static Int_t eventsPerRun = 100; void Config() { cout << "==> Config.C..." << endl; // Set Random Number seed // gRandom->SetSeed(12345); // libraries required by fluka21 cout << "\t* Loading TFluka..." << endl; gSystem->Load("libTFluka"); cout << "\t* Instantiating TFluka..." << endl; new TFluka("C++ Interface to Fluka", 3/*verbositylevel*/); cout << "\t* Recreating galice.root if needed..." << endl; if (!gSystem->Getenv("CONFIG_FILE")) { TFile *rootfile = new TFile("galice.root", "recreate"); rootfile->SetCompressionLevel(2); } TFluka *fluka = (TFluka *) gMC; fluka->SetInputFileName("muon.inp"); //cout << "<== Config.C..." << endl; //return; // // Set External decayer TVirtualMCDecayer *decayer = new AliDecayerPythia(); decayer->SetForceDecay(kAll); decayer->Init(); gMC->SetExternalDecayer(decayer); // // // Physics process control gMC ->SetProcess("DCAY",1); gMC ->SetProcess("PAIR",1); gMC ->SetProcess("COMP",1); gMC ->SetProcess("PHOT",1); gMC ->SetProcess("PFIS",0); gMC ->SetProcess("DRAY",0); gMC ->SetProcess("ANNI",1); gMC ->SetProcess("BREM",1); gMC ->SetProcess("MUNU",1); //xx gMC ->SetProcess("CKOV",1); gMC ->SetProcess("HADR",1); //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) gMC ->SetProcess("LOSS",2); gMC ->SetProcess("MULS",1); //xx gMC ->SetProcess("RAYL",1); // Energy cuts // (in development) Float_t cut = 1.e-3; // 1MeV cut by default Float_t tofmax = 1.e10; gMC ->SetCut("CUTGAM",cut); gMC ->SetCut("CUTELE",cut); gMC ->SetCut("CUTNEU",cut); gMC ->SetCut("CUTHAD",cut); gMC ->SetCut("CUTMUO",cut); gMC ->SetCut("BCUTE",cut); gMC ->SetCut("BCUTM",cut); gMC ->SetCut("DCUTE",cut); gMC ->SetCut("DCUTM",cut); gMC ->SetCut("PPCUTM",cut); gMC ->SetCut("TOFMAX",tofmax); // //======================================================================= // ************* STEERING parameters FOR ALICE SIMULATION ************** // --- Specify event type to be tracked through the ALICE setup // --- All positions are in cm, angles in degrees, and P and E in GeV if (gSystem->Getenv("CONFIG_NPARTICLES")) int nParticles = atoi(gSystem->Getenv("CONFIG_NPARTICLES")); else int nParticles = 50; cout << "\t* Creating and configuring generator for " << nParticles << " particles..." << endl; AliGenHIJINGpara *gener = new AliGenHIJINGpara(nParticles); gener->SetMomentumRange(0, 999); gener->SetPhiRange(0, 360); // Set pseudorapidity range from -8 to 8. Float_t thmin = EtaToTheta(8); // theta min. <---> eta max Float_t thmax = EtaToTheta(-8); // theta max. <---> eta min gener->SetThetaRange(thmin,thmax); gener->SetOrigin(0, 0, 0); //vertex position gener->SetSigma(0, 0, 0); //Sigma in (X,Y,Z) (cm) on IP position gener->Init(); // // Activate this line if you want the vertex smearing to happen // track by track // //gener->SetVertexSmear(perTrack); cout << "\t* Setting magnetic field..." << endl; gAlice->SetField(-999, 2); //Specify maximum magnetic field in Tesla (neg. ==> default field) cout << "\t* Defining which detectors to load..." << endl; Int_t iABSO = 0; Int_t iCRT = 0; Int_t iDIPO = 0; Int_t iFMD = 0; Int_t iFRAME = 0; Int_t iHALL = 0; Int_t iITS = 0; Int_t iMAG = 0; Int_t iMUON = 0; Int_t iPHOS = 0; Int_t iPIPE = 0; Int_t iPMD = 0; Int_t iRICH = 0; Int_t iSHIL = 0; Int_t iSTART = 0; Int_t iTOF = 0; Int_t iTPC = 1; Int_t iTRD = 0; Int_t iZDC = 0; Int_t iEMCAL = 0; cout << "\t* Creating the detectors ..." << endl; //=================== Alice BODY parameters ============================= AliBODY *BODY = new AliBODY("BODY", "Alice envelop"); cout << "\t\t+ BODY..." << endl; if (iMAG) { //=================== MAG parameters ============================ // --- Start with Magnet since detector layouts may be depending --- // --- on the selected Magnet dimensions --- cout << "\t\t+ Magnet..." << endl; AliMAG *MAG = new AliMAG("MAG", "Magnet"); } if (iABSO) { //=================== ABSO parameters ============================ cout << "\t\t+ ABSO..." << endl; AliABSO *ABSO = new AliABSOv0("ABSO", "Muon Absorber"); } if (iDIPO) { //=================== DIPO parameters ============================ cout << "\t\t+ DIPO..." << endl; AliDIPO *DIPO = new AliDIPOv2("DIPO", "Dipole version 2"); } if (iHALL) { //=================== HALL parameters ============================ cout << "\t\t+ HALL..." << endl; AliHALL *HALL = new AliHALL("HALL", "Alice Hall"); } if (iFRAME) { //=================== FRAME parameters ============================ cout << "\t\t+ FRAME..." << endl; AliFRAME *FRAME = new AliFRAMEv2("FRAME", "Space Frame"); } if (iSHIL) { //=================== SHIL parameters ============================ cout << "\t\t+ SHIL..." << endl; AliSHIL *SHIL = new AliSHILv2("SHIL", "Shielding"); } if (iPIPE) { //=================== PIPE parameters ============================ cout << "\t\t+ PIPE..." << endl; AliPIPE *PIPE = new AliPIPEv0("PIPE", "Beam Pipe"); } if(iITS) { cout << "\t\t+ ITS..." << endl; //=================== ITS parameters ============================ // // As the innermost detector in ALICE, the Inner Tracking System "impacts" on // almost all other detectors. This involves the fact that the ITS geometry // still has several options to be followed in parallel in order to determine // the best set-up which minimizes the induced background. All the geometries // available to date are described in the following. Read carefully the comments // and use the default version (the only one uncommented) unless you are making // comparisons and you know what you are doing. In this case just uncomment the // ITS geometry you want to use and run Aliroot. // // Detailed geometries: // // //AliITS *ITS = new AliITSv5symm("ITS","Updated ITS TDR detailed version with symmetric services"); // //AliITS *ITS = new AliITSv5asymm("ITS","Updates ITS TDR detailed version with asymmetric services"); // AliITSvPPRasymm *ITS = new AliITSvPPRasymm("ITS","New ITS PPR detailed version with asymmetric services"); ITS->SetMinorVersion(2); // don't touch this parameter if you're not an ITS developer ITS->SetReadDet(kFALSE); // don't touch this parameter if you're not an ITS developer // ITS->SetWriteDet("$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det"); // don't touch this parameter if you're not an ITS developer ITS->SetThicknessDet1(200.); // detector thickness on layer 1 must be in the range [100,300] ITS->SetThicknessDet2(200.); // detector thickness on layer 2 must be in the range [100,300] ITS->SetThicknessChip1(200.); // chip thickness on layer 1 must be in the range [150,300] ITS->SetThicknessChip2(200.); // chip thickness on layer 2 must be in the range [150,300] ITS->SetRails(1); // 1 --> rails in ; 0 --> rails out ITS->SetCoolingFluid(1); // 1 --> water ; 0 --> freon // //AliITSvPPRsymm *ITS = new AliITSvPPRsymm("ITS","New ITS PPR detailed version with symmetric services"); //ITS->SetMinorVersion(2); // don't touch this parameter if you're not an ITS developer //ITS->SetReadDet(kFALSE); // don't touch this parameter if you're not an ITS developer //ITS->SetWriteDet("$ALICE_ROOT/ITS/ITSgeometry_vPPRsymm2.det"); // don't touch this parameter if you're not an ITS developer //ITS->SetThicknessDet1(200.); // detector thickness on layer 1 must be in the range [100,300] //ITS->SetThicknessDet2(200.); // detector thickness on layer 2 must be in the range [100,300] //ITS->SetThicknessChip1(200.); // chip thickness on layer 1 must be in the range [150,300] //ITS->SetThicknessChip2(200.); // chip thickness on layer 2 must be in the range [150,300] //ITS->SetRails(1); // 1 --> rails in ; 0 --> rails out //ITS->SetCoolingFluid(1); // 1 --> water ; 0 --> freon // // // Coarse geometries (warning: no hits are produced with these coarse geometries and they unuseful // for reconstruction !): // // //AliITSvPPRcoarseasymm *ITS = new AliITSvPPRcoarseasymm("ITS","New ITS PPR coarse version with asymmetric services"); //ITS->SetRails(1); // 1 --> rails in ; 0 --> rails out //ITS->SetSupportMaterial(0); // 0 --> Copper ; 1 --> Aluminum ; 2 --> Carbon // //AliITS *ITS = new AliITSvPPRcoarsesymm("ITS","New ITS PPR coarse version with symmetric services"); //ITS->SetRails(1); // 1 --> rails in ; 0 --> rails out //ITS->SetSupportMaterial(0); // 0 --> Copper ; 1 --> Aluminum ; 2 --> Carbon // // // // Geant3 <-> EUCLID conversion // ============================ // // SetEUCLID is a flag to output (=1) or not to output (=0) both geometry and // media to two ASCII files (called by default ITSgeometry.euc and // ITSgeometry.tme) in a format understandable to the CAD system EUCLID. // The default (=0) means that you dont want to use this facility. // ITS->SetEUCLID(0); } if (iTPC) { cout << "\t\t+ TPC..." << endl; //============================ TPC parameters ================================ // --- This allows the user to specify sectors for the SLOW (TPC geometry 2) // --- Simulator. SecAL (SecAU) <0 means that ALL lower (upper) // --- sectors are specified, any value other than that requires at least one // --- sector (lower or upper)to be specified! // --- Reminder: sectors 1-24 are lower sectors (1-12 -> z>0, 13-24 -> z<0) // --- sectors 25-72 are the upper ones (25-48 -> z>0, 49-72 -> z<0) // --- SecLows - number of lower sectors specified (up to 6) // --- SecUps - number of upper sectors specified (up to 12) // --- Sens - sensitive strips for the Slow Simulator !!! // --- This does NOT work if all S or L-sectors are specified, i.e. // --- if SecAL or SecAU < 0 // // //----------------------------------------------------------------------------- // gROOT->LoadMacro("SetTPCParam.C"); // AliTPCParam *param = SetTPCParam(); AliTPC *TPC = new AliTPCv2("TPC", "Default"); // All sectors included TPC->SetSecAL(-1); TPC->SetSecAU(-1); } if (iTOF) { cout << "\t\t+ TOF..." << endl; //=================== TOF parameters ============================ AliTOF *TOF = new AliTOFv2("TOF", "normal TOF"); } if (iRICH) { cout << "\t\t+ RICH..." << endl; //=================== RICH parameters =========================== AliRICH *RICH = new AliRICHv1("RICH", "normal RICH"); } if (iZDC) { cout << "\t\t+ ZDC..." << endl; //=================== ZDC parameters ============================ AliZDC *ZDC = new AliZDCv2("ZDC", "normal ZDC"); } if (iCRT) { cout << "\t\t+ CRT..." << endl; //=================== CRT parameters ============================ AliCRT *CRT = new AliCRTv0("CRT", "normal CRT"); } if (iTRD) { cout << "\t\t+ TRD..." << endl; //=================== TRD parameters ============================ AliTRD *TRD = new AliTRDv1("TRD", "TRD slow simulator"); // Select the gas mixture (0: 97% Xe + 3% isobutane, 1: 90% Xe + 10% CO2) TRD->SetGasMix(1); // With hole in front of PHOS TRD->SetPHOShole(); // With hole in front of RICH TRD->SetRICHhole(); // Switch on TR AliTRDsim *TRDsim = TRD->CreateTR(); } if (iFMD) { cout << "\t\t+ FMD..." << endl; //=================== FMD parameters ============================ AliFMD *FMD = new AliFMDv1("FMD", "normal FMD"); FMD->SetRingsSi1(256); FMD->SetRingsSi2(64); FMD->SetSectorsSi1(20); FMD->SetSectorsSi2(24); } if (iMUON) { cout << "\t\t+ MUON..." << endl; //=================== MUON parameters =========================== AliMUON *MUON = new AliMUONv1("MUON", "default"); } //=================== PHOS parameters =========================== if (iPHOS) { cout << "\t\t+ PHOS..." << endl; AliPHOS *PHOS = new AliPHOSv1("PHOS", "GPS2"); } if (iPMD) { cout << "\t\t+ PMD..." << endl; //=================== PMD parameters ============================ AliPMD *PMD = new AliPMDv1("PMD", "normal PMD"); PMD->SetPAR(1., 1., 0.8, 0.02); PMD->SetIN(6., 18., -580., 27., 27.); PMD->SetGEO(0.0, 0.2, 4.); PMD->SetPadSize(0.8, 1.0, 1.0, 1.5); } if (iEMCAL && !iRICH) { cout << "\t\t+ EMCAL (no RICH)..." << endl; //=================== EMCAL parameters ============================ AliEMCAL *EMCAL = new AliEMCALv1("EMCAL", "EMCALArch1a"); } if (iSTART) { cout << "\t\t+ START..." << endl; //=================== START parameters ============================ AliSTART *START = new AliSTARTv1("START", "START Detector"); } cout << "<== Config.C..." << endl; } Float_t EtaToTheta(Float_t arg){ return (180./TMath::Pi())*2.*atan(exp(-arg)); }