/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // // Realisation of the TVirtualMC interface for the FLUKA code // (See official web side http://www.fluka.org/). // // This implementation makes use of the TGeo geometry modeller. // User configuration is via automatic generation of FLUKA input cards. // // Authors: // A. Fasso // E. Futo // A. Gheata // A. Morsch // #include #include "TFluka.h" #include "TCallf77.h" //For the fortran calls #include "Fdblprc.h" //(DBLPRC) fluka common #include "Fepisor.h" //(EPISOR) fluka common #include "Ffinuc.h" //(FINUC) fluka common #include "Fiounit.h" //(IOUNIT) fluka common #include "Fpaprop.h" //(PAPROP) fluka common #include "Fpart.h" //(PART) fluka common #include "Ftrackr.h" //(TRACKR) fluka common #include "Fpaprop.h" //(PAPROP) fluka common #include "Ffheavy.h" //(FHEAVY) fluka common #include "Fopphst.h" //(OPPHST) fluka common #include "Fstack.h" //(STACK) fluka common #include "Fstepsz.h" //(STEPSZ) fluka common #include "Fopphst.h" //(OPPHST) fluka common #include "TVirtualMC.h" #include "TMCProcess.h" #include "TGeoManager.h" #include "TGeoMaterial.h" #include "TGeoMedium.h" #include "TFlukaMCGeometry.h" #include "TGeoMCGeometry.h" #include "TFlukaCerenkov.h" #include "TFlukaConfigOption.h" #include "TFlukaScoringOption.h" #include "TLorentzVector.h" #include "TArrayI.h" // Fluka methods that may be needed. #ifndef WIN32 # define flukam flukam_ # define fluka_openinp fluka_openinp_ # define fluka_closeinp fluka_closeinp_ # define mcihad mcihad_ # define mpdgha mpdgha_ #else # define flukam FLUKAM # define fluka_openinp FLUKA_OPENINP # define fluka_closeinp FLUKA_CLOSEINP # define mcihad MCIHAD # define mpdgha MPDGHA #endif extern "C" { // // Prototypes for FLUKA functions // void type_of_call flukam(const int&); void type_of_call fluka_openinp(const int&, DEFCHARA); void type_of_call fluka_closeinp(const int&); int type_of_call mcihad(const int&); int type_of_call mpdgha(const int&); } // // Class implementation for ROOT // ClassImp(TFluka) // //---------------------------------------------------------------------------- // TFluka constructors and destructors. //______________________________________________________________________________ TFluka::TFluka() :TVirtualMC(), fVerbosityLevel(0), fInputFileName(""), fProcesses(0), fCuts(0), fUserScore(0) { // // Default constructor // fGeneratePemf = kFALSE; fNVolumes = 0; fCurrentFlukaRegion = -1; fGeom = 0; fMCGeo = 0; fMaterials = 0; fDummyBoundary = 0; fFieldFlag = 1; fStopped = 0; fStopEvent = 0; fStopRun = 0; fNEvent = 0; } //______________________________________________________________________________ TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) :TVirtualMC("TFluka",title, isRootGeometrySupported), fVerbosityLevel(verbosity), fInputFileName(""), fTrackIsEntering(0), fTrackIsExiting(0), fTrackIsNew(0), fProcesses(new TObjArray(100)), fCuts(new TObjArray(100)), fUserScore(new TObjArray(100)) { // create geometry interface if (fVerbosityLevel >=3) cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; SetCoreInputFileName(); SetInputFileName(); SetGeneratePemf(kFALSE); fNVolumes = 0; fCurrentFlukaRegion = -1; fDummyBoundary = 0; fFieldFlag = 1; fGeneratePemf = kFALSE; fMCGeo = new TGeoMCGeometry("MCGeo", "TGeo Implementation of VirtualMCGeometry", kTRUE); fGeom = new TFlukaMCGeometry("geom", "FLUKA VMC Geometry"); if (verbosity > 2) fGeom->SetDebugMode(kTRUE); fMaterials = 0; fStopped = 0; fStopEvent = 0; fStopRun = 0; fNEvent = 0; } //______________________________________________________________________________ TFluka::~TFluka() { // Destructor if (fVerbosityLevel >=3) cout << "<== TFluka::~TFluka() destructor called." << endl; delete fGeom; delete fMCGeo; if (fCuts) { fCuts->Delete(); delete fCuts; } if (fProcesses) { fProcesses->Delete(); delete fProcesses; } } // //______________________________________________________________________________ // TFluka control methods //______________________________________________________________________________ void TFluka::Init() { // // Geometry initialisation // if (fVerbosityLevel >=3) cout << "==> TFluka::Init() called." << endl; if (!gGeoManager) new TGeoManager("geom", "FLUKA geometry"); fApplication->ConstructGeometry(); TGeoVolume *top = (TGeoVolume*)gGeoManager->GetListOfVolumes()->First(); gGeoManager->SetTopVolume(top); gGeoManager->CloseGeometry("di"); gGeoManager->DefaultColors(); // to be removed fNVolumes = fGeom->NofVolumes(); fGeom->CreateFlukaMatFile("flukaMat.inp"); if (fVerbosityLevel >=3) { printf("== Number of volumes: %i\n ==", fNVolumes); cout << "\t* InitPhysics() - Prepare input file to be called" << endl; } // now we have TGeo geometry created and we have to patch FlukaVmc.inp // with the material mapping file FlukaMat.inp } //______________________________________________________________________________ void TFluka::FinishGeometry() { // // Build-up table with region to medium correspondance // if (fVerbosityLevel >=3) { cout << "==> TFluka::FinishGeometry() called." << endl; printf("----FinishGeometry - nothing to do with TGeo\n"); cout << "<== TFluka::FinishGeometry() called." << endl; } } //______________________________________________________________________________ void TFluka::BuildPhysics() { // // Prepare FLUKA input files and call FLUKA physics initialisation // if (fVerbosityLevel >=3) cout << "==> TFluka::BuildPhysics() called." << endl; // Prepare input file with the current physics settings InitPhysics(); cout << "\t* InitPhysics() - Prepare input file was called" << endl; if (fVerbosityLevel >=2) cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') << ") in fluka..." << endl; GLOBAL.lfdrtr = true; if (fVerbosityLevel >=2) cout << "\t* Opening file " << fInputFileName << endl; const char* fname = fInputFileName; fluka_openinp(lunin, PASSCHARA(fname)); if (fVerbosityLevel >=2) cout << "\t* Calling flukam..." << endl; flukam(1); if (fVerbosityLevel >=2) cout << "\t* Closing file " << fInputFileName << endl; fluka_closeinp(lunin); FinishGeometry(); if (fVerbosityLevel >=3) cout << "<== TFluka::Init() called." << endl; if (fVerbosityLevel >=3) cout << "<== TFluka::BuildPhysics() called." << endl; } //______________________________________________________________________________ void TFluka::ProcessEvent() { // // Process one event // if (fStopRun) { printf("User Run Abortion: No more events handled !\n"); fNEvent += 1; return; } if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessEvent() called." << endl; fApplication->GeneratePrimaries(); EPISOR.lsouit = true; flukam(1); if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessEvent() called." << endl; // // Increase event number // fNEvent += 1; } //______________________________________________________________________________ Bool_t TFluka::ProcessRun(Int_t nevent) { // // Run steering // if (fVerbosityLevel >=3) cout << "==> TFluka::ProcessRun(" << nevent << ") called." << endl; if (fVerbosityLevel >=2) { cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; cout << "\t* Calling flukam again..." << endl; } fApplication->InitGeometry(); Int_t todo = TMath::Abs(nevent); for (Int_t ev = 0; ev < todo; ev++) { fApplication->BeginEvent(); ProcessEvent(); fApplication->FinishEvent(); } if (fVerbosityLevel >=3) cout << "<== TFluka::ProcessRun(" << nevent << ") called." << endl; return kTRUE; } //_____________________________________________________________________________ // methods for building/management of geometry // functions from GCONS //____________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, Float_t &dens, Float_t &radl, Float_t &absl, Float_t* /*ubuf*/, Int_t& /*nbuf*/) { // TGeoMaterial *mat; TIter next (gGeoManager->GetListOfMaterials()); while ((mat = (TGeoMaterial*)next())) { if (mat->GetUniqueID() == (UInt_t)imat) break; } if (!mat) { Error("Gfmate", "no material with index %i found", imat); return; } sprintf(name, "%s", mat->GetName()); a = mat->GetA(); z = mat->GetZ(); dens = mat->GetDensity(); radl = mat->GetRadLen(); absl = mat->GetIntLen(); } //______________________________________________________________________________ void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, Double_t &dens, Double_t &radl, Double_t &absl, Double_t* /*ubuf*/, Int_t& /*nbuf*/) { // TGeoMaterial *mat; TIter next (gGeoManager->GetListOfMaterials()); while ((mat = (TGeoMaterial*)next())) { if (mat->GetUniqueID() == (UInt_t)imat) break; } if (!mat) { Error("Gfmate", "no material with index %i found", imat); return; } sprintf(name, "%s", mat->GetName()); a = mat->GetA(); z = mat->GetZ(); dens = mat->GetDensity(); radl = mat->GetRadLen(); absl = mat->GetIntLen(); } // detector composition //______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Float_t* buf, Int_t nwbuf) { // Double_t* dbuf = fGeom->CreateDoubleArray(buf, nwbuf); Material(kmat, name, a, z, dens, radl, absl, dbuf, nwbuf); delete [] dbuf; } //______________________________________________________________________________ void TFluka::Material(Int_t& kmat, const char* name, Double_t a, Double_t z, Double_t dens, Double_t radl, Double_t absl, Double_t* /*buf*/, Int_t /*nwbuf*/) { // TGeoMaterial *mat; kmat = gGeoManager->GetListOfMaterials()->GetSize(); if ((z-Int_t(z)) > 1E-3) { mat = fGeom->GetMakeWrongMaterial(z); if (mat) { mat->SetRadLen(radl,absl); mat->SetUniqueID(kmat); return; } } gGeoManager->Material(name, a, z, dens, kmat, radl, absl); } //______________________________________________________________________________ void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a, Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) { // Double_t* da = fGeom->CreateDoubleArray(a, TMath::Abs(nlmat)); Double_t* dz = fGeom->CreateDoubleArray(z, TMath::Abs(nlmat)); Double_t* dwmat = fGeom->CreateDoubleArray(wmat, TMath::Abs(nlmat)); Mixture(kmat, name, da, dz, dens, nlmat, dwmat); for (Int_t i=0; i 0 then wmat contains the proportion by // weights of each basic material in the mixture. // // If nlmat < 0 then WMAT contains the number of atoms // of a given kind into the molecule of the COMPOUND // In this case, WMAT in output is changed to relative // weigths. // Int_t i,j; if (nlmat < 0) { nlmat = - nlmat; Double_t amol = 0; for (i=0;iGetListOfMaterials()->GetSize(); // Check if we have elements with fractional Z TGeoMaterial *mat = 0; TGeoMixture *mix = 0; Bool_t mixnew = kFALSE; for (i=0; i loop mixtures to look for it for (j=0; jGetListOfMaterials()->At(j); if (!mat) break; if (!mat->IsMixture()) continue; mix = (TGeoMixture*)mat; if (TMath::Abs(z[i]-mix->GetZ()) >1E-3) continue; // printf(" FOUND component %i as mixture %s\n", i, mat->GetName()); mixnew = kTRUE; break; } if (!mixnew) Warning("Mixture","%s : cannot find component %i with fractional Z=%f\n", name, i, z[i]); break; } if (mixnew) { Int_t nlmatnew = nlmat+mix->GetNelements()-1; Double_t *anew = new Double_t[nlmatnew]; Double_t *znew = new Double_t[nlmatnew]; Double_t *wmatnew = new Double_t[nlmatnew]; Int_t ind=0; for (j=0; jGetNelements(); j++) { anew[ind] = mix->GetAmixt()[j]; znew[ind] = mix->GetZmixt()[j]; wmatnew[ind] = wmat[i]*mix->GetWmixt()[j]; ind++; } Mixture(kmat, name, anew, znew, dens, nlmatnew, wmatnew); delete [] anew; delete [] znew; delete [] wmatnew; return; } // Now we need to compact identical elements within the mixture // First check if this happens mixnew = kFALSE; for (i=0; iMixture(name, a, z, dens, nlmat, wmat, kmat); } //______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Float_t* ubuf, Int_t nbuf) { // Define a medium // kmed = gGeoManager->GetListOfMedia()->GetSize()+1; fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } //______________________________________________________________________________ void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, Double_t stemax, Double_t deemax, Double_t epsil, Double_t stmin, Double_t* ubuf, Int_t nbuf) { // Define a medium // kmed = gGeoManager->GetListOfMedia()->GetSize()+1; fMCGeo->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin, ubuf, nbuf); } //______________________________________________________________________________ void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, Double_t thetaY, Double_t phiY, Double_t thetaZ, Double_t phiZ) { // krot = gGeoManager->GetListOfMatrices()->GetEntriesFast(); fMCGeo->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); } //______________________________________________________________________________ void TFluka::Gstpar(Int_t itmed, const char* param, Double_t parval) { // // // Check if material is used if (fVerbosityLevel >=3) printf("Gstpar called with %6d %5s %12.4e %6d\n", itmed, param, parval, fGeom->GetFlukaMaterial(itmed)); Int_t* reglist; Int_t nreg; reglist = fGeom->GetMaterialList(fGeom->GetFlukaMaterial(itmed), nreg); if (nreg == 0) { return; } // Bool_t process = kFALSE; if (strncmp(param, "DCAY", 4) == 0 || strncmp(param, "PAIR", 4) == 0 || strncmp(param, "COMP", 4) == 0 || strncmp(param, "PHOT", 4) == 0 || strncmp(param, "PFIS", 4) == 0 || strncmp(param, "DRAY", 4) == 0 || strncmp(param, "ANNI", 4) == 0 || strncmp(param, "BREM", 4) == 0 || strncmp(param, "MUNU", 4) == 0 || strncmp(param, "CKOV", 4) == 0 || strncmp(param, "HADR", 4) == 0 || strncmp(param, "LOSS", 4) == 0 || strncmp(param, "MULS", 4) == 0 || strncmp(param, "RAYL", 4) == 0) { process = kTRUE; } if (process) { SetProcess(param, Int_t (parval), fGeom->GetFlukaMaterial(itmed)); } else { SetCut(param, parval, fGeom->GetFlukaMaterial(itmed)); } } // functions from GGEOM //_____________________________________________________________________________ void TFluka::Gsatt(const char *name, const char *att, Int_t val) { // Set visualisation attributes for one volume char vname[5]; fGeom->Vname(name,vname); char vatt[5]; fGeom->Vname(att,vatt); gGeoManager->SetVolumeAttribute(vname, vatt, val); } //______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Float_t *upar, Int_t np) { // return fMCGeo->Gsvolu(name, shape, nmed, upar, np); } //______________________________________________________________________________ Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, Double_t *upar, Int_t np) { // return fMCGeo->Gsvolu(name, shape, nmed, upar, np); } //______________________________________________________________________________ void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, Int_t iaxis) { // fMCGeo->Gsdvn(name, mother, ndiv, iaxis); } //______________________________________________________________________________ void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, Int_t iaxis, Double_t c0i, Int_t numed) { // fMCGeo->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); } //______________________________________________________________________________ void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, Int_t iaxis, Int_t numed, Int_t ndvmx) { // fMCGeo->Gsdvt(name, mother, step, iaxis, numed, ndvmx); } //______________________________________________________________________________ void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { // fMCGeo->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); } //______________________________________________________________________________ void TFluka::Gsord(const char * /*name*/, Int_t /*iax*/) { // // Nothing to do with TGeo } //______________________________________________________________________________ void TFluka::Gspos(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly) { // fMCGeo->Gspos(name, nr, mother, x, y, z, irot, konly); } //______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Float_t *upar, Int_t np) { // fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } //______________________________________________________________________________ void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, Double_t x, Double_t y, Double_t z, Int_t irot, const char *konly, Double_t *upar, Int_t np) { // fMCGeo->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); } //______________________________________________________________________________ void TFluka::Gsbool(const char* /*onlyVolName*/, const char* /*manyVolName*/) { // // Nothing to do with TGeo } //______________________________________________________________________________ void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t* ppckov, Float_t* absco, Float_t* effic, Float_t* rindex) { // // Set Cerenkov properties for medium itmed // // npckov: number of sampling points // ppckov: energy values // absco: absorption length // effic: quantum efficiency // rindex: refraction index // // // // Create object holding Cerenkov properties // TFlukaCerenkov* cerenkovProperties = new TFlukaCerenkov(npckov, ppckov, absco, effic, rindex); // // Pass object to medium TGeoMedium* medium = gGeoManager->GetMedium(itmed); medium->SetCerenkovProperties(cerenkovProperties); } //______________________________________________________________________________ void TFluka::SetCerenkov(Int_t /*itmed*/, Int_t /*npckov*/, Double_t * /*ppckov*/, Double_t * /*absco*/, Double_t * /*effic*/, Double_t * /*rindex*/) { // // Not implemented with TGeo - what G4 did ? Any FLUKA card generated? Warning("SetCerenkov", "Not implemented with TGeo"); } // Euclid //______________________________________________________________________________ void TFluka::WriteEuclid(const char* /*fileName*/, const char* /*topVol*/, Int_t /*number*/, Int_t /*nlevel*/) { // // Not with TGeo Warning("WriteEuclid", "Not implemented with TGeo"); } //_____________________________________________________________________________ // methods needed by the stepping //____________________________________________________________________________ Int_t TFluka::GetMedium() const { // // Get the medium number for the current fluka region // return fGeom->GetMedium(); // this I need to check due to remapping !!! } //____________________________________________________________________________ // particle table usage // ID <--> PDG transformations //_____________________________________________________________________________ Int_t TFluka::IdFromPDG(Int_t pdg) const { // // Return Fluka code from PDG and pseudo ENDF code // Catch the feedback photons if (pdg == 50000051) return (-1); // MCIHAD() goes from pdg to fluka internal. Int_t intfluka = mcihad(pdg); // KPTOIP array goes from internal to official return GetFlukaKPTOIP(intfluka); } //______________________________________________________________________________ Int_t TFluka::PDGFromId(Int_t id) const { // // Return PDG code and pseudo ENDF code from Fluka code // Alpha He3 Triton Deuteron gen. ion opt. photon Int_t idSpecial[6] = {10020040, 10020030, 10010030, 10010020, 10000000, 50000050}; // IPTOKP array goes from official to internal if (id == -1) { // Cerenkov photon if (fVerbosityLevel >= 3) printf("\n PDGFromId: Cerenkov Photon \n"); return 50000050; } // Error id if (id == 0 || id < -6 || id > 250) { if (fVerbosityLevel >= 3) printf("PDGFromId: Error id = 0\n"); return -1; } // Good id if (id > 0) { Int_t intfluka = GetFlukaIPTOKP(id); if (intfluka == 0) { if (fVerbosityLevel >= 3) printf("PDGFromId: Error intfluka = 0: %d\n", id); return -1; } else if (intfluka < 0) { if (fVerbosityLevel >= 3) printf("PDGFromId: Error intfluka < 0: %d\n", id); return -1; } if (fVerbosityLevel >= 3) printf("mpdgha called with %d %d \n", id, intfluka); // MPDGHA() goes from fluka internal to pdg. return mpdgha(intfluka); } else { // ions and optical photons return idSpecial[id + 6]; } } void TFluka::StopTrack() { // Set stopping conditions // Works for photons and charged particles fStopped = kTRUE; } //_____________________________________________________________________________ // methods for physics management //____________________________________________________________________________ // // set methods // void TFluka::SetProcess(const char* flagName, Int_t flagValue, Int_t imed) { // Set process user flag for material imat // TFlukaConfigOption* proc = new TFlukaConfigOption(flagName, flagValue, imed); fProcesses->Add(proc); } //______________________________________________________________________________ Bool_t TFluka::SetProcess(const char* flagName, Int_t flagValue) { // Set process user flag // // // Update if already in the list // TIter next(fProcesses); TFlukaConfigOption* proc; while((proc = (TFlukaConfigOption*)next())) { if (strcmp(proc->GetName(), flagName) == 0) { proc->SetFlag(flagValue); proc->SetMedium(-1); return kTRUE; } } // // If not create a new process // proc = new TFlukaConfigOption(flagName, flagValue); fProcesses->Add(proc); return kTRUE; } //______________________________________________________________________________ void TFluka::SetCut(const char* cutName, Double_t cutValue, Int_t imed) { // Set user cut value for material imed // TFlukaConfigOption* cut = new TFlukaConfigOption(cutName, cutValue, imed); fCuts->Add(cut); } //______________________________________________________________________________ Bool_t TFluka::SetCut(const char* cutName, Double_t cutValue) { // Set user cut value // // // Update if already in the list // TIter next(fCuts); TFlukaConfigOption* cut; while((cut = (TFlukaConfigOption*)next())) { if (strcmp(cut->GetName(), cutName) == 0) { cut->SetCut(cutValue); return kTRUE; } } // // If not create a new process // cut = new TFlukaConfigOption(cutName, cutValue); fCuts->Add(cut); return kTRUE; } void TFluka::SetUserScoring(const char* option, Int_t npar, Float_t what[12]) { // // Ads a user scoring option to th list // TFlukaScoringOption* opt = new TFlukaScoringOption(option, "User Scoring", npar, what); fUserScore->Add(opt); } //______________________________________________________________________________ Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t) { printf("WARNING: Xsec not yet implemented !\n"); return -1.; } //______________________________________________________________________________ void TFluka::InitPhysics() { // // Physics initialisation with preparation of FLUKA input cards // printf("=>InitPhysics\n"); Int_t j, k; Double_t theCut; FILE *pFlukaVmcCoreInp, *pFlukaVmcFlukaMat, *pFlukaVmcInp; Double_t zero = 0.0; Double_t one = 1.0; Double_t two = 2.0; Double_t three = 3.0; Float_t fLastMaterial = fGeom->GetLastMaterialIndex(); if (fVerbosityLevel >= 3) printf(" last FLUKA material is %g\n", fLastMaterial); // Prepare Cerenkov TObjArray *matList = GetFlukaMaterials(); Int_t nmaterial = matList->GetEntriesFast(); fMaterials = new Int_t[nmaterial+3]; // construct file names TString sFlukaVmcCoreInp = getenv("ALICE_ROOT"); sFlukaVmcCoreInp +="/TFluka/input/"; TString sFlukaVmcTmp = "flukaMat.inp"; TString sFlukaVmcInp = GetInputFileName(); sFlukaVmcCoreInp += GetCoreInputFileName(); // open files if ((pFlukaVmcCoreInp = fopen(sFlukaVmcCoreInp.Data(),"r")) == NULL) { printf("\nCannot open file %s\n",sFlukaVmcCoreInp.Data()); exit(1); } if ((pFlukaVmcFlukaMat = fopen(sFlukaVmcTmp.Data(),"r")) == NULL) { printf("\nCannot open file %s\n",sFlukaVmcTmp.Data()); exit(1); } if ((pFlukaVmcInp = fopen(sFlukaVmcInp.Data(),"w")) == NULL) { printf("\nCannot open file %s\n",sFlukaVmcInp.Data()); exit(1); } // copy core input file Char_t sLine[255]; Float_t fEventsPerRun; while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) { if (strncmp(sLine,"GEOEND",6) != 0) fprintf(pFlukaVmcInp,"%s",sLine); // copy until GEOEND card else { fprintf(pFlukaVmcInp,"GEOEND\n"); // add GEOEND card goto flukamat; } } // end of while until GEOEND card flukamat: while ((fgets(sLine,255,pFlukaVmcFlukaMat)) != NULL) { // copy flukaMat.inp file fprintf(pFlukaVmcInp,"%s\n",sLine); } while ((fgets(sLine,255,pFlukaVmcCoreInp)) != NULL) { if (strncmp(sLine,"START",5) != 0) fprintf(pFlukaVmcInp,"%s\n",sLine); else { sscanf(sLine+10,"%10f",&fEventsPerRun); goto fin; } } //end of while until START card fin: // in G3 the process control values meaning can be different for // different processes, but for most of them is: // 0 process is not activated // 1 process is activated WITH generation of secondaries // 2 process is activated WITHOUT generation of secondaries // if process does not generate secondaries => 1 same as 2 // // Exceptions: // MULS: also 3 // LOSS: also 3, 4 // RAYL: only 0,1 // HADR: may be > 2 // // Loop over number of SetProcess calls fprintf(pFlukaVmcInp,"*----------------------------------------------------------------------------- \n"); fprintf(pFlukaVmcInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n"); fprintf(pFlukaVmcInp,"*----------------------------------------------------------------------------- \n"); // Outer loop over processes TIter next(fProcesses); TFlukaConfigOption *proc; // Inner loop over processes TIter nextp(fProcesses); TFlukaConfigOption *procp; // Loop over cuts TIter nextc(fCuts); TFlukaConfigOption *cut = 0x0; while((proc = (TFlukaConfigOption*)next())) { Float_t matMin = three; Float_t matMax = fLastMaterial; Bool_t global = kTRUE; if (proc->Medium() != -1) { Int_t mat; if ((mat = proc->Medium()) >= GetFlukaMaterials()->GetEntries()) continue; matMin = Float_t(mat); matMax = matMin; global = kFALSE; fprintf(pFlukaVmcInp,"*\n*Material specific process setting for #%8d \n", mat); } // annihilation // G3 default value: 1 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation // Particles: e+ // Physics: EM // flag = 0 no annihilation // flag = 1 annihilation, decays processed // flag = 2 annihilation, no decay product stored // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR if (strncmp(proc->GetName(),"ANNI",4) == 0) { if (proc->Flag() == 1 || proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n"); // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices // "ANNH-THR"; fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,matMin,matMax,one); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No annihilation - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('ANNI',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // bremsstrahlung and pair production are both activated // G3 default value: 1 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, // G4MuBremsstrahlung/G4IMuBremsstrahlung, // G4LowEnergyBremstrahlung // Particles: e-/e+; mu+/mu- // Physics: EM // flag = 0 no bremsstrahlung // flag = 1 bremsstrahlung, photon processed // flag = 2 bremsstrahlung, no photon stored // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR // G3 default value: 1 // G4 processes: G4GammaConversion, // G4MuPairProduction/G4IMuPairProduction // G4LowEnergyGammaConversion // Particles: gamma, mu // Physics: EM // flag = 0 no delta rays // flag = 1 delta rays, secondaries processed // flag = 2 delta rays, no secondaries stored // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR else if ((strncmp(proc->GetName(),"PAIR",4) == 0) && (proc->Flag() == 1 || proc->Flag() == 2)) { nextp.Reset(); while ((procp = (TFlukaConfigOption*)nextp())) { if ((strncmp(procp->GetName(),"BREM",4) == 0) && (proc->Flag() == 1 || procp->Flag() == 2) && (procp->Medium() == proc->Medium())) { fprintf(pFlukaVmcInp,"*\n*Bremsstrahlung and pair production by muons and charged hadrons both activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)\n"); fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n"); // three = bremsstrahlung and pair production by muons and charged hadrons both are activated fprintf(pFlukaVmcInp,"PAIRBREM %10.1f",three); // direct pair production by muons // G4 particles: "e-", "e+" // G3 default value: 0.01 GeV //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons theCut = 0.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "PPCUTM", 6) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } fprintf(pFlukaVmcInp,"%10.4g",theCut); // theCut; = e+, e- kinetic energy threshold (in GeV) for explicit pair production. // muon and hadron bremsstrahlung // G4 particles: "gamma" // G3 default value: CUTGAM=0.001 GeV //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung theCut = 0.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "BCUTM", 5) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } fprintf(pFlukaVmcInp,"%10.4g%10.1f%10.1f\n",theCut,matMin,matMax); // theCut = photon energy threshold (GeV) for explicit bremsstrahlung production // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // for e+ and e- fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1);\n"); theCut = -1.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "BCUTE", 5) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } //theCut = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0) // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices // "ELPO-THR"; fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",theCut,zero,zero,matMin,matMax,one); // for e+ and e- fprintf(pFlukaVmcInp,"*\n*Pair production by electrons is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1);\n"); theCut = -1.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } // theCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored) // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,theCut,matMin,matMax,one); goto BOTH; } // end of if for BREM } // end of loop for BREM // only pair production by muons and charged hadrons is activated fprintf(pFlukaVmcInp,"*\n*Pair production by muons and charged hadrons is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.\n"); // direct pair production by muons // G4 particles: "e-", "e+" // G3 default value: 0.01 GeV //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons // one = pair production by muons and charged hadrons is activated // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production. // zero = no explicit bremsstrahlung production is simulated // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); // for e+ and e- fprintf(pFlukaVmcInp,"*\n*Pair production by electrons is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); theCut = -1.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "CUTGAM", 6) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } // zero = energy threshold (GeV) for Compton scattering (= 0.0 : ignored) // zero = energy threshold (GeV) for Photoelectric (= 0.0 : ignored) // theCut = energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored) // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.4g%10.1f%10.1f%10.1fPHOT-THR\n",zero,zero,theCut,matMin,matMax,one); BOTH: k = 0; } // end of if for PAIR // bremsstrahlung // G3 default value: 1 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, // G4MuBremsstrahlung/G4IMuBremsstrahlung, // G4LowEnergyBremstrahlung // Particles: e-/e+; mu+/mu- // Physics: EM // flag = 0 no bremsstrahlung // flag = 1 bremsstrahlung, photon processed // flag = 2 bremsstrahlung, no photon stored // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR else if (strncmp(proc->GetName(),"BREM",4) == 0) { nextp.Reset(); while((procp = (TFlukaConfigOption*)nextp())) { if ((strncmp(procp->GetName(),"PAIR",4) == 0) && procp->Flag() == 1 && (procp->Medium() == proc->Medium())) goto NOBREM; } if (proc->Flag() == 1 || proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Bremsstrahlung by muons and charged hadrons is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)\n"); fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.\n"); // two = bremsstrahlung by muons and charged hadrons is activated // zero = no meaning // muon and hadron bremsstrahlung // G4 particles: "gamma" // G3 default value: CUTGAM=0.001 GeV //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung theCut = 0.0; nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "BCUTM", 5) == 0 && (cut->Medium() == proc->Medium())) theCut = cut->Cut(); } // theCut = photon energy threshold (GeV) for explicit bremsstrahlung production // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"PAIRBREM %10.1f%10.1f%10.4g%10.1f%10.1f\n",two,zero,theCut,matMin,matMax); // for e+ and e- fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',1);"); // - one = kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0) // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"ELPO-THR"; fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fELPO-THR\n",-one,zero,zero,matMin,matMax,one); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No bremsstrahlung - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('BREM',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('BREM',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } NOBREM: j = 0; } // end of else if (strncmp(proc->GetName(),"BREM",4) == 0) // Cerenkov photon generation // G3 default value: 0 // G4 process: G4Cerenkov // // Particles: charged // Physics: Optical // flag = 0 no Cerenkov photon generation // flag = 1 Cerenkov photon generation // flag = 2 Cerenkov photon generation with primary stopped at each step //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation else if (strncmp(proc->GetName(),"CKOV",4) == 0) { if ((proc->Flag() == 1 || proc->Flag() == 2) && global) { // Write comments fprintf(pFlukaVmcInp, "* \n"); fprintf(pFlukaVmcInp, "*Cerenkov photon generation\n"); fprintf(pFlukaVmcInp, "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n"); // Loop over media for (Int_t im = 0; im < nmaterial; im++) { TGeoMaterial* material = dynamic_cast (matList->At(im)); Int_t idmat = material->GetIndex(); if (!global && idmat != proc->Medium()) continue; fMaterials[idmat] = im; // Skip media with no Cerenkov properties TFlukaCerenkov* cerenkovProp; if (!(cerenkovProp = dynamic_cast(material->GetCerenkovProperties()))) continue; // // This medium has Cerenkov properties // // // Write OPT-PROD card for each medium Float_t emin = cerenkovProp->GetMinimumEnergy(); Float_t emax = cerenkovProp->GetMaximumEnergy(); fprintf(pFlukaVmcInp, "OPT-PROD %10.4g%10.4g%10.4g%10.4g%10.4g%10.4gCERENKOV\n", emin, emax, 0., Float_t(idmat), Float_t(idmat), 0.); // // Write OPT-PROP card for each medium // Forcing FLUKA to call user routines (queffc.cxx, rflctv.cxx, rfrndx.cxx) // fprintf(pFlukaVmcInp, "OPT-PROP %10.4g%10.4g%10.4g%10.1f%10.1f%10.1fWV-LIMIT\n", cerenkovProp->GetMinimumWavelength(), cerenkovProp->GetMaximumWavelength(), cerenkovProp->GetMaximumWavelength(), Float_t(idmat), Float_t(idmat), 0.0); if (cerenkovProp->IsMetal()) { fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fMETAL\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } else { fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } for (Int_t j = 0; j < 3; j++) { fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1f&\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } // Photon detection efficiency user defined if (cerenkovProp->IsSensitive()) fprintf(pFlukaVmcInp, "OPT-PROP %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fSENSITIV\n", -100., -100., -100., Float_t(idmat), Float_t(idmat), 0.0); } // materials } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No Cerenkov photon generation\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('CKOV',0)\n"); // zero = not used // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"CERE-OFF"; fprintf(pFlukaVmcInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,matMin,matMax,one); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"CKOV",4) == 0) // Compton scattering // G3 default value: 1 // G4 processes: G4ComptonScattering, // G4LowEnergyCompton, // G4PolarizedComptonScattering // Particles: gamma // Physics: EM // flag = 0 no Compton scattering // flag = 1 Compton scattering, electron processed // flag = 2 Compton scattering, no electron stored // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR else if (strncmp(proc->GetName(),"COMP",4) == 0) { if (proc->Flag() == 1 || proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('COMP',1);\n"); // - one = energy threshold (GeV) for Compton scattering - resets to default=0. // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"PHOT-THR"; fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,matMin,matMax,one); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No Compton scattering - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('COMP',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"COMP",4) == 0) // decay // G3 default value: 1 // G4 process: G4Decay // // Particles: all which decay is applicable for // Physics: General // flag = 0 no decays // flag = 1 decays, secondaries processed // flag = 2 decays, no secondaries stored //gMC ->SetProcess("DCAY",0); // not available else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 0) cout << "SetProcess for flag =" << proc->GetName() << " value=" << proc->Flag() << " not avaliable!" << endl; else if ((strncmp(proc->GetName(),"DCAY",4) == 0) && proc->Flag() == 1) { // Nothing to do decays are switched on by default } // delta-ray // G3 default value: 2 // !! G4 treats delta rays in different way // G4 processes: G4eIonisation/G4IeIonization, // G4MuIonisation/G4IMuIonization, // G4hIonisation/G4IhIonisation // Particles: charged // Physics: EM // flag = 0 no energy loss // flag = 1 restricted energy loss fluctuations // flag = 2 complete energy loss fluctuations // flag = 3 same as 1 // flag = 4 no energy loss fluctuations // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. else if (strncmp(proc->GetName(),"DRAY",4) == 0) { if (proc->Flag() == 0 || proc->Flag() == 4) { fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n"); fprintf(pFlukaVmcInp,"*No delta ray production by muons - threshold set artificially high\n"); Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) // zero = ignored // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pFlukaVmcInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,matMin,matMax,one); } else if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) { fprintf(pFlukaVmcInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n"); fprintf(pFlukaVmcInp,"*Delta ray production by muons switched on\n"); fprintf(pFlukaVmcInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n"); theCut = 1.0e+6; nextc.Reset(); // // Check cut one delta-rays from electrons // while ((cut = (TFlukaConfigOption*)nextc())) { if (strncmp(cut->GetName(), "DCUTM", 5) == 0 && cut->Medium() == proc->Medium()) theCut = cut->Cut(); } // theCut = kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) // zero = ignored // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices fprintf(pFlukaVmcInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",theCut,zero,zero,matMin,matMax,one); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('DRAY',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"DRAY",4) == 0) // hadronic process // G3 default value: 1 // G4 processes: all defined by TG4PhysicsConstructorHadron // // Particles: hadrons // Physics: Hadron // flag = 0 no multiple scattering // flag = 1 hadronic interactions, secondaries processed // flag = 2 hadronic interactions, no secondaries stored // gMC ->SetProcess("HADR",1); // ??? hadronic process //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? else if (strncmp(proc->GetName(),"HADR",4) == 0) { if (proc->Flag() == 1 || proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Hadronic interaction is ON by default in FLUKA\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*Hadronic interaction is set OFF\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('HADR',0);\n"); fprintf(pFlukaVmcInp,"*Switching off hadronic interactions not foreseen in FLUKA\n"); fprintf(pFlukaVmcInp,"THRESHOL %10.1f%10.1f%10.1f%10.1e%10.1f\n",zero, zero, zero, 1.e10, zero); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"HADR",4) == 0) // energy loss // G3 default value: 2 // G4 processes: G4eIonisation/G4IeIonization, // G4MuIonisation/G4IMuIonization, // G4hIonisation/G4IhIonisation // // Particles: charged // Physics: EM // flag=0 no energy loss // flag=1 restricted energy loss fluctuations // flag=2 complete energy loss fluctuations // flag=3 same as 1 // flag=4 no energy loss fluctuations // If the value ILOSS is changed, then (in G3) cross-sections and energy // loss tables must be recomputed via the command 'PHYSI' // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss else if (strncmp(proc->GetName(),"LOSS",4) == 0) { if (proc->Flag() == 2) { // complete energy loss fluctuations fprintf(pFlukaVmcInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('LOSS',2);\n"); fprintf(pFlukaVmcInp,"*flag=2=complete energy loss fluctuations\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } else if (proc->Flag() == 1 || proc->Flag() == 3) { // restricted energy loss fluctuations fprintf(pFlukaVmcInp,"*\n*Restricted energy loss fluctuations\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n"); // one = restricted energy loss fluctuations (for hadrons and muons) switched on // one = restricted energy loss fluctuations (for e+ and e-) switched on // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); } else if (proc->Flag() == 4) { // no energy loss fluctuations fprintf(pFlukaVmcInp,"*\n*No energy loss fluctuations\n"); fprintf(pFlukaVmcInp,"*\n*Generated from call: SetProcess('LOSS',4)\n"); // - one = restricted energy loss fluctuations (for hadrons and muons) switched off // - one = restricted energy loss fluctuations (for e+ and e-) switched off // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,matMin,matMax); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"LOSS",4) == 0) // multiple scattering // G3 default value: 1 // G4 process: G4MultipleScattering/G4IMultipleScattering // // Particles: charged // Physics: EM // flag = 0 no multiple scattering // flag = 1 Moliere or Coulomb scattering // flag = 2 Moliere or Coulomb scattering // flag = 3 Gaussian scattering // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering else if (strncmp(proc->GetName(),"MULS",4) == 0) { if (proc->Flag() == 1 || proc->Flag() == 2 || proc->Flag() == 3) { fprintf(pFlukaVmcInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*Multiple scattering is set OFF\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MULS',0);\n"); // zero = ignored // three = multiple scattering for hadrons and muons is completely suppressed // three = multiple scattering for e+ and e- is completely suppressed // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,matMin,matMax); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"MULS",4) == 0) // muon nuclear interaction // G3 default value: 0 // G4 processes: G4MuNuclearInteraction, // G4MuonMinusCaptureAtRest // // Particles: mu // Physics: Not set // flag = 0 no muon-nuclear interaction // flag = 1 nuclear interaction, secondaries processed // flag = 2 nuclear interaction, secondaries not processed // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat else if (strncmp(proc->GetName(),"MUNU",4) == 0) { if (proc->Flag() == 1) { fprintf(pFlukaVmcInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n"); fprintf(pFlukaVmcInp,"*\n*Generated from call: SetProcess('MUNU',1);\n"); // one = full simulation of muon nuclear interactions and production of secondary hadrons // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); } else if (proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MUNU',2);\n"); // two = full simulation of muon nuclear interactions and production of secondary hadrons // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,matMin,matMax); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('MUNU',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"MUNU",4) == 0) // photofission // G3 default value: 0 // G4 process: ?? // // Particles: gamma // Physics: ?? // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. // flag = 0 no photon fission // flag = 1 photon fission, secondaries processed // flag = 2 photon fission, no secondaries stored else if (strncmp(proc->GetName(),"PFIS",4) == 0) { if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No photonuclear interactions\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',0);\n"); // - one = no photonuclear interactions // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,matMin,matMax); } else if (proc->Flag() == 1) { fprintf(pFlukaVmcInp,"*\n*Photon nuclear interactions are activated at all energies\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',1);\n"); // one = photonuclear interactions are activated at all energies // zero = not used // zero = not used // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,matMin,matMax); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No photofission - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PFIS',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // photo electric effect // G3 default value: 1 // G4 processes: G4PhotoElectricEffect // G4LowEnergyPhotoElectric // Particles: gamma // Physics: EM // flag = 0 no photo electric effect // flag = 1 photo electric effect, electron processed // flag = 2 photo electric effect, no electron stored // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR else if (strncmp(proc->GetName(),"PHOT",4) == 0) { if (proc->Flag() == 1 || proc->Flag() == 2) { fprintf(pFlukaVmcInp,"*\n*Photo electric effect is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PHOT',1);\n"); // zero = ignored // - one = resets to default=0. // zero = ignored // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply // one = step length in assigning indices //"PHOT-THR"; fprintf(pFlukaVmcInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,matMin,matMax,one); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*No photo electric effect - no FLUKA card generated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('PHOT',0)\n"); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // else if (strncmp(proc->GetName(),"PHOT",4) == 0) // Rayleigh scattering // G3 default value: 0 // G4 process: G4OpRayleigh // // Particles: optical photon // Physics: Optical // flag = 0 Rayleigh scattering off // flag = 1 Rayleigh scattering on //xx gMC ->SetProcess("RAYL",1); else if (strncmp(proc->GetName(),"RAYL",4) == 0) { if (proc->Flag() == 1) { fprintf(pFlukaVmcInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } else if (proc->Flag() == 0) { fprintf(pFlukaVmcInp,"*\n*Rayleigh scattering is set OFF\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('RAYL',0);\n"); // - one = no Rayleigh scattering and no binding corrections for Compton // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,matMin,matMax); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // end of else if (strncmp(proc->GetName(),"RAYL",4) == 0) // synchrotron radiation in magnetic field // G3 default value: 0 // G4 process: G4SynchrotronRadiation // // Particles: ?? // Physics: Not set // flag = 0 no synchrotron radiation // flag = 1 synchrotron radiation //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation else if (strncmp(proc->GetName(),"SYNC",4) == 0) { fprintf(pFlukaVmcInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } // Automatic calculation of tracking medium parameters // flag = 0 no automatic calculation // flag = 1 automatic calculation //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters else if (strncmp(proc->GetName(),"AUTO",4) == 0) { fprintf(pFlukaVmcInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } // To control energy loss fluctuation model // flag = 0 Urban model // flag = 1 PAI model // flag = 2 PAI+ASHO model (not active at the moment) //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model else if (strncmp(proc->GetName(),"STRA",4) == 0) { if (proc->Flag() == 0 || proc->Flag() == 2 || proc->Flag() == 3) { fprintf(pFlukaVmcInp,"*\n*Ionization energy losses calculation is activated\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n"); // one = restricted energy loss fluctuations (for hadrons and muons) switched on // one = restricted energy loss fluctuations (for e+ and e-) switched on // one = minimal accuracy // matMin = lower bound of the material indices in which the respective thresholds apply // matMax = upper bound of the material indices in which the respective thresholds apply fprintf(pFlukaVmcInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,matMin,matMax); } else { fprintf(pFlukaVmcInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n"); fprintf(pFlukaVmcInp,"*No FLUKA card generated\n"); } } // else if (strncmp(proc->GetName(),"STRA",4) == 0) else { // processes not yet treated // light photon absorption (Cerenkov photons) // it is turned on when Cerenkov process is turned on // G3 default value: 0 // G4 process: G4OpAbsorption, G4OpBoundaryProcess // // Particles: optical photon // Physics: Optical // flag = 0 no absorption of Cerenkov photons // flag = 1 absorption of Cerenkov photons // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption cout << "SetProcess for flag=" << proc->GetName() << " value=" << proc->Flag() << " not yet implemented!" << endl; } } //end of loop number of SetProcess calls // Loop over number of SetCut calls nextc.Reset(); while ((cut = (TFlukaConfigOption*)nextc())) { Float_t matMin = three; Float_t matMax = fLastMaterial; Bool_t global = kTRUE; if (cut->Medium() != -1) { Int_t mat; if ((mat = cut->Medium()) >= GetFlukaMaterials()->GetEntries()) continue; matMin = Float_t(mat); matMax = matMin; global = kFALSE; TGeoMaterial* material = (TGeoMaterial*) (GetFlukaMaterials())->At(GetMaterialIndex(mat)); fprintf(pFlukaVmcInp,"*\n*Material specific cut setting for #%8d %s %s %13.3e\n", mat, material->GetName(), cut->GetName(), cut->Cut()); } // cuts handled in SetProcess calls if (strncmp(cut->GetName(),"BCUTM",5) == 0) continue; else if (strncmp(cut->GetName(),"BCUTE",5) == 0) continue; else if (strncmp(cut->GetName(),"DCUTM",5) == 0) continue; else if (strncmp(cut->GetName(),"PPCUTM",6) == 0) continue; // gammas // G4 particles: "gamma" // G3 default value: 0.001 GeV // gMC ->SetCut("CUTGAM",cut); // cut for gammas else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && global) { fprintf(pFlukaVmcInp,"*\n*Cut for gamma\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", zero, cut->Cut(), zero, zero, Float_t(fGeom->NofVolumes()), one); } else if (strncmp(cut->GetName(),"CUTGAM",6) == 0 && !global) { // loop over materials for EMFCUT FLUKA cards for (j=0; j < matMax-matMin+1; j++) { Int_t nreg, imat, *reglist; Float_t ireg; imat = (Int_t) matMin + j; reglist = fGeom->GetMaterialList(imat, nreg); // loop over regions of a given material for (Int_t k = 0; k < nreg; k++) { ireg = reglist[k]; fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", zero, cut->Cut(), zero, ireg, ireg, one); } } } // end of else if for gamma // electrons // G4 particles: "e-" // ?? positrons // G3 default value: 0.001 GeV //gMC ->SetCut("CUTELE",cut); // cut for e+,e- else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && global) { fprintf(pFlukaVmcInp,"*\n*Cut for electrons\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTELE',cut);\n"); fprintf(pFlukaVmcInp,"EMFCUT %10.4g%10.4g%10.1f%10.1f%10.1f%10.1f\n", -cut->Cut(), zero, zero, zero, Float_t(fGeom->NofVolumes()), one); } else if (strncmp(cut->GetName(),"CUTELE",6) == 0 && !global) { // loop over materials for EMFCUT FLUKA cards for (j=0; j < matMax-matMin+1; j++) { Int_t nreg, imat, *reglist; Float_t ireg; imat = (Int_t) matMin + j; reglist = fGeom->GetMaterialList(imat, nreg); // loop over regions of a given material for (k=0; kCut(), zero, zero, ireg, ireg, one); } } } // end of else if for electrons // neutral hadrons // G4 particles: of type "baryon", "meson", "nucleus" with zero charge // G3 default value: 0.01 GeV //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons else if (strncmp(cut->GetName(),"CUTNEU",6) == 0 && global) { fprintf(pFlukaVmcInp,"*\n*Cut for neutral hadrons\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTNEU',cut);\n"); // 8.0 = Neutron // 9.0 = Antineutron fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),8.0,9.0); // 12.0 = Kaon zero long // 12.0 = Kaon zero long fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),12.0,12.0); // 17.0 = Lambda, 18.0 = Antilambda // 19.0 = Kaon zero short fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),17.0,19.0); // 22.0 = Sigma zero, Pion zero, Kaon zero // 25.0 = Antikaon zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),22.0,25.0); // 32.0 = Antisigma zero // 32.0 = Antisigma zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),32.0,32.0); // 34.0 = Xi zero // 35.0 = AntiXi zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),34.0,35.0); // 47.0 = D zero // 48.0 = AntiD zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),47.0,48.0); // 53.0 = Xi_c zero // 53.0 = Xi_c zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),53.0,53.0); // 55.0 = Xi'_c zero // 56.0 = Omega_c zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),55.0,56.0); // 59.0 = AntiXi_c zero // 59.0 = AntiXi_c zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),59.0,59.0); // 61.0 = AntiXi'_c zero // 62.0 = AntiOmega_c zero fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),61.0,62.0); } // charged hadrons // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge // G3 default value: 0.01 GeV //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons else if (strncmp(cut->GetName(),"CUTHAD",6) == 0 && global) { fprintf(pFlukaVmcInp,"*\n*Cut for charged hadrons\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTHAD',cut);\n"); // 1.0 = Proton // 2.0 = Antiproton fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),1.0,2.0); // 13.0 = Positive Pion, Negative Pion, Positive Kaon // 16.0 = Negative Kaon fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),13.0,16.0); // 20.0 = Negative Sigma // 21.0 = Positive Sigma fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),20.0,21.0); // 31.0 = Antisigma minus // 33.0 = Antisigma plus // 2.0 = step length fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),31.0,33.0,2.0); // 36.0 = Negative Xi, Positive Xi, Omega minus // 39.0 = Antiomega fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),36.0,39.0); // 45.0 = D plus // 46.0 = D minus fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),45.0,46.0); // 49.0 = D_s plus, D_s minus, Lambda_c plus // 52.0 = Xi_c plus fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),49.0,52.0); // 54.0 = Xi'_c plus // 60.0 = AntiXi'_c minus // 6.0 = step length fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-cut->Cut(),54.0,60.0,6.0); // 57.0 = Antilambda_c minus // 58.0 = AntiXi_c minus fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),57.0,58.0); } // muons // G4 particles: "mu+", "mu-" // G3 default value: 0.01 GeV //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- else if (strncmp(cut->GetName(),"CUTMUO",6)== 0 && global) { fprintf(pFlukaVmcInp,"*\n*Cut for muons\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('CUTMUO',cut);\n"); // 10.0 = Muon+ // 11.0 = Muon- fprintf(pFlukaVmcInp,"PART-THR %10.4g%10.1f%10.1f\n",-cut->Cut(),10.0,11.0); } // // time of flight cut in seconds // G4 particles: all // G3 default value: 0.01 GeV //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds else if (strncmp(cut->GetName(),"TOFMAX",6) == 0) { fprintf(pFlukaVmcInp,"*\n*Time of flight cuts in seconds\n"); fprintf(pFlukaVmcInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n"); // zero = ignored // zero = ignored // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied fprintf(pFlukaVmcInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",cut->Cut()*1.e9,zero,zero,-6.0,64.0); } else if (global){ cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " not yet implemented!" << endl; } else { cout << "SetCut for flag=" << cut->GetName() << " value=" << cut->Cut() << " (material specific) not yet implemented!" << endl; } } //end of loop over SetCut calls // Add START and STOP card fprintf(pFlukaVmcInp,"START %10.1f\n",fEventsPerRun); fprintf(pFlukaVmcInp,"STOP \n"); // Close files fclose(pFlukaVmcCoreInp); fclose(pFlukaVmcFlukaMat); fclose(pFlukaVmcInp); } // end of InitPhysics //______________________________________________________________________________ void TFluka::SetMaxStep(Double_t step) { // Set the maximum step size if (step > 1.e4) return; Int_t mreg, latt; fGeom->GetCurrentRegion(mreg, latt); STEPSZ.stepmx[mreg - 1] = step; } Double_t TFluka::MaxStep() const { // Return the maximum for current medium Int_t mreg, latt; fGeom->GetCurrentRegion(mreg, latt); return (STEPSZ.stepmx[mreg - 1]); } //______________________________________________________________________________ void TFluka::SetMaxNStep(Int_t) { // SetMaxNStep is dummy procedure in TFluka ! if (fVerbosityLevel >=3) cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; } //______________________________________________________________________________ void TFluka::SetUserDecay(Int_t) { // SetUserDecay is dummy procedure in TFluka ! if (fVerbosityLevel >=3) cout << "SetUserDecay is dummy procedure in TFluka !" << endl; } // // dynamic properties // //______________________________________________________________________________ void TFluka::TrackPosition(TLorentzVector& position) const { // Return the current position in the master reference frame of the // track being transported // TRACKR.atrack = age of the particle // TRACKR.xtrack = x-position of the last point // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw position.SetX(GetXsco()); position.SetY(GetYsco()); position.SetZ(GetZsco()); position.SetT(TRACKR.atrack); } else if (caller == 4) { // mgdraw position.SetX(TRACKR.xtrack[TRACKR.ntrack]); position.SetY(TRACKR.ytrack[TRACKR.ntrack]); position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); position.SetT(TRACKR.atrack); } else if (caller == 5) { // sodraw position.SetX(TRACKR.xtrack[TRACKR.ntrack]); position.SetY(TRACKR.ytrack[TRACKR.ntrack]); position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); position.SetT(0); } else Warning("TrackPosition","position not available"); } //______________________________________________________________________________ void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const { // Return the current position in the master reference frame of the // track being transported // TRACKR.atrack = age of the particle // TRACKR.xtrack = x-position of the last point // TRACKR.ytrack = y-position of the last point // TRACKR.ztrack = z-position of the last point Int_t caller = GetCaller(); if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw x = GetXsco(); y = GetYsco(); z = GetZsco(); } else if (caller == 4 || caller == 5) { // mgdraw, sodraw x = TRACKR.xtrack[TRACKR.ntrack]; y = TRACKR.ytrack[TRACKR.ntrack]; z = TRACKR.ztrack[TRACKR.ntrack]; } else Warning("TrackPosition","position not available"); } //______________________________________________________________________________ void TFluka::TrackMomentum(TLorentzVector& momentum) const { // Return the direction and the momentum (GeV/c) of the track // currently being transported // TRACKR.ptrack = momentum of the particle (not always defined, if // < 0 must be obtained from etrack) // TRACKR.cx,y,ztrck = direction cosines of the current particle // TRACKR.etrack = total energy of the particle // TRACKR.jtrack = identity number of the particle // PAPROP.am[TRACKR.jtrack] = particle mass in gev Int_t caller = GetCaller(); if (caller != 2) { // not eedraw if (TRACKR.ptrack >= 0) { momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck); momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck); momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck); momentum.SetE(TRACKR.etrack); return; } else { Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); momentum.SetPx(p*TRACKR.cxtrck); momentum.SetPy(p*TRACKR.cytrck); momentum.SetPz(p*TRACKR.cztrck); momentum.SetE(TRACKR.etrack); return; } } else Warning("TrackMomentum","momentum not available"); } //______________________________________________________________________________ void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const { // Return the direction and the momentum (GeV/c) of the track // currently being transported // TRACKR.ptrack = momentum of the particle (not always defined, if // < 0 must be obtained from etrack) // TRACKR.cx,y,ztrck = direction cosines of the current particle // TRACKR.etrack = total energy of the particle // TRACKR.jtrack = identity number of the particle // PAPROP.am[TRACKR.jtrack] = particle mass in gev Int_t caller = GetCaller(); if (caller != 2) { // not eedraw if (TRACKR.ptrack >= 0) { px = TRACKR.ptrack*TRACKR.cxtrck; py = TRACKR.ptrack*TRACKR.cytrck; pz = TRACKR.ptrack*TRACKR.cztrck; e = TRACKR.etrack; return; } else { Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); px = p*TRACKR.cxtrck; py = p*TRACKR.cytrck; pz = p*TRACKR.cztrck; e = TRACKR.etrack; return; } } else Warning("TrackMomentum","momentum not available"); } //______________________________________________________________________________ Double_t TFluka::TrackStep() const { // Return the length in centimeters of the current step // TRACKR.ctrack = total curved path Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw return 0.0; else if (caller == 4) //mgdraw return TRACKR.ctrack; else return -1.0; } //______________________________________________________________________________ Double_t TFluka::TrackLength() const { // TRACKR.cmtrck = cumulative curved path since particle birth Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.cmtrck; else return -1.0; } //______________________________________________________________________________ Double_t TFluka::TrackTime() const { // Return the current time of flight of the track being transported // TRACKR.atrack = age of the particle Int_t caller = GetCaller(); if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw return TRACKR.atrack; else return -1; } //______________________________________________________________________________ Double_t TFluka::Edep() const { // Energy deposition // if TRACKR.ntrack = 0, TRACKR.mtrack = 0: // -->local energy deposition (the value and the point are not recorded in TRACKR) // but in the variable "rull" of the procedure "endraw.cxx" // if TRACKR.ntrack > 0, TRACKR.mtrack = 0: // -->no energy loss along the track // if TRACKR.ntrack > 0, TRACKR.mtrack > 0: // -->energy loss distributed along the track // TRACKR.dtrack = energy deposition of the jth deposition event // If coming from bxdraw we have 2 steps of 0 length and 0 edep Int_t caller = GetCaller(); if (caller == 11 || caller==12) return 0.0; Double_t sum = 0; for ( Int_t j=0;j 0) { // Hadronic interaction if (isec >= 0 && isec < FINUC.np) { particleId = PDGFromId(FINUC.kpart[isec]); position.SetX(fXsco); position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]); momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]); momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]); momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]); } else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) { Int_t jsec = isec - FINUC.np; particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!! position.SetX(fXsco); position.SetY(fYsco); position.SetZ(fZsco); position.SetT(TRACKR.atrack); momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]); momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]); momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]); if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6) momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]); else if (FHEAVY.tkheav[jsec] > 6) momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!! } else Warning("GetSecondary","isec out of range"); } } else if (caller == 50) { Int_t index = OPPHST.lstopp - isec; position.SetX(OPPHST.xoptph[index]); position.SetY(OPPHST.yoptph[index]); position.SetZ(OPPHST.zoptph[index]); position.SetT(OPPHST.agopph[index]); Double_t p = OPPHST.poptph[index]; momentum.SetPx(p * OPPHST.txopph[index]); momentum.SetPy(p * OPPHST.tyopph[index]); momentum.SetPz(p * OPPHST.tzopph[index]); momentum.SetE(p); } else Warning("GetSecondary","no secondaries available"); } // end of GetSecondary //______________________________________________________________________________ TMCProcess TFluka::ProdProcess(Int_t) const { // Name of the process that has produced the secondary particles // in the current step Int_t mugamma = (TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11); if (fIcode == 102) return kPDecay; else if (fIcode == 104 || fIcode == 217) return kPPair; else if (fIcode == 219) return kPCompton; else if (fIcode == 221) return kPPhotoelectric; else if (fIcode == 105 || fIcode == 208) return kPBrem; else if (fIcode == 103 || fIcode == 400) return kPDeltaRay; else if (fIcode == 210 || fIcode == 212) return kPDeltaRay; else if (fIcode == 214 || fIcode == 215) return kPAnnihilation; else if (fIcode == 101) return kPHadronic; else if (fIcode == 101) { if (!mugamma) return kPHadronic; else if (TRACKR.jtrack == 7) return kPPhotoFission; else return kPMuonNuclear; } else if (fIcode == 225) return kPRayleigh; // Fluka codes 100, 300 and 400 still to be investigasted else return kPNoProcess; } Int_t TFluka::StepProcesses(TArrayI &proc) const { // // Return processes active in the current step // proc.Set(1); TMCProcess iproc; switch (fIcode) { case 15: case 24: case 33: case 41: case 52: iproc = kPTOFlimit; break; case 12: case 14: case 21: case 22: case 23: case 31: case 32: case 40: case 51: iproc = kPStop; break; case 50: iproc = kPLightAbsorption; break; case 20: iproc = kPPhotoelectric; break; default: iproc = ProdProcess(0); } proc[0] = iproc; return 1; } //______________________________________________________________________________ Int_t TFluka::VolId2Mate(Int_t id) const { // // Returns the material number for a given volume ID // return fMCGeo->VolId2Mate(id); } //______________________________________________________________________________ const char* TFluka::VolName(Int_t id) const { // // Returns the volume name for a given volume ID // return fMCGeo->VolName(id); } //______________________________________________________________________________ Int_t TFluka::VolId(const Text_t* volName) const { // // Converts from volume name to volume ID. // Time consuming. (Only used during set-up) // Could be replaced by hash-table // return fMCGeo->VolId(volName); } //______________________________________________________________________________ Int_t TFluka::CurrentVolID(Int_t& copyNo) const { // // Return the logical id and copy number corresponding to the current fluka region // if (gGeoManager->IsOutside()) return 0; TGeoNode *node = gGeoManager->GetCurrentNode(); copyNo = node->GetNumber(); Int_t id = node->GetVolume()->GetNumber(); return id; } //______________________________________________________________________________ Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const { // // Return the logical id and copy number of off'th mother // corresponding to the current fluka region // if (off<0 || off>gGeoManager->GetLevel()) return 0; if (off==0) return CurrentVolID(copyNo); TGeoNode *node = gGeoManager->GetMother(off); if (!node) return 0; copyNo = node->GetNumber(); return node->GetVolume()->GetNumber(); } //______________________________________________________________________________ const char* TFluka::CurrentVolName() const { // // Return the current volume name // if (gGeoManager->IsOutside()) return 0; return gGeoManager->GetCurrentVolume()->GetName(); } //______________________________________________________________________________ const char* TFluka::CurrentVolOffName(Int_t off) const { // // Return the volume name of the off'th mother of the current volume // if (off<0 || off>gGeoManager->GetLevel()) return 0; if (off==0) return CurrentVolName(); TGeoNode *node = gGeoManager->GetMother(off); if (!node) return 0; return node->GetVolume()->GetName(); } //______________________________________________________________________________ Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const { // // Return the current medium number ??? what about material properties // Int_t copy; Int_t id = TFluka::CurrentVolID(copy); Int_t med = TFluka::VolId2Mate(id); return med; } //______________________________________________________________________________ void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) { // Transforms a position from the world reference frame // to the current volume reference frame. // // Geant3 desription: // ================== // Computes coordinates XD (in DRS) // from known coordinates XM in MRS // The local reference system can be initialized by // - the tracking routines and GMTOD used in GUSTEP // - a call to GMEDIA(XM,NUMED) // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) // (inverse routine is GDTOM) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- Double_t xmL[3], xdL[3]; Int_t i; for (i=0;i<3;i++) xmL[i]=xm[i]; if (iflag == 1) gGeoManager->MasterToLocal(xmL,xdL); else gGeoManager->MasterToLocalVect(xmL,xdL); for (i=0;i<3;i++) xd[i] = xdL[i]; } //______________________________________________________________________________ void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) { if (iflag == 1) gGeoManager->MasterToLocal(xm,xd); else gGeoManager->MasterToLocalVect(xm,xd); } //______________________________________________________________________________ void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) { // Transforms a position from the current volume reference frame // to the world reference frame. // // Geant3 desription: // ================== // Computes coordinates XM (Master Reference System // knowing the coordinates XD (Detector Ref System) // The local reference system can be initialized by // - the tracking routines and GDTOM used in GUSTEP // - a call to GSCMED(NLEVEL,NAMES,NUMBER) // (inverse routine is GMTOD) // // If IFLAG=1 convert coordinates // IFLAG=2 convert direction cosinus // // --- Double_t xmL[3], xdL[3]; Int_t i; for (i=0;i<3;i++) xdL[i] = xd[i]; if (iflag == 1) gGeoManager->LocalToMaster(xdL,xmL); else gGeoManager->LocalToMasterVect(xdL,xmL); for (i=0;i<3;i++) xm[i]=xmL[i]; } //______________________________________________________________________________ void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) { if (iflag == 1) gGeoManager->LocalToMaster(xd,xm); else gGeoManager->LocalToMasterVect(xd,xm); } //______________________________________________________________________________ TObjArray *TFluka::GetFlukaMaterials() { return fGeom->GetMatList(); } //______________________________________________________________________________ void TFluka::SetMreg(Int_t l) { // Set current fluka region fCurrentFlukaRegion = l; fGeom->SetMreg(l); } TString TFluka::ParticleName(Int_t pdg) const { // Return particle name for particle with pdg code pdg. Int_t ifluka = IdFromPDG(pdg); return TString((CHPPRP.btype[ifluka+6]), 8); } Double_t TFluka::ParticleMass(Int_t pdg) const { // Return particle mass for particle with pdg code pdg. Int_t ifluka = IdFromPDG(pdg); return (PAPROP.am[ifluka+6]); } Double_t TFluka::ParticleCharge(Int_t pdg) const { // Return particle charge for particle with pdg code pdg. Int_t ifluka = IdFromPDG(pdg); return Double_t(PAPROP.ichrge[ifluka+6]); } Double_t TFluka::ParticleLifeTime(Int_t pdg) const { // Return particle lifetime for particle with pdg code pdg. Int_t ifluka = IdFromPDG(pdg); return (PAPROP.thalf[ifluka+6]); } void TFluka::Gfpart(Int_t pdg, char* name, Int_t& type, Float_t& mass, Float_t& charge, Float_t& tlife) { // Retrieve particle properties for particle with pdg code pdg. strcpy(name, ParticleName(pdg).Data()); type = ParticleMCType(pdg); mass = ParticleMass(pdg); charge = ParticleCharge(pdg); tlife = ParticleLifeTime(pdg); } #define pushcerenkovphoton pushcerenkovphoton_ #define usersteppingckv usersteppingckv_ extern "C" { void pushcerenkovphoton(Double_t & px, Double_t & py, Double_t & pz, Double_t & e, Double_t & vx, Double_t & vy, Double_t & vz, Double_t & tof, Double_t & polx, Double_t & poly, Double_t & polz, Double_t & wgt, Int_t& ntr) { // // Pushes one cerenkov photon to the stack // TFluka* fluka = (TFluka*) gMC; TVirtualMCStack* cppstack = fluka->GetStack(); Int_t parent = TRACKR.ispusr[mkbmx2-1]; cppstack->PushTrack(0, parent, 50000050, px, py, pz, e, vx, vy, vz, tof, polx, poly, polz, kPCerenkov, ntr, wgt, 0); } void usersteppingckv(Int_t & nphot, Int_t & mreg, Double_t & x, Double_t & y, Double_t & z) { // // Calls stepping in order to signal cerenkov production // TFluka *fluka = (TFluka*)gMC; fluka->SetMreg(mreg); fluka->SetXsco(x); fluka->SetYsco(y); fluka->SetZsco(z); fluka->SetNCerenkov(nphot); fluka->SetCaller(50); printf("userstepping ckv: %10d %10d %13.3f %13.3f %13.2f\n", nphot, mreg, x, y, z); (TVirtualMCApplication::Instance())->Stepping(); } }