB26s3FixedPoint = new TGeoVolume("RB26s3FixedPoint", shRB26s3FixedPoint, kMedSteel); TGeoVolume* voRB26s3FixedPointM = new TGeoVolume("RB26s3FixedPointM", MakeMotherFromTemplate(shRB26s3FixedPoint), kMedVac); voRB26s3FixedPointM->AddNode(voRB26s3FixedPoint, 1, gGeoIdentity); /////////////////////////////////// // Split Flange // // Drawing LHCVFX_0005 // /////////////////////////////////// const Float_t kRB26s3SFlangeL = 2.13; // Length of the flange const Float_t kRB26s3SFlangeD1 = 0.57; // Length of section 1 const Float_t kRB26s3SFlangeD2 = 0.36; // Length of section 2 const Float_t kRB26s3SFlangeD3 = 0.50 + 0.70; // Length of section 3 const Float_t kRB26s3SFlangeRo = 17.15/2.; // Flange outer radius const Float_t kRB26s3SFlangeRi1 = 12.30/2.; // Flange inner radius section 1 const Float_t kRB26s3SFlangeRi2 = 12.00/2.; // Flange inner radius section 2 const Float_t kRB26s3SFlangeRi3 = 12.30/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s3SFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s3SFlange->DefineSection(0, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD1; shRB26s3SFlange->DefineSection(1, z0, kRB26s3SFlangeRi1, kRB26s3SFlangeRo); shRB26s3SFlange->DefineSection(2, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD2; shRB26s3SFlange->DefineSection(3, z0, kRB26s3SFlangeRi2, kRB26s3SFlangeRo); shRB26s3SFlange->DefineSection(4, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo); z0 += kRB26s3SFlangeD3; shRB26s3SFlange->DefineSection(5, z0, kRB26s3SFlangeRi3, kRB26s3SFlangeRo); TGeoVolume* voRB26s3SFlange = new TGeoVolume("RB26s3SFlange", shRB26s3SFlange, kMedSteel); TGeoVolume* voRB26s3SFlangeM = new TGeoVolume("RB26s3SFlangeM", MakeMotherFromTemplate(shRB26s3SFlange, 0, 3), kMedVac); voRB26s3SFlangeM->AddNode(voRB26s3SFlange, 1, gGeoIdentity); /////////////////////////////////// // RB26/3 Fixed Flange // // Drawing LHCVFX___0004 // /////////////////////////////////// const Float_t kRB26s3FFlangeL = 2.99; // Length of the flange const Float_t kRB26s3FFlangeD1 = 1.72; // Length of section 1 const Float_t kRB26s3FFlangeD2 = 0.30; // Length of section 2 const Float_t kRB26s3FFlangeD3 = 0.97; // Length of section 3 const Float_t kRB26s3FFlangeRo = 36.20/2.; // Flange outer radius const Float_t kRB26s3FFlangeRi1 = 30.60/2.; // Flange inner radius section 1 const Float_t kRB26s3FFlangeRi2 = 30.00/2.; // Flange inner radius section 2 const Float_t kRB26s3FFlangeRi3 = 30.60/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s3FFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s3FFlange->DefineSection(0, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD1; shRB26s3FFlange->DefineSection(1, z0, kRB26s3FFlangeRi1, kRB26s3FFlangeRo); shRB26s3FFlange->DefineSection(2, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD2; shRB26s3FFlange->DefineSection(3, z0, kRB26s3FFlangeRi2, kRB26s3FFlangeRo); shRB26s3FFlange->DefineSection(4, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo); z0 += kRB26s3FFlangeD3; shRB26s3FFlange->DefineSection(5, z0, kRB26s3FFlangeRi3, kRB26s3FFlangeRo); TGeoVolume* voRB26s3FFlange = new TGeoVolume("RB26s3FFlange", shRB26s3FFlange, kMedSteel); TGeoVolume* voRB26s3FFlangeM = new TGeoVolume("RB26s3FFlangeM", MakeMotherFromTemplate(shRB26s3FFlange, 2, 5), kMedVac); voRB26s3FFlangeM->AddNode(voRB26s3FFlange, 1, gGeoIdentity); /////////////////////////////////// // RB26/3 Axial Compensator // // Drawing LHCVC2a_0065 // /////////////////////////////////// const Float_t kRB26s3CompL = 42.0; // Length of the compensator (0.3 cm added for welding) const Float_t kRB26s3BellowRo = 34.00/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s3BellowRi = 30.10/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s3NumberOfPlies = 13; // Number of plies [Pos 1] const Float_t kRB26s3BellowUndL = 17.70; // Length of undulated region [Pos 1] const Float_t kRB26s3PlieThickness = 0.06; // Plie thickness [Pos 1] const Float_t kRB26s3ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] // Plie radius const Float_t kRB26s3PlieR = (kRB26s3BellowUndL - 4. * kRB26s3ConnectionPlieR + 2. * kRB26s3PlieThickness + (2. * kRB26s3NumberOfPlies - 2.) * kRB26s3PlieThickness) / (4. * kRB26s3NumberOfPlies - 2.); // // The welding tubes have 3 sections with different radii and 2 transition regions. // Section 1: connection to the outside // Section 2: commection to the bellow // Section 3: between 1 and 2 const Float_t kRB26s3CompTubeInnerR1 = 30.0/2.; // Outer Connection tubes inner radius [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR1 = 30.6/2.; // Outer Connection tubes outer radius [Pos 4 + 3] const Float_t kRB26s3CompTubeInnerR2 = 29.4/2.; // Connection tubes inner radius [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR2 = 30.0/2.; // Connection tubes outer radius [Pos 4 + 3] const Float_t kRB26s3CompTubeInnerR3 = 30.6/2.; // Connection tubes inner radius at bellow [Pos 4 + 3] const Float_t kRB26s3CompTubeOuterR3 = 32.2/2.; // Connection tubes outer radius at bellow [Pos 4 + 3] const Float_t kRB26s3WeldingTubeLeftL1 = 2.0; // Left connection tube length [Pos 4] const Float_t kRB26s3WeldingTubeLeftL2 = 3.4; // Left connection tube length [Pos 4] const Float_t kRB26s3WeldingTubeLeftL = 7.0; // Left connection tube total length [Pos 4] const Float_t kRB26s3WeldingTubeRightL1 = 2.3; // Right connection tube length [Pos 3] (0.3 cm added for welding) const Float_t kRB26s3WeldingTubeRightL2 = 13.4; // Right connection tube length [Pos 3] const Float_t kRB26s3WeldingTubeT1 = 0.6; // Length of first r-transition [Pos 4 + 3] const Float_t kRB26s3WeldingTubeT2 = 1.0; // Length of 2nd r-transition [Pos 4 + 3] const Float_t kRB26s3RingOuterR = 36.1/2.; // Ring inner radius [Pos 4] const Float_t kRB26s3RingL = 0.8/2.; // Ring half length [Pos 4] const Float_t kRB26s3RingZ = 3.7 ; // Ring z-position [Pos 4] const Float_t kRB26s3ProtOuterR = 36.2/2.; // Protection tube outer radius [Pos 2] const Float_t kRB26s3ProtL = 27.0/2.; // Protection tube half length [Pos 2] const Float_t kRB26s3ProtZ = 4.0 ; // Protection tube z-position [Pos 2] // Mother volume // TGeoPcon* shRB26s3Compensator = new TGeoPcon(0., 360., 6); shRB26s3Compensator->DefineSection( 0, 0.0, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 1, kRB26s3RingZ, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 2, kRB26s3RingZ, 0., kRB26s3ProtOuterR); shRB26s3Compensator->DefineSection( 3, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3ProtOuterR); shRB26s3Compensator->DefineSection( 4, kRB26s3ProtZ + 2. * kRB26s3ProtL, 0., kRB26s3CompTubeOuterR1); shRB26s3Compensator->DefineSection( 5, kRB26s3CompL , 0., kRB26s3CompTubeOuterR1); TGeoVolume* voRB26s3Compensator = new TGeoVolume("RB26s3Compensator", shRB26s3Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s3Bellow = new TGeoVolume("RB26s3Bellow", new TGeoTube(kRB26s3BellowRi, kRB26s3BellowRo, kRB26s3BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s3PlieTorusU = new TGeoTorus(kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR); shRB26s3PlieTorusU->SetName("RB26s3TorusU"); TGeoTube* shRB26s3PlieTubeU = new TGeoTube (kRB26s3BellowRo - kRB26s3PlieR, kRB26s3BellowRo, kRB26s3PlieR); shRB26s3PlieTubeU->SetName("RB26s3TubeU"); TGeoCompositeShape* shRB26s3UpperPlie = new TGeoCompositeShape("RB26s3UpperPlie", "RB26s3TorusU*RB26s3TubeU"); TGeoVolume* voRB26s3WiggleU = new TGeoVolume("RB26s3UpperPlie", shRB26s3UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s3PlieTorusL = new TGeoTorus(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR - kRB26s3PlieThickness, kRB26s3PlieR); shRB26s3PlieTorusL->SetName("RB26s3TorusL"); TGeoTube* shRB26s3PlieTubeL = new TGeoTube (kRB26s3BellowRi, kRB26s3BellowRi + kRB26s3PlieR, kRB26s3PlieR); shRB26s3PlieTubeL->SetName("RB26s3TubeL"); TGeoCompositeShape* shRB26s3LowerPlie = new TGeoCompositeShape("RB26s3LowerPlie", "RB26s3TorusL*RB26s3TubeL"); TGeoVolume* voRB26s3WiggleL = new TGeoVolume("RB26s3LowerPlie", shRB26s3LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s3WiggleC1 = new TGeoVolume("RB26s3PlieConn1", new TGeoTube(kRB26s3BellowRi + kRB26s3PlieR, kRB26s3BellowRo - kRB26s3PlieR, kRB26s3PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s3Wiggle = new TGeoVolumeAssembly("RB26s3Wiggle"); z0 = - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness / 2.; voRB26s3Wiggle->AddNode(voRB26s3WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s3PlieR - kRB26s3PlieThickness; voRB26s3Wiggle->AddNode(voRB26s3WiggleL, 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s3BellowUndL/2.+ kRB26s3ConnectionPlieR; voRB26s3Bellow->AddNode(voRB26s3WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3ConnectionPlieR; zsh = 4. * kRB26s3PlieR - 2. * kRB26s3PlieThickness; for (Int_t iw = 0; iw < kRB26s3NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s3Bellow->AddNode(voRB26s3Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s3PlieThickness)); } voRB26s3Compensator->AddNode(voRB26s3Bellow, 1, new TGeoTranslation(0., 0., kRB26s3WeldingTubeLeftL + kRB26s3BellowUndL/2.)); // // [Pos 2] Outer Protecting Tube // TGeoTube* shRB26s3CompProtTube = new TGeoTube(kRB26s3RingOuterR, kRB26s3ProtOuterR, kRB26s3ProtL); TGeoVolume* voRB26s3CompProtTube = new TGeoVolume("RB26s3CompProtTube", shRB26s3CompProtTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s3ProtZ + kRB26s3ProtL)); // // [Pos 3] Right Welding Tube // TGeoPcon* shRB26s3CompRightTube = new TGeoPcon(0., 360., 5); z0 = 0.; shRB26s3CompRightTube->DefineSection(0, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3); z0 += kRB26s3WeldingTubeT2; shRB26s3CompRightTube->DefineSection(1, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeRightL2; shRB26s3CompRightTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeT1; shRB26s3CompRightTube->DefineSection(3, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeRightL1; shRB26s3CompRightTube->DefineSection(4, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); TGeoVolume* voRB26s3CompRightTube = new TGeoVolume("RB26s3CompRightTube", shRB26s3CompRightTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s3CompL - z0)); // // [Pos 4] Left Welding Tube // TGeoPcon* shRB26s3CompLeftTube = new TGeoPcon(0., 360., 5); z0 = 0.; shRB26s3CompLeftTube->DefineSection(0, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeLeftL1; shRB26s3CompLeftTube->DefineSection(1, z0, kRB26s3CompTubeInnerR1, kRB26s3CompTubeOuterR1); z0 += kRB26s3WeldingTubeT1; shRB26s3CompLeftTube->DefineSection(2, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeLeftL2; shRB26s3CompLeftTube->DefineSection(3, z0, kRB26s3CompTubeInnerR2, kRB26s3CompTubeOuterR2); z0 += kRB26s3WeldingTubeT2; shRB26s3CompLeftTube->DefineSection(4, z0, kRB26s3CompTubeInnerR3, kRB26s3CompTubeOuterR3); TGeoVolume* voRB26s3CompLeftTube = new TGeoVolume("RB26s3CompLeftTube", shRB26s3CompLeftTube, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompLeftTube, 1, gGeoIdentity); // // [Pos 5] Ring // TGeoTube* shRB26s3CompRing = new TGeoTube(kRB26s3CompTubeOuterR2, kRB26s3RingOuterR, kRB26s3RingL); TGeoVolume* voRB26s3CompRing = new TGeoVolume("RB26s3CompRing", shRB26s3CompRing, kMedSteel); voRB26s3Compensator->AddNode(voRB26s3CompRing, 1, new TGeoTranslation(0., 0., kRB26s3RingZ + kRB26s3RingL)); /////////////////////////////////////////// // // // RB26/4-5 // // Drawing LHCV2a_0012 [as installed] // //////////////////////////////////////////// // Pos1 Vacuum Tubes LHCVC2A__0014 // Pos2 Compensator LHCVC2A__0066 // Pos3 Fixed Point Section LHCVC2A__0016 // Pos4 Split Flange LHCVFX___0005 // Pos5 RotableFlange LHCVFX___0009 //////////////////////////////////////////// /////////////////////////////////// // RB26/4-5 Vacuum Tubes // // Drawing LHCVC2a_0014 // /////////////////////////////////// const Float_t kRB26s45TubeL = 593.12 + 0.3; // 0.3 cm added for welding TGeoPcon* shRB26s45Tube = new TGeoPcon(0., 360., 11); // Section 1: straight section shRB26s45Tube->DefineSection( 0, 0.00, 30.00/2., 30.60/2.); shRB26s45Tube->DefineSection( 1, 1.20, 30.00/2., 30.60/2.); shRB26s45Tube->DefineSection( 2, 1.20, 30.00/2., 30.80/2.); shRB26s45Tube->DefineSection( 3, 25.10, 30.00/2., 30.80/2.); // Section 2: 0.932 deg opening cone shRB26s45Tube->DefineSection( 4, 486.10, 45.00/2., 45.80/2.); // Section 3: straight section 4 mm shRB26s45Tube->DefineSection( 5, 512.10, 45.00/2., 45.80/2.); // Section 4: straight section 3 mm shRB26s45Tube->DefineSection( 6, 512.10, 45.00/2., 45.60/2.); shRB26s45Tube->DefineSection( 7, 527.70, 45.00/2., 45.60/2.); // Section 4: closing cone shRB26s45Tube->DefineSection( 8, 591.30, 10.00/2., 10.60/2.); shRB26s45Tube->DefineSection( 9, 591.89, 10.00/2., 10.30/2.); shRB26s45Tube->DefineSection(10, kRB26s45TubeL, 10.00/2., 10.30/2.); TGeoVolume* voRB26s45Tube = new TGeoVolume("RB26s45Tube", shRB26s45Tube, kMedSteel); TGeoVolume* voRB26s45TubeM = new TGeoVolume("RB26s45TubeM", MakeMotherFromTemplate(shRB26s45Tube), kMedVac); voRB26s45TubeM->AddNode(voRB26s45Tube, 1, gGeoIdentity); /////////////////////////////////// // RB26/5 Axial Compensator // // Drawing LHCVC2a_0066 // /////////////////////////////////// const Float_t kRB26s5CompL = 27.60; // Length of the compensator (0.30 cm added for welding) const Float_t kRB26s5BellowRo = 12.48/2.; // Bellow outer radius [Pos 1] const Float_t kRB26s5BellowRi = 10.32/2.; // Bellow inner radius [Pos 1] const Int_t kRB26s5NumberOfPlies = 15; // Number of plies [Pos 1] const Float_t kRB26s5BellowUndL = 10.50; // Length of undulated region [Pos 1] const Float_t kRB26s5PlieThickness = 0.025; // Plie thickness [Pos 1] const Float_t kRB26s5ConnectionPlieR = 0.21; // Connection plie radius [Pos 1] const Float_t kRB26s5ConnectionR = 11.2/2.; // Bellow connection radius [Pos 1] // Plie radius const Float_t kRB26s5PlieR = (kRB26s5BellowUndL - 4. * kRB26s5ConnectionPlieR + 2. * kRB26s5PlieThickness + (2. * kRB26s5NumberOfPlies - 2.) * kRB26s5PlieThickness) / (4. * kRB26s5NumberOfPlies - 2.); const Float_t kRB26s5CompTubeInnerR = 10.00/2.; // Connection tubes inner radius [Pos 2 + 3] const Float_t kRB26s5CompTubeOuterR = 10.30/2.; // Connection tubes outer radius [Pos 2 + 3] const Float_t kRB26s5WeldingTubeLeftL = 3.70/2.; // Left connection tube half length [Pos 2] const Float_t kRB26s5WeldingTubeRightL = 13.40/2.; // Right connection tube half length [Pos 3] (0.3 cm added for welding) const Float_t kRB26s5RingInnerR = 11.2/2.; // Ring inner radius [Pos 4] const Float_t kRB26s5RingOuterR = 16.0/2.; // Ring inner radius [Pos 4] const Float_t kRB26s5RingL = 0.4/2.; // Ring half length [Pos 4] const Float_t kRB26s5RingZ = 14.97; // Ring z-position [Pos 4] const Float_t kRB26s5ProtOuterR = 16.2/2.; // Protection tube outer radius [Pos 5] const Float_t kRB26s5ProtL = 13.0/2.; // Protection tube half length [Pos 5] const Float_t kRB26s5ProtZ = 2.17; // Protection tube z-position [Pos 5] const Float_t kRB26s5DetailZR = 11.3/2.; // Detail Z max radius // Mother volume // TGeoPcon* shRB26s5Compensator = new TGeoPcon(0., 360., 8); shRB26s5Compensator->DefineSection( 0, 0.0, 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 1, kRB26s5ProtZ, 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 2, kRB26s5ProtZ, 0., kRB26s5ProtOuterR); shRB26s5Compensator->DefineSection( 3, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5ProtOuterR); shRB26s5Compensator->DefineSection( 4, kRB26s5ProtZ + 2. * kRB26s5ProtL + 2. * kRB26s5RingL, 0., kRB26s5DetailZR); shRB26s5Compensator->DefineSection( 5, kRB26s5CompL - 8., 0., kRB26s5DetailZR); shRB26s5Compensator->DefineSection( 6, kRB26s5CompL - 8., 0., kRB26s5CompTubeOuterR); shRB26s5Compensator->DefineSection( 7, kRB26s5CompL, 0., kRB26s5CompTubeOuterR); TGeoVolume* voRB26s5Compensator = new TGeoVolume("RB26s5Compensator", shRB26s5Compensator, kMedVac); // // [Pos 1] Bellow // // TGeoVolume* voRB26s5Bellow = new TGeoVolume("RB26s5Bellow", new TGeoTube(kRB26s5BellowRi, kRB26s5BellowRo, kRB26s5BellowUndL/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shRB26s5PlieTorusU = new TGeoTorus(kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR); shRB26s5PlieTorusU->SetName("RB26s5TorusU"); TGeoTube* shRB26s5PlieTubeU = new TGeoTube (kRB26s5BellowRo - kRB26s5PlieR, kRB26s5BellowRo, kRB26s5PlieR); shRB26s5PlieTubeU->SetName("RB26s5TubeU"); TGeoCompositeShape* shRB26s5UpperPlie = new TGeoCompositeShape("RB26s5UpperPlie", "RB26s5TorusU*RB26s5TubeU"); TGeoVolume* voRB26s5WiggleU = new TGeoVolume("RB26s5UpperPlie", shRB26s5UpperPlie, kMedSteel); // // Lower part of the undulation TGeoTorus* shRB26s5PlieTorusL = new TGeoTorus(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR - kRB26s5PlieThickness, kRB26s5PlieR); shRB26s5PlieTorusL->SetName("RB26s5TorusL"); TGeoTube* shRB26s5PlieTubeL = new TGeoTube (kRB26s5BellowRi, kRB26s5BellowRi + kRB26s5PlieR, kRB26s5PlieR); shRB26s5PlieTubeL->SetName("RB26s5TubeL"); TGeoCompositeShape* shRB26s5LowerPlie = new TGeoCompositeShape("RB26s5LowerPlie", "RB26s5TorusL*RB26s5TubeL"); TGeoVolume* voRB26s5WiggleL = new TGeoVolume("RB26s5LowerPlie", shRB26s5LowerPlie, kMedSteel); // // Connection between upper and lower part of undulation TGeoVolume* voRB26s5WiggleC1 = new TGeoVolume("RB26s5PlieConn1", new TGeoTube(kRB26s5BellowRi + kRB26s5PlieR, kRB26s5BellowRo - kRB26s5PlieR, kRB26s5PlieThickness / 2.), kMedSteel); // // One wiggle TGeoVolumeAssembly* voRB26s5Wiggle = new TGeoVolumeAssembly("RB26s5Wiggle"); z0 = - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness / 2.; voRB26s5Wiggle->AddNode(voRB26s5WiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += kRB26s5PlieR - kRB26s5PlieThickness; voRB26s5Wiggle->AddNode(voRB26s5WiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - kRB26s5BellowUndL/2.+ kRB26s5ConnectionPlieR; voRB26s5Bellow->AddNode(voRB26s5WiggleL, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5ConnectionPlieR; zsh = 4. * kRB26s5PlieR - 2. * kRB26s5PlieThickness; for (Int_t iw = 0; iw < kRB26s5NumberOfPlies; iw++) { Float_t zpos = z0 + iw * zsh; voRB26s5Bellow->AddNode(voRB26s5Wiggle, iw + 1, new TGeoTranslation(0., 0., zpos - kRB26s5PlieThickness)); } voRB26s5Compensator->AddNode(voRB26s5Bellow, 1, new TGeoTranslation(0., 0., 2. * kRB26s5WeldingTubeLeftL + kRB26s5BellowUndL/2.)); // // [Pos 2] Left Welding Tube // TGeoPcon* shRB26s5CompLeftTube = new TGeoPcon(0., 360., 3); z0 = 0; shRB26s5CompLeftTube->DefineSection(0, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); z0 += 2 * kRB26s5WeldingTubeLeftL - ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR); shRB26s5CompLeftTube->DefineSection(1, z0, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); z0 += ( kRB26s5ConnectionR - kRB26s5CompTubeOuterR); shRB26s5CompLeftTube->DefineSection(2, z0, kRB26s5ConnectionR - 0.15, kRB26s5ConnectionR); TGeoVolume* voRB26s5CompLeftTube = new TGeoVolume("RB26s5CompLeftTube", shRB26s5CompLeftTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompLeftTube, 1, gGeoIdentity); // // [Pos 3] Right Welding Tube // TGeoPcon* shRB26s5CompRightTube = new TGeoPcon(0., 360., 11); // Detail Z shRB26s5CompRightTube->DefineSection( 0, 0. , kRB26s5CompTubeInnerR + 0.22, 11.2/2.); shRB26s5CompRightTube->DefineSection( 1, 0.05, kRB26s5CompTubeInnerR + 0.18, 11.2/2.); shRB26s5CompRightTube->DefineSection( 2, 0.22, kRB26s5CompTubeInnerR , 11.2/2. - 0.22); shRB26s5CompRightTube->DefineSection( 3, 0.44, kRB26s5CompTubeInnerR , 11.2/2.); shRB26s5CompRightTube->DefineSection( 4, 1.70, kRB26s5CompTubeInnerR , 11.2/2.); shRB26s5CompRightTube->DefineSection( 5, 2.10, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection( 6, 2.80, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection( 7, 2.80, kRB26s5CompTubeInnerR , 11.3/2.); shRB26s5CompRightTube->DefineSection( 8, 3.40, kRB26s5CompTubeInnerR , 11.3/2.); // Normal pipe shRB26s5CompRightTube->DefineSection( 9, 3.50, kRB26s5CompTubeInnerR , kRB26s5CompTubeOuterR); shRB26s5CompRightTube->DefineSection(10, 2. * kRB26s5WeldingTubeRightL, kRB26s5CompTubeInnerR, kRB26s5CompTubeOuterR); TGeoVolume* voRB26s5CompRightTube = new TGeoVolume("RB26s5CompRightTube", shRB26s5CompRightTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompRightTube, 1, new TGeoTranslation(0., 0., kRB26s5CompL - 2. * kRB26s5WeldingTubeRightL)); // // [Pos 4] Ring // TGeoTube* shRB26s5CompRing = new TGeoTube(kRB26s5RingInnerR, kRB26s5RingOuterR, kRB26s5RingL); TGeoVolume* voRB26s5CompRing = new TGeoVolume("RB26s5CompRing", shRB26s5CompRing, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompRing, 1, new TGeoTranslation(0., 0., kRB26s5RingZ + kRB26s5RingL)); // // [Pos 5] Outer Protecting Tube // TGeoTube* shRB26s5CompProtTube = new TGeoTube(kRB26s5RingOuterR, kRB26s5ProtOuterR, kRB26s5ProtL); TGeoVolume* voRB26s5CompProtTube = new TGeoVolume("RB26s5CompProtTube", shRB26s5CompProtTube, kMedSteel); voRB26s5Compensator->AddNode(voRB26s5CompProtTube, 1, new TGeoTranslation(0., 0., kRB26s5ProtZ + kRB26s5ProtL)); /////////////////////////////////////// // RB26/4 Fixed Point Section // // Drawing LHCVC2a_0016 // /////////////////////////////////////// const Float_t kRB26s4TubeRi = 30.30/2. ; // Tube inner radius (0.3 cm added for welding) const Float_t kRB26s4TubeRo = 30.60/2. ; // Tube outer radius const Float_t kRB26s4FixedPointL = 12.63 ; // Length of the fixed point section const Float_t kRB26s4FixedPointZ = 10.53 ; // Position of the ring (0.15 added for welding) const Float_t kRB26s4FixedPointD = 0.595 ; // Width of the ring const Float_t kRB26s4FixedPointR = 31.60/2. ; // Radius of the ring TGeoPcon* shRB26s4FixedPoint = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s4FixedPoint->DefineSection(0, z0, kRB26s4TubeRi, kRB26s4TubeRo); z0 += kRB26s4FixedPointZ; shRB26s4FixedPoint->DefineSection(1, z0, kRB26s4TubeRi, kRB26s4TubeRo); shRB26s4FixedPoint->DefineSection(2, z0, kRB26s4TubeRi, kRB26s4FixedPointR); z0 += kRB26s4FixedPointD; shRB26s4FixedPoint->DefineSection(3, z0, kRB26s4TubeRi, kRB26s4FixedPointR); shRB26s4FixedPoint->DefineSection(4, z0, kRB26s4TubeRi, kRB26s4TubeRo); z0 = kRB26s4FixedPointL; shRB26s4FixedPoint->DefineSection(5, z0, kRB26s4TubeRi, kRB26s4TubeRo); TGeoVolume* voRB26s4FixedPoint = new TGeoVolume("RB26s4FixedPoint", shRB26s4FixedPoint, kMedSteel); TGeoVolume* voRB26s4FixedPointM = new TGeoVolume("RB26s4FixedPointM", MakeMotherFromTemplate(shRB26s4FixedPoint), kMedVac); voRB26s4FixedPointM->AddNode(voRB26s4FixedPoint, 1, gGeoIdentity); /////////////////////////////////////// // RB26/4 Split Flange // // Drawing LHCVFX__0005 // /////////////////////////////////////// const Float_t kRB26s4SFlangeL = 2.99; // Length of the flange const Float_t kRB26s4SFlangeD1 = 0.85; // Length of section 1 const Float_t kRB26s4SFlangeD2 = 0.36; // Length of section 2 const Float_t kRB26s4SFlangeD3 = 0.73 + 1.05; // Length of section 3 const Float_t kRB26s4SFlangeRo = 36.20/2.; // Flange outer radius const Float_t kRB26s4SFlangeRi1 = 30.60/2.; // Flange inner radius section 1 const Float_t kRB26s4SFlangeRi2 = 30.00/2.; // Flange inner radius section 2 const Float_t kRB26s4SFlangeRi3 = 30.60/2.; // Flange inner radius section 3 z0 = 0; TGeoPcon* shRB26s4SFlange = new TGeoPcon(0., 360., 6); z0 = 0.; shRB26s4SFlange->DefineSection(0, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD1; shRB26s4SFlange->DefineSection(1, z0, kRB26s4SFlangeRi1, kRB26s4SFlangeRo); shRB26s4SFlange->DefineSection(2, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD2; shRB26s4SFlange->DefineSection(3, z0, kRB26s4SFlangeRi2, kRB26s4SFlangeRo); shRB26s4SFlange->DefineSection(4, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo); z0 += kRB26s4SFlangeD3; shRB26s4SFlange->DefineSection(5, z0, kRB26s4SFlangeRi3, kRB26s4SFlangeRo); TGeoVolume* voRB26s4SFlange = new TGeoVolume("RB26s4SFlange", shRB26s4SFlange, kMedSteel); TGeoVolume* voRB26s4SFlangeM = new TGeoVolume("RB26s4SFlangeM", MakeMotherFromTemplate(shRB26s4SFlange, 0, 3), kMedVac); voRB26s4SFlangeM->AddNode(voRB26s4SFlange, 1, gGeoIdentity); /////////////////////////////////////// // RB26/5 Rotable Flange // // Drawing LHCVFX__0009 // /////////////////////////////////////// const Float_t kRB26s5RFlangeL = 1.86; // Length of the flange const Float_t kRB26s5RFlangeD1 = 0.61; // Length of section 1 const Float_t kRB26s5RFlangeD2 = 0.15; // Length of section 2 const Float_t kRB26s5RFlangeD3 = 0.60; // Length of section 3 const Float_t kRB26s5RFlangeD4 = 0.50; // Length of section 4 const Float_t kRB26s5RFlangeRo = 15.20/2.; // Flange outer radius const Float_t kRB26s5RFlangeRi1 = 10.30/2.; // Flange inner radius section 1 const Float_t kRB26s5RFlangeRi2 = 10.00/2.; // Flange inner radius section 2 const Float_t kRB26s5RFlangeRi3 = 10.30/2.; // Flange inner radius section 3 const Float_t kRB26s5RFlangeRi4 = 10.50/2.; // Flange inner radius section 4 z0 = 0; TGeoPcon* shRB26s5RFlange = new TGeoPcon(0., 360., 8); z0 = 0.; shRB26s5RFlange->DefineSection(0, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD4; shRB26s5RFlange->DefineSection(1, z0, kRB26s5RFlangeRi4, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(2, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD3; shRB26s5RFlange->DefineSection(3, z0, kRB26s5RFlangeRi3, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(4, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD2; shRB26s5RFlange->DefineSection(5, z0, kRB26s5RFlangeRi2, kRB26s5RFlangeRo); shRB26s5RFlange->DefineSection(6, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo); z0 += kRB26s5RFlangeD1; shRB26s5RFlange->DefineSection(7, z0, kRB26s5RFlangeRi1, kRB26s5RFlangeRo); TGeoVolume* voRB26s5RFlange = new TGeoVolume("RB26s5RFlange", shRB26s5RFlange, kMedSteel); TGeoVolume* voRB26s5RFlangeM = new TGeoVolume("RB26s5RFlangeM", MakeMotherFromTemplate(shRB26s5RFlange, 4, 7), kMedVac); voRB26s5RFlangeM->AddNode(voRB26s5RFlange, 1, gGeoIdentity); // // Assemble RB26/1-2 // TGeoVolumeAssembly* asRB26s12 = new TGeoVolumeAssembly("RB26s12"); z0 = 0.; asRB26s12->AddNode(voRB26s1RFlange, 1, gGeoIdentity); z0 += kRB26s1RFlangeIsL + kRB26s1RFlangeFpL; asRB26s12->AddNode(voRB26s12TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s12TubeL; asRB26s12->AddNode(voRB26s2Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2CompL; z0 -= kRB26s2FFlangeD1; asRB26s12->AddNode(voRB26s2FFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s2FFlangeL; const Float_t kRB26s12L = z0; // // Assemble RB26/3 // TGeoVolumeAssembly* asRB26s3 = new TGeoVolumeAssembly("RB26s3"); z0 = 0.; asRB26s3->AddNode(voRB26s3SFlangeM, 1, gGeoIdentity); z0 += kRB26s3SFlangeL; z0 -= kRB26s3SFlangeD3; asRB26s3->AddNode(voRB26s3FixedPointM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3FixedPointL; asRB26s3->AddNode(voRB26s3TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3TubeL; asRB26s3->AddNode(voRB26s3Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3CompL; z0 -= kRB26s3FFlangeD1; asRB26s3->AddNode(voRB26s3FFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3FFlangeL; const Float_t kRB26s3L = z0; // // Assemble RB26/4-5 // TGeoVolumeAssembly* asRB26s45 = new TGeoVolumeAssembly("RB26s45"); z0 = 0.; asRB26s45->AddNode(voRB26s4SFlangeM, 1, gGeoIdentity); z0 += kRB26s4SFlangeL; z0 -= kRB26s4SFlangeD3; asRB26s45->AddNode(voRB26s4FixedPointM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s4FixedPointL; asRB26s45->AddNode(voRB26s45TubeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s45TubeL; asRB26s45->AddNode(voRB26s5Compensator, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5CompL; z0 -= kRB26s5RFlangeD3; z0 -= kRB26s5RFlangeD4; asRB26s45->AddNode(voRB26s5RFlangeM, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s5RFlangeL; const Float_t kRB26s45L = z0; // // Assemble RB26 // TGeoVolumeAssembly* asRB26Pipe = new TGeoVolumeAssembly("RB26Pipe"); z0 = 0.; asRB26Pipe->AddNode(asRB26s12, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s12L; asRB26Pipe->AddNode(asRB26s3, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s3L; asRB26Pipe->AddNode(asRB26s45, 1, new TGeoTranslation(0., 0., z0)); z0 += kRB26s45L; top->AddNode(asRB26Pipe, 1, new TGeoCombiTrans(0., 0., -82., rot180)); } //___________________________________________ void AliPIPEv4::CreateMaterials() { // // Define materials for beam pipe // AliDebugClass(1,"Create PIPEv4 materials"); Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // Steel (Inox) Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; // AlBe - alloy Float_t aAlBe[2] = { 26.98, 9.01}; // al=2.702 be=1.8477 Float_t zAlBe[2] = { 13.00, 4.00}; Float_t wAlBe[2] = { 0.4, 0.6}; // // Polyamid Float_t aPA[4] = {16., 14., 12., 1.}; Float_t zPA[4] = { 8., 7., 6., 1.}; Float_t wPA[4] = { 1., 1., 6., 11.}; // // Polyimide film Float_t aPI[4] = {16., 14., 12., 1.}; Float_t zPI[4] = { 8., 7., 6., 1.}; Float_t wPI[4] = { 5., 2., 22., 10.}; // Rohacell Float_t aRohacell[4] = {16., 14., 12., 1.}; Float_t zRohacell[4] = { 8., 7., 6., 1.}; Float_t wRohacell[4] = { 2., 1., 9., 13.}; // // Air // Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; Float_t dAir1 = 1.20479E-11; // // Insulation powder // Si O Ti Al Float_t ains[4] ={28.0855, 15.9994, 47.867, 26.982}; Float_t zins[4] ={14., 8. , 22. , 13. }; Float_t wins[4] ={ 0.3019, 0.4887, 0.1914, 0.018}; // // // Anticorodal // // Al Si7 Mg 0.6 // Float_t aaco[3] ={26.982, 28.0855, 24.035}; Float_t zaco[3] ={13., 14. , 12. }; Float_t waco[3] ={ 0.924, 0.07, 0.006}; // Kapton // Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994}; Float_t zKapton[4]={1.,6.,7.,8.}; Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235}; Float_t dKapton = 1.42; // NEG coating // Ti V Zr Float_t aNEG[4] = {47.87, 50.94, 91.24}; Float_t zNEG[4] = {22.00, 23.00, 40.00}; Float_t wNEG[4] = {1./3., 1./3., 1./3.}; Float_t dNEG = 5.6; // ? //--------------------------------- // Aluminium AA 5083 for MFT: Al Manganese(Mn) Magnesium(Mg) Chrome(Cr) Float_t aALU5083[4]={26.982, 54.938, 24.305, 51.996}; // Mg pas meme a que la ligne Anticorodal! Float_t zALU5083[4] ={13., 25., 12., 24.}; Float_t wALU5083[4] ={0.947, 0.007, 0.044, 0.0015}; // Aluminium AA 2219 for MFT: Al Cu Mn Ti V Zr Float_t aALU2219[6]={26.982, 63.546, 54.938, 47.867, 50.941, 91.224}; Float_t zALU2219[6] ={13., 29., 25., 22., 23., 40.}; Float_t wALU2219[6] ={0.93, 0.063, 0.003, 0.0006, 0.001, 0.0018}; //--------------------------------- // // Silicon for ITS UPGRADE AliMaterial(2, "SILICON$",28.09 , 14.00 , 2.33 , 9.36 , 45.); // // Berillium AliMaterial(5, "BERILLIUM$", 9.01, 4., 1.848, 35.3, 36.7); // // Carbon AliMaterial(6, "CARBON$ ", 12.01, 6., 2.265, 18.8, 49.9); // // Aluminum AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); // // Copper AliMaterial(10, "COPPER", 63.55, 29, 8.96, 1.43, 85.6/8.96); // // Air AliMixture(15, "AIR$ ", aAir, zAir, dAir, 4, wAir); AliMixture(35, "AIR_HIGH$ ", aAir, zAir, dAir, 4, wAir); // // Vacuum AliMixture(16, "VACUUM$ ", aAir, zAir, dAir1, 4, wAir); // // stainless Steel AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); // // reduced density steel to approximate pump getter material AliMixture(20, "GETTER$", asteel, zsteel, 1.00, 4, wsteel); // Al-Be alloy // AliMixture(21, "AlBe$", aAlBe, zAlBe, 2.07, 2, wAlBe); // Polyamid // AliMixture(22, "PA$", aPA, zPA, 1.14, -4, wPA); // // Kapton AliMixture(23, "KAPTON", aKapton, zKapton, dKapton, 4, wKapton); // Anticorodal AliMixture(24, "ANTICORODAL", aaco, zaco, 2.66, 3, waco); // // Insulation powder AliMixture(14, "INSULATION0$", ains, zins, 0.41, 4, wins); AliMixture(34, "INSULATION1$", ains, zins, 0.41, 4, wins); AliMixture(54, "INSULATION2$", ains, zins, 0.41, 4, wins); // NEG AliMixture(25, "NEG COATING", aNEG, zNEG, dNEG, -3, wNEG); //--------------------------------- // Aluminium AA5083 for MFT AliMixture(63, "ALUMINIUM5083$",aALU5083,zALU5083, 2.66 ,4,wALU5083); // from aubertduval.fr // Aluminium AA2219 for MFT AliMixture(64, "ALUMINIUM2219$",aALU2219,zALU2219, 2.84 ,6,wALU2219); // from aubertduval.fr //--------------------------------- // Polyimide Film // AliMixture(65, "PI$", aPI, zPI, 1.42, -4, wPI); //--------------------------------- // Carbon Fiber M55J AliMaterial(66,"M55J6K$",12.0107,6,1.92,999,999); // Rohacell C9 H13 N1 O2 0.03 g/cm^3 AliMixture(67,"Rohacell$", aRohacell, zRohacell, 0.03, -4, wRohacell); // **************** // Defines tracking media parameters. // Float_t epsil = .001; // Tracking precision, Float_t stemax = -0.01; // Maximum displacement for multiple scat Float_t tmaxfd = -20.; // Maximum angle due to field deflection Float_t deemax = -.3; // Maximum fractional energy loss, DLS Float_t stmin = -.8; // *************** // // Silicon for ITS UPGRADE AliMedium(2, "SILICON", 2, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Beryllium AliMedium(5, "BE", 5, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Carbon AliMedium(6, "C", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Aluminum AliMedium(9, "ALU", 9, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Copper AliMedium(10, "CU", 10, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Air AliMedium(15, "AIR", 15, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(35, "AIR_HIGH",35, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Vacuum AliMedium(16, "VACUUM", 16, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Steel AliMedium(19, "INOX", 19, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Getter AliMedium(20, "GETTER", 20, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // AlBe - Aloy AliMedium(21, "AlBe" , 21, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // Polyamid AliMedium(22, "PA" , 22, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Antocorodal AliMedium(24, "ANTICORODAL", 24, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Insulation Powder AliMedium(14, "INS_C0 ", 14, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(34, "INS_C1 ", 34, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(54, "INS_C2 ", 54, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // KAPTON AliMedium(23, "KAPTON", 23, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // // NEG AliMedium(25, "NEG COATING", 25, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); //----------------- for the MFT ---------------------- AliMedium(63,"AA5083", 63, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(64,"AA2219", 64, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); //---------------------------------------------------- AliMedium(65,"POLYIMIDE", 65, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); //--------------------------------- // Carbon Fiber M55J AliMedium(66, "M55J6K",66,0,isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); // Rohacell AliMedium(67,"ROHACELL",67,0,isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin); } TGeoPcon* AliPIPEv4::MakeMotherFromTemplate(TGeoPcon* shape, Int_t imin, Int_t imax, Float_t r0, Int_t nz) { // // Create a mother shape from a template setting some min radii to 0 // Int_t nz0 = shape->GetNz(); // if nz > -1 the number of planes is given by nz if (nz != -1) nz0 = nz; TGeoPcon* mother = new TGeoPcon(0., 360., nz0); if (imin == -1 || imax == -1) { imin = 0; imax = shape->GetNz(); } else if (imax >= nz0) { imax = nz0 - 1; printf("Warning: imax reset to nz-1 %5d %5d %5d %5d\n", imin, imax, nz, nz0); } for (Int_t i = 0; i < shape->GetNz(); i++) { Double_t rmin = shape->GetRmin(i); if ((i >= imin) && (i <= imax) ) rmin = r0; Double_t rmax = shape->GetRmax(i); Double_t z = shape->GetZ(i); mother->DefineSection(i, z, rmin, rmax); } return mother; } TGeoPcon* AliPIPEv4::MakeInsulationFromTemplate(TGeoPcon* shape) { // // Create an beam pipe insulation layer shape from a template // Int_t nz = shape->GetNz(); TGeoPcon* insu = new TGeoPcon(0., 360., nz); for (Int_t i = 0; i < nz; i++) { Double_t z = shape->GetZ(i); Double_t rmin = shape->GetRmin(i); Double_t rmax = shape->GetRmax(i); rmax += 0.5; shape->DefineSection(i, z, rmin, rmax); rmin = rmax - 0.5; insu->DefineSection(i, z, rmin, rmax); } return insu; } TGeoVolume* AliPIPEv4::MakeBellow(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t dU, Float_t rPlie, Float_t dPlie) { // nc Number of convolution // rMin Inner radius of the bellow // rMax Outer radius of the bellow // dU Undulation length // rPlie Plie radius // dPlie Plie thickness const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); //const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); const TGeoMedium* kMedAlu5083 = gGeoManager->GetMedium("PIPE_AA5083"); //fm char name[64], nameA[64], nameB[64], bools[64]; snprintf(name, 64, "%sBellowUS", ext); TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac); // // Upper part of the undulation // TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusU", ext); shPlieTorusU->SetName(nameA); TGeoTube* shPlieTubeU = new TGeoTube (rMax - rPlie, rMax, rPlie); snprintf(nameB, 64, "%sTubeU", ext); shPlieTubeU->SetName(nameB); snprintf(name, 64, "%sUpperPlie", ext); snprintf(bools, 64, "%s*%s", nameA, nameB); TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleU = new TGeoVolume(name, shUpperPlie, kMedAlu5083); voWiggleU->SetLineColor(kOrange); // fm // Lower part of the undulation TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusL", ext); shPlieTorusL->SetName(nameA); TGeoTube* shPlieTubeL = new TGeoTube (rMin, rMin + rPlie, rPlie); snprintf(nameB, 64, "%sTubeL", ext); shPlieTubeL->SetName(nameB); snprintf(name, 64, "%sLowerPlie", ext); snprintf(bools, 64, "%s*%s", nameA, nameB); TGeoCompositeShape* shLowerPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleL = new TGeoVolume(name, shLowerPlie, kMedAlu5083); voWiggleL->SetLineColor(kOrange); // fm // Connection between upper and lower part of undulation snprintf(name, 64, "%sPlieConn1", ext); TGeoVolume* voWiggleC1 = new TGeoVolume(name, new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie/2.), kMedAlu5083); voWiggleC1->SetLineColor(kOrange); // fm // One wiggle Float_t dz = rPlie - dPlie / 2.; Float_t z0 = - dPlie / 2.; snprintf(name, 64, "%sWiggle", ext); TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name); asWiggle->AddNode(voWiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 += dz; asWiggle->AddNode(voWiggleL , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = - dU / 2.+ rPlie; ////////////voBellow->AddNode(voWiggleL, 2, new TGeoTranslation(0., 0., z0)); removing the first 1/2 plie, fm z0 += rPlie; Float_t zsh = 4. * rPlie - 2. * dPlie; for (Int_t iw = 0; iw < nc; iw++) { Float_t zpos = z0 + iw * zsh; voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos - dPlie)); } return voBellow; } TGeoVolume* AliPIPEv4::MakeBellowCside(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t rPlie, Float_t dPlie) { // nc Number of convolution // rMin Inner radius of the bellow // rMax Outer radius of the bellow // dU Undulation length // rPlie Plie radius // dPlie Plie thickness const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); //const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); const TGeoMedium* kMedAlu5083 = gGeoManager->GetMedium("PIPE_AA5083"); //fm Float_t dU = nc * (4.*rPlie - 2. *dPlie); char name[64], nameA[64], nameB[64], bools[64]; snprintf(name, 64, "%sBellowUS", ext); // TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac); TGeoVolumeAssembly *voBellow = new TGeoVolumeAssembly(name); // // Upper part of the undulation // TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusU", ext); shPlieTorusU->SetName(nameA); TGeoTube* shPlieTubeU = new TGeoTube (rMax - rPlie, rMax, rPlie); snprintf(nameB, 64, "%sTubeU", ext); shPlieTubeU->SetName(nameB); snprintf(name, 64, "%sUpperPlie", ext); snprintf(bools, 64, "%s*%s", nameA, nameB); TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleU = new TGeoVolume(name, shUpperPlie, kMedAlu5083); voWiggleU->SetLineColor(kOrange); // fm // First Lower part of the ondulation TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie); snprintf(nameA, 64, "%sTorusL", ext); shPlieTorusL->SetName(nameA); TGeoTranslation *t1 = new TGeoTranslation("t1",0,0,-rPlie/2.); t1->RegisterYourself(); TGeoTube* shPlieTubeL = new TGeoTube (rMin, rMin + rPlie, rPlie/2.); snprintf(nameB, 64, "%sTubeL", ext); shPlieTubeL->SetName(nameB); snprintf(name, 64, "%sLowerPlie", ext); snprintf(bools, 64, "%s*%s:t1", nameA, nameB); TGeoCompositeShape* shLowerPlie1 = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleL1 = new TGeoVolume(name, shLowerPlie1, kMedAlu5083); voWiggleL1->SetLineColor(kOrange); // fm // Second Lower part of the undulation TGeoTranslation *t2 = new TGeoTranslation("t2",0,0,rPlie/2.); t2->RegisterYourself(); snprintf(bools, 64, "%s*%s:t2", nameA, nameB); TGeoCompositeShape* shLowerPlie2 = new TGeoCompositeShape(name, bools); TGeoVolume* voWiggleL2 = new TGeoVolume(name, shLowerPlie2, kMedAlu5083); voWiggleL2->SetLineColor(kOrange); // fm // Connection between upper and lower part of undulation snprintf(name, 64, "%sPlieConn1", ext); TGeoVolume* voWiggleC1 = new TGeoVolume(name, new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie/2.), kMedAlu5083); voWiggleC1->SetLineColor(kOrange); // fm // // Vacuum Part // //--Upper part of the ondulation TGeoTorus* vacPlieTorusU = new TGeoTorus(rMax - rPlie, 0., rPlie- dPlie); snprintf(nameA, 64, "%svacTorusU", ext); vacPlieTorusU->SetName(nameA); TGeoTube* vacPlieTubeU = new TGeoTube (0., rMax- rPlie, rPlie-dPlie); snprintf(nameB, 64, "%svacTubeU", ext); vacPlieTubeU->SetName(nameB); snprintf(name, 64, "%svacUpperPlie", ext); snprintf(bools, 64, "%s+%s", nameA, nameB); TGeoCompositeShape* vacUpperPlie = new TGeoCompositeShape(name, bools); TGeoVolume* voVacWiggleU = new TGeoVolume(name, vacUpperPlie, kMedVac); voVacWiggleU->SetVisibility(0); // First Lower part of the undulation TGeoTorus* vacPlieTorusL = new TGeoTorus(rMin + rPlie, 0., rPlie); snprintf(nameA, 64, "%svacTorusL", ext); vacPlieTorusL->SetName(nameA); TGeoTube* vacPlieTubeL = new TGeoTube (0., rMin + rPlie, rPlie/2.); snprintf(nameB, 64, "%svacTubeL", ext); vacPlieTubeL->SetName(nameB); snprintf(name, 64, "%svacLowerPlie", ext); snprintf(bools, 64, "%s:t1-%s", nameB, nameA); TGeoCompositeShape* vacLowerPlie1 = new TGeoCompositeShape(name, bools); TGeoVolume* voVacWiggleL1 = new TGeoVolume(name, vacLowerPlie1, kMedVac); voVacWiggleL1->SetVisibility(0); // Second Lower part of the undulation snprintf(bools, 64, "%s:t2-%s", nameB, nameA); TGeoCompositeShape* vacLowerPlie2 = new TGeoCompositeShape(name, bools); TGeoVolume* voVacWiggleL2 = new TGeoVolume(name, vacLowerPlie2, kMedVac); voVacWiggleL2->SetVisibility(0); // One wiggle Float_t dz = rPlie - dPlie / 2.; Float_t z0 = 2.*rPlie; snprintf(name, 64, "%sWiggle", ext); TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name); asWiggle->AddNode(voWiggleL1 , 1 , new TGeoTranslation(0., 0., z0)); asWiggle->AddNode(voVacWiggleL1 , 1 , new TGeoTranslation(0., 0., z0)); z0 -= dz; asWiggle->AddNode(voWiggleC1, 1 , new TGeoTranslation(0., 0., z0)); z0 -= dz; asWiggle->AddNode(voWiggleU, 1 , new TGeoTranslation(0., 0., z0)); asWiggle->AddNode(voVacWiggleU, 1 , new TGeoTranslation(0., 0., z0)); z0 -= dz; asWiggle->AddNode(voWiggleC1, 2 , new TGeoTranslation(0., 0., z0)); z0 -= dz; asWiggle->AddNode(voWiggleL2 , 1 , new TGeoTranslation(0., 0., z0)); asWiggle->AddNode(voVacWiggleL2 , 1 , new TGeoTranslation(0., 0., z0)); // Positioning of the volumes z0 = + dU / 2.; Float_t zsh = 4. * dz; //for (Int_t iw = 0; iw < 1; iw++) { for (Int_t iw = 0; iw < nc; iw++) { Float_t zpos = z0 - iw * zsh; voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos)); } return voBellow; } //TGeoVolume* AliPIPEv4::MakeBellowCside(const char* ext, Int_t nc, Float_t rMin, Float_t rMax, Float_t dU, Float_t rPlie, Float_t dPlie) //{ // // nc Number of convolution // // rMin Inner radius of the bellow // // rMax Outer radius of the bellow // // dU Undulation length // // rPlie Plie radius // // dPlie Plie thickness // const TGeoMedium* kMedVac = gGeoManager->GetMedium("PIPE_VACUUM"); // //const TGeoMedium* kMedSteel = gGeoManager->GetMedium("PIPE_INOX"); // const TGeoMedium* kMedAlu5083 = gGeoManager->GetMedium("PIPE_AA5083"); //fm // // char name[64], nameA[64], nameB[64], bools[64]; // snprintf(name, 64, "%sBellowUS", ext); // TGeoVolume* voBellow = new TGeoVolume(name, new TGeoTube(rMin, rMax, dU/2.), kMedVac); // // // // Upper part of the undulation // // // // TGeoTorus* shPlieTorusU = new TGeoTorus(rMax - rPlie, rPlie - dPlie, rPlie); // snprintf(nameA, 64, "%sTorusU", ext); // shPlieTorusU->SetName(nameA); // TGeoTube* shPlieTubeU = new TGeoTube (rMax - rPlie, rMax, rPlie); // snprintf(nameB, 64, "%sTubeU", ext); // shPlieTubeU->SetName(nameB); // snprintf(name, 64, "%sUpperPlie", ext); // snprintf(bools, 64, "%s*%s", nameA, nameB); // TGeoCompositeShape* shUpperPlie = new TGeoCompositeShape(name, bools); // // TGeoVolume* voWiggleU = new TGeoVolume(name, shUpperPlie, kMedAlu5083); // voWiggleU->SetLineColor(kOrange); // fm // // // First Lower part of the undulation // TGeoTorus* shPlieTorusL = new TGeoTorus(rMin + rPlie, rPlie - dPlie, rPlie); // snprintf(nameA, 64, "%sTorusL", ext); // shPlieTorusL->SetName(nameA); // TGeoTranslation *t1 = new TGeoTranslation("t1",0,0,-rPlie/2.); // t1->RegisterYourself(); // // TGeoTube* shPlieTubeL = new TGeoTube (rMin, rMin + rPlie, rPlie/2.); // snprintf(nameB, 64, "%sTubeL", ext); // shPlieTubeL->SetName(nameB); // snprintf(name, 64, "%sLowerPlie", ext); // snprintf(bools, 64, "%s*%s:t1", nameA, nameB); // TGeoCompositeShape* shLowerPlie1 = new TGeoCompositeShape(name, bools); // // TGeoVolume* voWiggleL1 = new TGeoVolume(name, shLowerPlie1, kMedAlu5083); // voWiggleL1->SetLineColor(kOrange); // fm // // // Second Lower part of the undulation // TGeoTranslation *t2 = new TGeoTranslation("t2",0,0,rPlie/2.); // t2->RegisterYourself(); // // snprintf(bools, 64, "%s*%s:t2", nameA, nameB); // TGeoCompositeShape* shLowerPlie2 = new TGeoCompositeShape(name, bools); // // TGeoVolume* voWiggleL2 = new TGeoVolume(name, shLowerPlie2, kMedAlu5083); // voWiggleL2->SetLineColor(kOrange); // fm // // // Connection between upper and lower part of undulation // snprintf(name, 64, "%sPlieConn1", ext); // TGeoVolume* voWiggleC1 = new TGeoVolume(name, new TGeoTube(rMin + rPlie, rMax - rPlie, dPlie/2.), kMedAlu5083); // voWiggleC1->SetLineColor(kOrange); // fm // // // One wiggle // Float_t dz = rPlie - dPlie / 2.; // Float_t z0 = 2.*rPlie; // snprintf(name, 64, "%sWiggle", ext); // TGeoVolumeAssembly* asWiggle = new TGeoVolumeAssembly(name); // // asWiggle->AddNode(voWiggleL1 , 1 , new TGeoTranslation(0., 0., z0)); // // z0 -= dz; // // asWiggle->AddNode(voWiggleC1, 1 , new TGeoTranslation(0., 0., z0)); // // z0 -= dz; // // asWiggle->AddNode(voWiggleU, 1 , new TGeoTranslation(0., 0., z0)); // // z0 -= dz; // // asWiggle->AddNode(voWiggleC1, 2 , new TGeoTranslation(0., 0., z0)); // // z0 -= dz; // // asWiggle->AddNode(voWiggleL2 , 1 , new TGeoTranslation(0., 0., z0)); // // Positioning of the volumes // z0 = + dU / 2.; // Float_t zsh = 4. * dz; // for (Int_t iw = 0; iw < 1; iw++) { // // for (Int_t iw = 0; iw < nc; iw++) { // Float_t zpos = z0 - iw * zsh; // voBellow->AddNode(asWiggle, iw + 1, new TGeoTranslation(0., 0., zpos)); // // } // return voBellow; //}