/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /********************************************************************* * T0 reconstruction and filling ESD * - reconstruct mean time (interation time) * - vertex position * - multiplicity ********************************************************************/ #include #include "AliLog.h" #include "AliT0RecPoint.h" #include "AliRawReader.h" #include "AliT0RawReader.h" #include "AliT0digit.h" #include "AliT0Reconstructor.h" #include "AliT0Parameters.h" #include "AliT0Calibrator.h" #include "AliESDfriend.h" #include "AliESDTZERO.h" #include "AliESDTZEROfriend.h" #include "AliLog.h" #include "AliCDBEntry.h" #include "AliCDBManager.h" #include "AliCTPTimeParams.h" #include "AliLHCClockPhase.h" #include "AliT0CalibSeasonTimeShift.h" #include "AliESDRun.h" #include #include #include #include ClassImp(AliT0Reconstructor) AliT0Reconstructor:: AliT0Reconstructor(): AliReconstructor(), fdZonA(0), fdZonC(0), fZposition(0), fParam(NULL), fAmpLEDrec(), fQTC(0), fAmpLED(0), fCalib(), fLatencyHPTDC(9000), fLatencyL1(0), fLatencyL1A(0), fLatencyL1C(0), fGRPdelays(0), fTimeMeanShift(0x0), fTimeSigmaShift(0x0), fESDTZEROfriend(NULL), fESDTZERO(NULL) { for (Int_t i=0; i<24; i++) fTime0vertex[i] =0; //constructor AliCDBEntry *entry = AliCDBManager::Instance()->Get("GRP/CTP/CTPtiming"); if (!entry) AliFatal("CTP timing parameters are not found in OCDB !"); AliCTPTimeParams *ctpParams = (AliCTPTimeParams*)entry->GetObject(); Float_t l1Delay = (Float_t)ctpParams->GetDelayL1L0()*25.0; AliCDBEntry *entry1 = AliCDBManager::Instance()->Get("GRP/CTP/TimeAlign"); if (!entry1) AliFatal("CTP time-alignment is not found in OCDB !"); AliCTPTimeParams *ctpTimeAlign = (AliCTPTimeParams*)entry1->GetObject(); l1Delay += ((Float_t)ctpTimeAlign->GetDelayL1L0()*25.0); AliCDBEntry *entry4 = AliCDBManager::Instance()->Get("GRP/Calib/LHCClockPhase"); if (!entry4) AliFatal("LHC clock-phase shift is not found in OCDB !"); AliLHCClockPhase *phase = (AliLHCClockPhase*)entry4->GetObject(); fGRPdelays = l1Delay - phase->GetMeanPhase(); AliCDBEntry *entry5 = AliCDBManager::Instance()->Get("T0/Calib/TimeAdjust"); if (entry5) { AliT0CalibSeasonTimeShift *timeshift = (AliT0CalibSeasonTimeShift*)entry5->GetObject(); fTimeMeanShift = timeshift->GetT0Means(); fTimeSigmaShift = timeshift->GetT0Sigmas(); } else AliWarning("Time Adjust is not found in OCDB !"); fParam = AliT0Parameters::Instance(); fParam->Init(); for (Int_t i=0; i<24; i++){ TGraph* gr = fParam ->GetAmpLEDRec(i); if (gr) fAmpLEDrec.AddAtAndExpand(gr,i) ; TGraph* gr1 = fParam ->GetAmpLED(i); if (gr1) fAmpLED.AddAtAndExpand(gr1,i) ; TGraph* gr2 = fParam ->GetQTC(i); if (gr2) fQTC.AddAtAndExpand(gr2,i) ; fTime0vertex[i] = fParam->GetCFD(i); AliDebug(2,Form("OCDB mean CFD time %i %f \n",i, fTime0vertex[i])); } fLatencyL1 = fParam->GetLatencyL1(); fLatencyL1A = fParam->GetLatencyL1A(); fLatencyL1C = fParam->GetLatencyL1C(); fLatencyHPTDC = fParam->GetLatencyHPTDC(); AliDebug(2,Form(" LatencyL1 %f latencyL1A %f latencyL1C %f latencyHPTDC %f \n",fLatencyL1, fLatencyL1A, fLatencyL1C, fLatencyHPTDC)); for (Int_t i=0; i<24; i++) { if( fTime0vertex[i] < 500 || fTime0vertex[i] > 50000) fTime0vertex[i] =( 1000.*fLatencyHPTDC - 1000.*fLatencyL1 + 1000.*fGRPdelays)/24.4; } //here real Z position fdZonC = TMath::Abs(fParam->GetZPosition("T0/C/PMT1")); fdZonA = TMath::Abs(fParam->GetZPosition("T0/A/PMT15")); fCalib = new AliT0Calibrator(); fESDTZEROfriend = new AliESDTZEROfriend(); fESDTZERO = new AliESDTZERO(); } //_____________________________________________________________________________ void AliT0Reconstructor::Reconstruct(TTree*digitsTree, TTree*clustersTree) const { // T0 digits reconstruction Int_t refAmp = Int_t (GetRecoParam()->GetRefAmp()); TArrayI * timeCFD = new TArrayI(24); TArrayI * timeLED = new TArrayI(24); TArrayI * chargeQT0 = new TArrayI(24); TArrayI * chargeQT1 = new TArrayI(24); Float_t channelWidth = fParam->GetChannelWidth() ; Float_t meanVertex = fParam->GetMeanVertex(); Float_t c = 0.0299792; // cm/ps Double32_t vertex = 9999999; Double32_t timeDiff=999999, meanTime=999999, timeclock=999999; AliDebug(1,Form("Start DIGITS reconstruction ")); Float_t lowAmpThreshold = GetRecoParam()->GetLow(200); Float_t highAmpThreshold = GetRecoParam()->GetHigh(200); Int_t badpmt = GetRecoParam()->GetRefPoint(); TBranch *brDigits=digitsTree->GetBranch("T0"); AliT0digit *fDigits = new AliT0digit() ; if (brDigits) { brDigits->SetAddress(&fDigits); }else{ AliError(Form("EXEC Branch T0 digits not found")); return; } digitsTree->GetEvent(0); digitsTree->GetEntry(0); brDigits->GetEntry(0); fDigits->GetTimeCFD(*timeCFD); fDigits->GetTimeLED(*timeLED); fDigits->GetQT0(*chargeQT0); fDigits->GetQT1(*chargeQT1); Int_t onlineMean = fDigits->MeanTime(); Bool_t tr[5]; for (Int_t i=0; i<5; i++) tr[i]=false; Double32_t besttimeA=999999; Double32_t besttimeC=999999; Int_t pmtBestA=99999; Int_t pmtBestC=99999; AliT0RecPoint* frecpoints= new AliT0RecPoint (); clustersTree->Branch( "T0", "AliT0RecPoint" ,&frecpoints); Float_t time[24], adc[24], adcmip[24]; for (Int_t ipmt=0; ipmt<24; ipmt++) { if(timeCFD->At(ipmt)>0 && ipmt != badpmt) { if(( chargeQT1->At(ipmt) - chargeQT0->At(ipmt))>0) adc[ipmt] = chargeQT1->At(ipmt) - chargeQT0->At(ipmt); else adc[ipmt] = 0; time[ipmt] = fCalib-> WalkCorrection(refAmp, ipmt, Int_t(adc[ipmt]), timeCFD->At(ipmt)) ; Double_t sl = Double_t(timeLED->At(ipmt) - timeCFD->At(ipmt)); // time[ipmt] = fCalib-> WalkCorrection( refAmp,ipmt, Int_t(sl), timeCFD->At(ipmt) ) ; AliDebug(5,Form(" ipmt %i QTC %i , time in chann %i (led-cfd) %i ", ipmt, Int_t(adc[ipmt]) ,Int_t(time[ipmt]),Int_t( sl))); Double_t ampMip =((TGraph*)fAmpLED.At(ipmt))->Eval(sl); Double_t qtMip = ((TGraph*)fQTC.At(ipmt))->Eval(adc[ipmt]); AliDebug(5,Form(" Amlitude in MIPS LED %f , QTC %f in channels %f\n ",ampMip,qtMip, adc[ipmt])); frecpoints->SetTime(ipmt, Float_t(time[ipmt]) ); frecpoints->SetAmpLED(ipmt, Float_t( ampMip)); frecpoints->SetAmp(ipmt, Float_t(qtMip)); adcmip[ipmt]=qtMip; } else { time[ipmt] = 0; adc[ipmt] = 0; adcmip[ipmt] = 0; } } for (Int_t ipmt=0; ipmt<12; ipmt++){ if(time[ipmt] > 1 && ipmt != badpmt && adcmip[ipmt]>lowAmpThreshold && adcmip[ipmt] 1 && ipmt != badpmt && adcmip[ipmt]>lowAmpThreshold && adcmip[ipmt]SetTimeBestA(Int_t(besttimeA *channelWidth - fdZonA/c)); tr[1]=true; } if( besttimeC < 999999 ) { frecpoints->SetTimeBestC(Int_t(besttimeC *channelWidth - fdZonA/c)); tr[2]=true; } AliDebug(5,Form(" besttimeA %f ch, besttimeC %f ch",besttimeA, besttimeC)); if(besttimeA <999999 && besttimeC < 999999 ){ // timeDiff = (besttimeC - besttimeA)*channelWidth; timeDiff = (besttimeA - besttimeC)*channelWidth; meanTime = (besttimeA + besttimeC)/2;// * channelWidth); timeclock = meanTime *channelWidth -fdZonA/c ; vertex = meanVertex - c*(timeDiff)/2.;// + (fdZonA - fdZonC)/2; tr[0]=true; } frecpoints->SetVertex(vertex); frecpoints->SetMeanTime(meanTime); frecpoints->SetT0clock(timeclock); frecpoints->SetT0Trig(tr); AliDebug(5,Form("T0 triggers %d %d %d %d %d",tr[0],tr[1],tr[2],tr[3],tr[4])); //online mean frecpoints->SetOnlineMean(Int_t(onlineMean)); AliDebug(10,Form(" timeDiff %f #channel, meanTime %f #channel, vertex %f cm online mean %i timeclock %f ps",timeDiff, meanTime,vertex, Int_t(onlineMean), timeclock)); clustersTree->Fill(); delete timeCFD; delete timeLED; delete chargeQT0; delete chargeQT1; } //_______________________________________________________________________ void AliT0Reconstructor::Reconstruct(AliRawReader* rawReader, TTree*recTree) const { // T0 raw -> // Float_t meanOrA = fTime0vertex[0] + 587; Float_t meanOrC = fTime0vertex[0] + 678; Float_t meanTVDC = fTime0vertex[0] + 2564; Int_t badpmt[24]; //Bad channel for (Int_t i=0; i<24; i++) { badpmt[i] = GetRecoParam() -> GetBadChannels(i); } Int_t low[500], high[500]; Float_t timefull=-9999;; Float_t tvdc = -9999; Float_t ora = -9999; Float_t orc = -9999; Int_t allData[110][5]; Int_t timeCFD[24], timeLED[24], chargeQT0[24], chargeQT1[24]; Double32_t timeDiff, meanTime, timeclock; timeDiff = meanTime = timeclock = 9999999; Float_t c = 29.9792458; // cm/ns Double32_t vertex = 9999999; Int_t onlineMean=0; Float_t meanVertex = 0; for (Int_t i0=0; i0<24; i0++) { low[i0] = Int_t(fTime0vertex[i0]) - 200; high[i0] = Int_t(fTime0vertex[i0]) + 200; } for (Int_t i0=0; i0<110; i0++) for (Int_t j0=0; j0<5; j0++) allData[i0][j0]=0; Float_t lowAmpThreshold = GetRecoParam()->GetAmpLowThreshold(); Float_t highAmpThreshold = GetRecoParam()->GetAmpHighThreshold(); Double32_t besttimeA=9999999; Double32_t besttimeC=9999999; Int_t pmtBestA=99999; Int_t pmtBestC=99999; Float_t channelWidth = fParam->GetChannelWidth() ; AliT0RecPoint* frecpoints= new AliT0RecPoint (); recTree->Branch( "T0", "AliT0RecPoint" ,&frecpoints); AliDebug(10," before read data "); AliT0RawReader myrawreader(rawReader); UInt_t type =rawReader->GetType(); if (!myrawreader.Next()) AliDebug(1,Form(" no raw data found!!")); else { for (Int_t i=0; i<24; i++) { timeCFD[i]=0; timeLED[i]=0; chargeQT0[i]=0; chargeQT1[i]=0; } Int_t fBCID=Int_t (rawReader->GetBCID()); Int_t trmbunch= myrawreader.GetTRMBunchID(); AliDebug(10,Form(" CDH BC ID %i, TRM BC ID %i \n", fBCID, trmbunch )); if(type == 7 ) { //only physics for (Int_t i=0; i<107; i++) { for (Int_t iHit=0; iHit<5; iHit++) { allData[i][iHit] = myrawreader.GetData(i,iHit); } } Int_t ref=0; for (Int_t in=0; in<12; in++) { for (Int_t iHit=0; iHit<5; iHit++) { if(allData[in+1][iHit] > low[in] && allData[in+1][iHit] < high[in]) { timeCFD[in] = allData[in+1][iHit] ; break; } } for (Int_t iHit=0; iHit<5; iHit++) { if(allData[in+1+56][iHit] > low[in] && allData[in+1+56][iHit] < high[in]) { timeCFD[in+12] = allData[in+56+1][iHit] ; break; } } timeLED[in+12] = allData[in+68+1][0] ; timeLED[in] = allData[in+12+1][0] ; AliDebug(5, Form(" readed i %i cfdC %i cfdA %i ledC %i ledA%i ", in, timeCFD[in],timeCFD[in+12],timeLED[in], timeLED[in+12])); } for (Int_t in=0; in<12; in++) { chargeQT0[in]=allData[2*in+25][0]; chargeQT1[in]=allData[2*in+26][0]; AliDebug(25, Form(" readed Raw %i %i %i", in, chargeQT0[in],chargeQT1[in])); } for (Int_t in=12; in<24; in++) { chargeQT0[in]=allData[2*in+57][0]; chargeQT1[in]=allData[2*in+58][0]; AliDebug(25, Form(" readed Raw %i %i %i", in, chargeQT0[in],chargeQT1[in])); } onlineMean = allData[49][0]; Double32_t time[24], adc[24], adcmip[24], noncalibtime[24]; for (Int_t ipmt=0; ipmt<24; ipmt++) { if(timeCFD[ipmt] > 0 /* && badpmt[ipmt]==0*/ ){ //for simulated data //for physics data if(( chargeQT0[ipmt] - chargeQT1[ipmt])>0) { adc[ipmt] = chargeQT0[ipmt] - chargeQT1[ipmt]; } else adc[ipmt] = 0; // time[ipmt] = fCalib-> WalkCorrection(refAmp, ipmt, Int_t(adc[ipmt]), timeCFD[ipmt] ) ; time[ipmt] = fCalib-> WalkCorrection(Int_t (fTime0vertex[ipmt]), ipmt, Int_t(adc[ipmt]), timeCFD[ipmt] ) ; Double_t sl = timeLED[ipmt] - timeCFD[ipmt]; // time[ipmt] = fCalib-> WalkCorrection( refAmp,ipmt, Int_t(sl), timeCFD[ipmt] ) ; AliDebug(5,Form(" ipmt %i QTC %i , time in chann %i (led-cfd) %i ", ipmt, Int_t(adc[ipmt]) ,Int_t(time[ipmt]),Int_t( sl))); Double_t ampMip =( (TGraph*)fAmpLED.At(ipmt))->Eval(sl); Double_t qtMip = ((TGraph*)fQTC.At(ipmt))->Eval(adc[ipmt]); AliDebug(10,Form(" Amlitude in MIPS LED %f ; QTC %f; in channels %f\n ",ampMip,qtMip, adc[ipmt])); //bad peak removing frecpoints->SetTime(ipmt, Float_t(time[ipmt]) ); // frecpoints->SetTime(ipmt,Double32_t(timeCFD[ipmt])); frecpoints->SetAmp(ipmt, Double32_t( qtMip)); adcmip[ipmt]=qtMip; frecpoints->SetAmpLED(ipmt, Double32_t(ampMip)); noncalibtime[ipmt]= Double32_t (timeCFD[ipmt]); } else { time[ipmt] = 0; adc[ipmt] = 0; adcmip[ipmt] = 0; noncalibtime[ipmt] = 0; } } fESDTZEROfriend->SetT0timeCorr(noncalibtime) ; for (Int_t ipmt=0; ipmt<12; ipmt++){ if(time[ipmt] !=0 /*&& badpmt[ipmt]==0 */&& adcmip[ipmt]>lowAmpThreshold && adcmip[ipmt]lowAmpThreshold && adcmip[ipmt]SetTimeBestA((besttimeA * channelWidth)- 1000.*fLatencyHPTDC + 1000.*fLatencyL1A - 1000.*fGRPdelays - fTimeMeanShift[1] ); // frecpoints->SetTimeBestA((besttimeA * channelWidth- fTimeMeanShift[1])); if( besttimeC < 999999 ) frecpoints->SetTimeBestC((besttimeC * channelWidth)- 1000.*fLatencyHPTDC +1000.*fLatencyL1C - 1000.*fGRPdelays - fTimeMeanShift[2]); // frecpoints->SetTimeBestC((besttimeC * channelWidth - fTimeMeanShift[2])); AliDebug(5,Form(" pmtA %i besttimeA %f shift A %f ps, pmtC %i besttimeC %f shiftC %f ps", pmtBestA,besttimeA, fTimeMeanShift[1], pmtBestC, besttimeC,fTimeMeanShift[2])); if(besttimeA <999999 && besttimeC < 999999 ){ // timeDiff = ( besttimeA - besttimeC)* 0.001* channelWidth + fLatencyL1A - fLatencyL1C; timeclock = channelWidth * Float_t( besttimeA+besttimeC)/2. - 1000.*fLatencyHPTDC + 1000.*fLatencyL1 - 1000.*fGRPdelays - fTimeMeanShift[0] ; meanTime = (besttimeA+besttimeC-2.*Float_t(ref))/2.; timeDiff = ( besttimeA - besttimeC)* 0.001* channelWidth ; // timeclock = channelWidth * Float_t( besttimeA+besttimeC)/2. - fTimeMeanShift[0] ; vertex = meanVertex - c*(timeDiff)/2. ; //+ (fdZonA - fdZonC)/2; } } //if phys event AliDebug(10,Form(" timeDiff %f #channel, meanTime %f #channel, TOFmean%f vertex %f cm meanVertex %f online mean %i \n",timeDiff, meanTime,timeclock, vertex,meanVertex, onlineMean)); frecpoints->SetT0clock(timeclock); frecpoints->SetVertex(vertex); frecpoints->SetMeanTime(meanTime); frecpoints->SetOnlineMean(Int_t(onlineMean)); // Set triggers Bool_t tr[5]; Int_t trchan[5]= {50,51,52,55,56}; for (Int_t i=0; i<5; i++) tr[i]=false; for (Int_t itr=0; itr<5; itr++) { for (Int_t iHit=0; iHit<1; iHit++) { Int_t trr=trchan[itr]; if( allData[trr][iHit] > 0) tr[itr]=true; AliDebug(1,Form("Reconstruct ::: T0 triggers iHit %i tvdc %d orA %d orC %d centr %d semicentral %d",iHit, tr[0],tr[1],tr[2],tr[3],tr[4])); } } frecpoints->SetT0Trig(tr); for (Int_t iHit=0; iHit<5; iHit++) { if(allData[50][iHit]>0) tvdc = (Float_t(allData[50][iHit]) - meanTVDC) * channelWidth* 0.001; if(allData[51][iHit]>0) ora = (Float_t(allData[51][iHit]) - meanOrA) * channelWidth* 0.001; if(allData[52][iHit]>0) orc = (Float_t(allData[52][iHit]) - meanOrC) * channelWidth* 0.001; frecpoints->SetOrC( iHit, orc); frecpoints->SetOrA( iHit, ora); frecpoints->SetTVDC( iHit, tvdc); for (Int_t i0=0; i0<12; i0++) { timefull = -9999; if(allData[i0+1][iHit]>1) timefull = (Float_t(allData[i0+1][iHit])-fTime0vertex[i0])* channelWidth* 0.001; frecpoints->SetTimeFull(i0, iHit,timefull) ; // printf("i0 %d iHit %d data %d fTime0vertex %f timefull %f \n",i0, iHit, allData[i0+1][iHit], fTime0vertex[i0], timefull); } for (Int_t i0=12; i0<24; i0++) { timefull = -9999; if(allData[i0+45][iHit]>1) { timefull = (Float_t(allData[i0+45][iHit])-fTime0vertex[i0])* channelWidth* 0.001; } // printf("i0 %d iHit %d data %d fTime0vertex %f timefull %f \n",i0, iHit, allData[i0+45][iHit], fTime0vertex[i0], timefull); frecpoints->SetTimeFull(i0, iHit, timefull) ; } } //Set MPD if(allData[53][0]>0 && allData[54][0]) frecpoints->SetMultA(allData[53][0]-allData[54][0]); if(allData[105][0]>0 && allData[106][0]) frecpoints->SetMultC(allData[105][0]-allData[106][0]); } // if (else )raw data recTree->Fill(); if(frecpoints) delete frecpoints; } //____________________________________________________________ void AliT0Reconstructor::FillESD(TTree */*digitsTree*/, TTree *clustersTree, AliESDEvent *pESD) const { /*************************************************** Resonstruct digits to vertex position ****************************************************/ AliDebug(1,Form("Start FillESD T0")); if(!pESD) { AliError("No ESD Event"); return; } pESD ->SetT0spread(fTimeSigmaShift); Float_t channelWidth = fParam->GetChannelWidth() ; Float_t c = 0.0299792458; // cm/ps Float_t currentVertex=0, shift=0; Int_t ncont=-1; const AliESDVertex* vertex = pESD->GetPrimaryVertex(); if (!vertex) vertex = pESD->GetPrimaryVertexSPD(); if (!vertex) vertex = pESD->GetPrimaryVertexTPC(); if (!vertex) vertex = pESD->GetVertex(); if (vertex) { AliDebug(2, Form("Got %s (%s) from ESD: %f", vertex->GetName(), vertex->GetTitle(), vertex->GetZ())); currentVertex = vertex->GetZ(); ncont = vertex->GetNContributors(); if(ncont>0 ) { shift = currentVertex/c; } } TTree *treeR = clustersTree; AliT0RecPoint* frecpoints= new AliT0RecPoint (); if (!frecpoints) { AliError("Reconstruct Fill ESD >> no recpoints found"); return; } AliDebug(1,Form("Start FillESD T0")); TBranch *brRec = treeR->GetBranch("T0"); if (brRec) { brRec->SetAddress(&frecpoints); }else{ AliError(Form("EXEC Branch T0 rec not found")); return; } brRec->GetEntry(0); Double32_t amp[24], time[24], ampQTC[24], timecorr[24]; Double32_t* tcorr; for(Int_t i=0; i<24; i++) amp[i]=time[i]=ampQTC[i]=timecorr[i]=0; Double32_t timeClock[3]; Double32_t zPosition = frecpoints -> GetVertex(); Double32_t timeStart = frecpoints -> GetMeanTime(); timeClock[0] = frecpoints -> GetT0clock() ; timeClock[1] = frecpoints -> GetBestTimeA() + shift; timeClock[2] = frecpoints -> GetBestTimeC() - shift; for ( Int_t i=0; i<24; i++) { time[i] = frecpoints -> GetTime(i); // ps to ns // if ( time[i] >1) { if ( time[i] != 0) { ampQTC[i] = frecpoints -> GetAmp(i); amp[i] = frecpoints -> AmpLED(i); AliDebug(1,Form("T0: %i time %f ampQTC %f ampLED %f \n", i, time[i], ampQTC[i], amp[i])); } } Int_t trig= frecpoints ->GetT0Trig(); frecpoints->PrintTriggerSignals( trig); printf(" FillESD trigger %i \n",trig); fESDTZERO->SetT0Trig(trig); //pESD->SetT0Trig(trig); // pESD->SetT0zVertex(zPosition); //vertex Z position fESDTZERO->SetT0zVertex(zPosition); //vertex Z position Double32_t multA=frecpoints ->GetMultA(); Double32_t multC=frecpoints ->GetMultC(); // pESD->SetT0(multC); // multiplicity Cside // pESD->SetT0clock(multA); // multiplicity Aside fESDTZERO->SetMultA(multA); // for backward compatubility fESDTZERO->SetMultC(multC); // for backward compatubility for (Int_t iHit =0; iHit<5; iHit++ ) { AliDebug(1,Form("FillESD ::: iHit %i tvdc %f orA %f orC %f\n", iHit, frecpoints->GetTVDC(iHit), frecpoints->GetOrA(iHit), frecpoints->GetOrC(iHit) )); fESDTZERO->SetTVDC(iHit,frecpoints->GetTVDC(iHit)); fESDTZERO->SetOrA(iHit,frecpoints->GetOrA(iHit)); fESDTZERO->SetOrC(iHit,frecpoints->GetOrC(iHit)); for (Int_t i0=0; i0<24; i0++) { // if(frecpoints->GetTimeFull(i0,iHit)>0){ // printf("FillESD ::: iHit %i cfd %i time %f \n", iHit, i0, frecpoints->GetTimeFull(i0,iHit)); fESDTZERO->SetTimeFull(i0, iHit,frecpoints->GetTimeFull(i0,iHit)); // } } } for(Int_t i=0; i<3; i++) fESDTZERO->SetT0TOF(i,timeClock[i]); // interaction time (ns) fESDTZERO->SetT0time(time); // best TOF on each PMT fESDTZERO->SetT0amplitude(ampQTC); // number of particles(MIPs) on each PMT AliDebug(1,Form("T0: SPDshift %f Vertex %f (T0A+T0C)/2 %f #channels T0signal %f ns OrA %f ns OrC %f T0trig %i\n",shift, zPosition, timeStart, timeClock[0], timeClock[1], timeClock[2], trig)); if (pESD) { AliESDfriend *fr = (AliESDfriend*)pESD->FindListObject("AliESDfriend"); if (fr) { AliDebug(1, Form("Writing TZERO friend data to ESD tree")); // if (ncont>2) { tcorr = fESDTZEROfriend->GetT0timeCorr(); for ( Int_t i=0; i<24; i++) { if(i<12 && time[i]>1) timecorr[i] = tcorr[i] - shift/channelWidth; if(i>11 && time[i]>1) timecorr[i] = tcorr[i] + shift/channelWidth; if(time[i]>1) AliDebug(10,Form("T0 friend : %i time %f ampQTC %f ampLED %f \n", i, timecorr[i], ampQTC[i], amp[i])); } fESDTZEROfriend->SetT0timeCorr( timecorr) ; fESDTZEROfriend->SetT0ampLEDminCFD(amp); fESDTZEROfriend->SetT0ampQTC(ampQTC); fr->SetTZEROfriend(fESDTZEROfriend); // }// } pESD->SetTZEROData(fESDTZERO); } } // vertex in 3 sigma