/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // Generator using HIJING as an external generator // The main HIJING options are accessable for the user through this interface. // Uses the THijing implementation of TGenerator. // Author: // Andreas Morsch (andreas.morsch@cern.ch) // #include #include #include #include #include #include #include "AliGenHijing.h" #include "AliGenHijingEventHeader.h" #include "AliHijingRndm.h" #include "AliLog.h" #include "AliRun.h" ClassImp(AliGenHijing) AliGenHijing::AliGenHijing() :AliGenMC(), fFrame("CMS"), fMinImpactParam(0.), fMaxImpactParam(5.), fKeep(0), fQuench(1), fShadowing(1), fDecaysOff(3), fTrigger(0), fEvaluate(0), fSelectAll(0), fFlavor(0), fKineBias(0.), fTrials(0), fXsection(0.), fHijing(0), fPtHardMin(2.0), fPtHardMax(-1), fSpectators(1), fDsigmaDb(0), fDnDb(0), fPtMinJet(-2.5), fEtaMinJet(-20.), fEtaMaxJet(+20.), fPhiMinJet(0.), fPhiMaxJet(2. * TMath::Pi()), fRadiation(3), fSimpleJet(kFALSE), fNoGammas(kFALSE), fProjectileSpecn(0), fProjectileSpecp(0), fTargetSpecn(0), fTargetSpecp(0), fLHC(kFALSE), fRandomPz(kFALSE), fNoHeavyQuarks(kFALSE), fHeader(AliGenHijingEventHeader("Hijing")) { // Constructor fEnergyCMS = 5500.; AliHijingRndm::SetHijingRandom(GetRandom()); } AliGenHijing::AliGenHijing(Int_t npart) :AliGenMC(npart), fFrame("CMS"), fMinImpactParam(0.), fMaxImpactParam(5.), fKeep(0), fQuench(1), fShadowing(1), fDecaysOff(3), fTrigger(0), fEvaluate(0), fSelectAll(0), fFlavor(0), fKineBias(0.), fTrials(0), fXsection(0.), fHijing(0), fPtHardMin(2.0), fPtHardMax(-1), fSpectators(1), fDsigmaDb(0), fDnDb(0), fPtMinJet(-2.5), fEtaMinJet(-20.), fEtaMaxJet(+20.), fPhiMinJet(0.), fPhiMaxJet(2. * TMath::Pi()), fRadiation(3), fSimpleJet(kFALSE), fNoGammas(kFALSE), fProjectileSpecn(0), fProjectileSpecp(0), fTargetSpecn(0), fTargetSpecp(0), fLHC(kFALSE), fRandomPz(kFALSE), fNoHeavyQuarks(kFALSE), fHeader(AliGenHijingEventHeader("Hijing")) { // Default PbPb collisions at 5. 5 TeV // fEnergyCMS = 5500.; fName = "Hijing"; fTitle= "Particle Generator using HIJING"; // // // Set random number generator AliHijingRndm::SetHijingRandom(GetRandom()); } AliGenHijing::~AliGenHijing() { // Destructor if ( fDsigmaDb) delete fDsigmaDb; if ( fDnDb) delete fDnDb; } void AliGenHijing::Init() { // Initialisation fFrame.Resize(8); fTarget.Resize(8); fProjectile.Resize(8); SetMC(new THijing(fEnergyCMS, fFrame, fProjectile, fTarget, fAProjectile, fZProjectile, fATarget, fZTarget, fMinImpactParam, fMaxImpactParam)); fHijing=(THijing*) fMCEvGen; fHijing->SetIHPR2(2, fRadiation); fHijing->SetIHPR2(3, fTrigger); fHijing->SetIHPR2(6, fShadowing); fHijing->SetIHPR2(12, fDecaysOff); fHijing->SetIHPR2(21, fKeep); fHijing->SetHIPR1(8, fPtHardMin); fHijing->SetHIPR1(9, fPtHardMax); fHijing->SetHIPR1(10, fPtMinJet); fHijing->SetHIPR1(50, fSimpleJet); // // Quenching // // // fQuench = 0: no quenching // fQuench = 1: hijing default // fQuench = 2: new LHC parameters for HIPR1(11) and HIPR1(14) // fQuench = 3: new RHIC parameters for HIPR1(11) and HIPR1(14) // fQuench = 4: new LHC parameters with log(e) dependence // fQuench = 5: new RHIC parameters with log(e) dependence fHijing->SetIHPR2(50, 0); if (fQuench > 0) fHijing->SetIHPR2(4, 1); else fHijing->SetIHPR2(4, 0); // New LHC parameters from Xin-Nian Wang if (fQuench == 2) { fHijing->SetHIPR1(14, 1.1); fHijing->SetHIPR1(11, 3.7); } else if (fQuench == 3) { fHijing->SetHIPR1(14, 0.20); fHijing->SetHIPR1(11, 2.5); } else if (fQuench == 4) { fHijing->SetIHPR2(50, 1); fHijing->SetHIPR1(14, 4.*0.34); fHijing->SetHIPR1(11, 3.7); } else if (fQuench == 5) { fHijing->SetIHPR2(50, 1); fHijing->SetHIPR1(14, 0.34); fHijing->SetHIPR1(11, 2.5); } // // Heavy quarks // if (fNoHeavyQuarks) { fHijing->SetIHPR2(49, 1); } else { fHijing->SetIHPR2(49, 0); } AliGenMC::Init(); // // Initialize Hijing // fHijing->Initialize(); // if (fEvaluate) EvaluateCrossSections(); // } void AliGenHijing::Generate() { // Generate one event Float_t polar[3] = {0,0,0}; Float_t origin[3] = {0,0,0}; Float_t origin0[3] = {0,0,0}; Float_t time0 = 0.; Float_t p[3]; Float_t tof; // converts from mm/c to s const Float_t kconv = 0.001/2.99792458e8; // Int_t nt = 0; Int_t jev = 0; Int_t j, kf, ks, ksp, imo; kf = 0; fTrials = 0; for (j = 0;j < 3; j++) origin0[j] = fOrigin[j]; time0 = fTimeOrigin; if(fVertexSmear == kPerEvent) { Vertex(); for (j=0; j < 3; j++) origin0[j] = fVertex[j]; time0 = fTime; } Float_t sign = (fRandomPz && (Rndm() < 0.5))? -1. : 1.; while(1) { // Generate one event // -------------------------------------------------------------------------- fProjectileSpecn = 0; fProjectileSpecp = 0; fTargetSpecn = 0; fTargetSpecp = 0; // -------------------------------------------------------------------------- fHijing->GenerateEvent(); fTrials++; fNprimaries = 0; fHijing->ImportParticles(&fParticles,"All"); if (fTrigger != kNoTrigger) { if (!CheckTrigger()) continue; } if (fLHC) Boost(); Int_t np = fParticles.GetEntriesFast(); Int_t nc = 0; if (np == 0 ) continue; Int_t i; Int_t* newPos = new Int_t[np]; Int_t* pSelected = new Int_t[np]; for (i = 0; i < np; i++) { newPos[i] = i; pSelected[i] = 0; } // Get event vertex // fVertex[0] = origin0[0]; fVertex[1] = origin0[1]; fVertex[2] = origin0[2]; fTime = time0; // // First select parent particles // TParticle * iparticle = 0; for (i = 0; i < np; i++) { iparticle = (TParticle *) fParticles.At(i); // Is this a parent particle ? if (Stable(iparticle)) continue; // Bool_t selected = kTRUE; Bool_t hasSelectedDaughters = kFALSE; kf = iparticle->GetPdgCode(); ks = iparticle->GetStatusCode(); if (kf == 92) continue; if (!fSelectAll) selected = KinematicSelection(iparticle, 0) && SelectFlavor(kf); hasSelectedDaughters = DaughtersSelection(iparticle); // // Put particle on the stack if it is either selected or // it is the mother of at least one seleted particle // if (selected || hasSelectedDaughters) { nc++; pSelected[i] = 1; } // selected } // particle loop parents // // Now select the final state particles // for (i = 0; iGetPdgCode(); ks = iparticle->GetStatusCode(); ksp = iparticle->GetUniqueID(); // -------------------------------------------------------------------------- // Count spectator neutrons and protons if(ksp == 0 || ksp == 1){ if(kf == kNeutron) fProjectileSpecn += 1; if(kf == kProton) fProjectileSpecp += 1; } else if(ksp == 10 || ksp == 11){ if(kf == kNeutron) fTargetSpecn += 1; if(kf == kProton) fTargetSpecp += 1; } // -------------------------------------------------------------------------- // if (!fSelectAll) { selected = KinematicSelection(iparticle,0)&&SelectFlavor(kf); if (!fSpectators && selected) selected = (ksp != 0 && ksp != 1 && ksp != 10 && ksp != 11); } // // Put particle on the stack if selected // if (selected) { nc++; pSelected[i] = 1; } // selected } // particle loop final state // // Write particles to stack for (i = 0; iGetFirstMother() >=0); Bool_t hasDaughter = (iparticle->GetFirstDaughter() >=0); if (pSelected[i]) { kf = iparticle->GetPdgCode(); ks = iparticle->GetStatusCode(); p[0] = iparticle->Px(); p[1] = iparticle->Py(); p[2] = iparticle->Pz() * sign; origin[0] = origin0[0]+iparticle->Vx()/10; origin[1] = origin0[1]+iparticle->Vy()/10; origin[2] = origin0[2]+iparticle->Vz()/10; tof = time0+kconv * iparticle->T(); imo = -1; TParticle* mother = 0; if (hasMother) { imo = iparticle->GetFirstMother(); mother = (TParticle *) fParticles.At(imo); imo = (mother->GetPdgCode() != 92) ? newPos[imo] : -1; } // if has mother Bool_t tFlag = (fTrackIt && !hasDaughter); PushTrack(tFlag,imo,kf,p,origin,polar,tof,kPNoProcess,nt, 1., ks); fNprimaries++; KeepTrack(nt); newPos[i] = nt; } // if selected } // particle loop delete[] newPos; delete[] pSelected; AliInfo(Form("\n I've put %i particles on the stack \n",nc)); if (nc > 0) { jev += nc; if (jev >= fNpart || fNpart == -1) { fKineBias = Float_t(fNpart)/Float_t(fTrials); AliInfo(Form("\n Trials: %i %i %i\n",fTrials, fNpart, jev)); break; } } } // event loop MakeHeader(); SetHighWaterMark(nt); } void AliGenHijing::KeepFullEvent() { fKeep=1; } void AliGenHijing::EvaluateCrossSections() { // Glauber Calculation of geometrical x-section // Float_t xTot = 0.; // barn Float_t xTotHard = 0.; // barn Float_t xPart = 0.; // barn Float_t xPartHard = 0.; // barn Float_t sigmaHard = 0.1; // mbarn Float_t bMin = 0.; Float_t bMax = fHijing->GetHIPR1(34)+fHijing->GetHIPR1(35); const Float_t kdib = 0.2; Int_t kMax = Int_t((bMax-bMin)/kdib)+1; printf("\n Projectile Radius (fm): %f \n",fHijing->GetHIPR1(34)); printf("\n Target Radius (fm): %f \n",fHijing->GetHIPR1(35)); printf("\n Inelastic and total cross section (mb) %f %f \n",fHijing->GetHINT1(12), fHijing->GetHINT1(13)); Int_t i; Float_t oldvalue= 0.; Float_t* b = new Float_t[kMax]; Float_t* si1 = new Float_t[kMax]; Float_t* si2 = new Float_t[kMax]; for (i = 0; i < kMax; i++){ b[i] = 0.; si1[i] = 0.; si2[i] = 0.; } for (i = 0; i < kMax; i++) { Float_t xb = bMin+i*kdib; Float_t ov; ov=fHijing->Profile(xb); Float_t gb = 2.*0.01*fHijing->GetHIPR1(40)*kdib*xb*(1.-TMath::Exp(-fHijing->GetHINT1(12)*ov)); Float_t gbh = 2.*0.01*fHijing->GetHIPR1(40)*kdib*xb*sigmaHard*ov; xTot+=gb; xTotHard += gbh; printf("profile %f %f %f\n", xb, ov, fHijing->GetHINT1(12)); if (xb > fMinImpactParam && xb < fMaxImpactParam) { xPart += gb; xPartHard += gbh; } if(oldvalue) if ((xTot-oldvalue)/oldvalue<0.0001) break; oldvalue = xTot; printf("\n Total cross section (barn): %d %f %f \n",i, xb, xTot); printf("\n Hard cross section (barn): %d %f %f \n\n",i, xb, xTotHard); if (i>0) { si1[i] = gb/kdib; si2[i] = gbh/gb; b[i] = xb; } } printf("\n Total cross section (barn): %f \n",xTot); printf("\n Hard cross section (barn): %f \n \n",xTotHard); printf("\n Partial cross section (barn): %f %f \n",xPart, xPart/xTot*100.); printf("\n Partial hard cross section (barn): %f %f \n",xPartHard, xPartHard/xTotHard*100.); // Store result as a graph b[0] = 0; si1[0] = 0; si2[0]=si2[1]; fDsigmaDb = new TGraph(i, b, si1); fDnDb = new TGraph(i, b, si2); } Bool_t AliGenHijing::DaughtersSelection(const TParticle* iparticle) { // // Looks recursively if one of the daughters has been selected // // printf("\n Consider daughters %d:",iparticle->GetPdgCode()); Int_t imin = -1; Int_t imax = -1; Int_t i; Bool_t hasDaughters = (iparticle->GetFirstDaughter() >=0); Bool_t selected = kFALSE; if (hasDaughters) { imin = iparticle->GetFirstDaughter(); imax = iparticle->GetLastDaughter(); for (i = imin; i <= imax; i++){ TParticle * jparticle = (TParticle *) fParticles.At(i); Int_t ip = jparticle->GetPdgCode(); if (KinematicSelection(jparticle,0)&&SelectFlavor(ip)) { selected=kTRUE; break; } if (DaughtersSelection(jparticle)) {selected=kTRUE; break; } } } else { return kFALSE; } return selected; } Bool_t AliGenHijing::SelectFlavor(Int_t pid) { // Select flavor of particle // 0: all // 4: charm and beauty // 5: beauty Bool_t res = 0; if (fFlavor == 0) { res = kTRUE; } else { Int_t ifl = TMath::Abs(pid/100); if (ifl > 10) ifl/=10; res = (fFlavor == ifl); } // // This part if gamma writing is inhibited if (fNoGammas) res = res && (pid != kGamma && pid != kPi0); // return res; } Bool_t AliGenHijing::Stable(const TParticle* particle) const { // Return true for a stable particle // if (particle->GetFirstDaughter() < 0 ) { return kTRUE; } else { return kFALSE; } } void AliGenHijing::MakeHeader() { // Builds the event header, to be called after each event fHeader.SetNProduced(fNprimaries); fHeader.SetImpactParameter(fHijing->GetHINT1(19)); fHeader.SetTotalEnergy(fHijing->GetEATT()); fHeader.SetHardScatters(fHijing->GetJATT()); fHeader.SetParticipants(fHijing->GetNP(), fHijing->GetNT()); fHeader.SetCollisions(fHijing->GetN0(), fHijing->GetN01(), fHijing->GetN10(), fHijing->GetN11()); fHeader.SetSpectators(fProjectileSpecn, fProjectileSpecp, fTargetSpecn,fTargetSpecp); fHeader.SetReactionPlaneAngle(fHijing->GetHINT1(20)); // 4-momentum vectors of the triggered jets. // // Before final state gluon radiation. TLorentzVector* jet1 = new TLorentzVector(fHijing->GetHINT1(21), fHijing->GetHINT1(22), fHijing->GetHINT1(23), fHijing->GetHINT1(24)); TLorentzVector* jet2 = new TLorentzVector(fHijing->GetHINT1(31), fHijing->GetHINT1(32), fHijing->GetHINT1(33), fHijing->GetHINT1(34)); // After final state gluon radiation. TLorentzVector* jet3 = new TLorentzVector(fHijing->GetHINT1(26), fHijing->GetHINT1(27), fHijing->GetHINT1(28), fHijing->GetHINT1(29)); TLorentzVector* jet4 = new TLorentzVector(fHijing->GetHINT1(36), fHijing->GetHINT1(37), fHijing->GetHINT1(38), fHijing->GetHINT1(39)); fHeader.SetJets(jet1, jet2, jet3, jet4); // Bookkeeping for kinematic bias fHeader.SetTrials(fTrials); // Event Vertex fHeader.SetPrimaryVertex(fVertex); fHeader.SetInteractionTime(fTime); AddHeader(&fHeader); fCollisionGeometry = &fHeader; } Bool_t AliGenHijing::CheckTrigger() { // Check the kinematic trigger condition // Bool_t triggered = kFALSE; if (fTrigger == 1) { // // jet-jet Trigger TLorentzVector* jet1 = new TLorentzVector(fHijing->GetHINT1(26), fHijing->GetHINT1(27), fHijing->GetHINT1(28), fHijing->GetHINT1(29)); TLorentzVector* jet2 = new TLorentzVector(fHijing->GetHINT1(36), fHijing->GetHINT1(37), fHijing->GetHINT1(38), fHijing->GetHINT1(39)); Double_t eta1 = jet1->Eta(); Double_t eta2 = jet2->Eta(); Double_t phi1 = jet1->Phi(); Double_t phi2 = jet2->Phi(); // printf("\n Trigger: %f %f %f %f", // fEtaMinJet, fEtaMaxJet, fPhiMinJet, fPhiMaxJet); if ( (eta1 < fEtaMaxJet && eta1 > fEtaMinJet && phi1 < fPhiMaxJet && phi1 > fPhiMinJet) || (eta2 < fEtaMaxJet && eta2 > fEtaMinJet && phi2 < fPhiMaxJet && phi2 > fPhiMinJet) ) triggered = kTRUE; } else if (fTrigger == 2) { // Gamma Jet // Int_t np = fParticles.GetEntriesFast(); for (Int_t i = 0; i < np; i++) { TParticle* part = (TParticle*) fParticles.At(i); Int_t kf = part->GetPdgCode(); Int_t ksp = part->GetUniqueID(); if (kf == 22 && ksp == 40) { Float_t phi = part->Phi(); Float_t eta = part->Eta(); if (eta < fEtaMaxJet && eta > fEtaMinJet && phi < fPhiMaxJet && phi > fPhiMinJet) { triggered = 1; break; } // check phi,eta within limits } // direct gamma ? } // particle loop } // fTrigger == 2 return triggered; }