/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.14 2000/05/15 19:32:36 fca Add AddHitList !! Revision 1.13 2000/05/10 16:52:18 vicinanz New TOF version with holes for PHOS/RICH Revision 1.11.2.1 2000/05/10 09:37:15 vicinanz New version with Holes for PHOS/RICH Revision 1.11 1999/11/05 22:39:06 fca New hits structure Revision 1.10 1999/11/01 20:41:57 fca Added protections against using the wrong version of FRAME Revision 1.9 1999/10/15 15:35:19 fca New version for frame1099 with and without holes Revision 1.9 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight FCA // // This class contains the basic functions for the Time Of Flight // // detector. Functions specific to one particular geometry are // // contained in the derived classes // // // VERSIONE WITH 5 SYMMETRIC MODULES ALONG Z AXIS // ============================================== // // VERSION WITH HOLES FOR PHOS AND TRD IN SPACEFRAME WITH HOLES // // Volume sensibile : FPAD // // // // Begin_Html /* */ //End_Html // // // // /////////////////////////////////////////////////////////////////////////////// #include #include "AliTOF.h" #include "AliTOFD.h" #include "TBRIK.h" #include "TNode.h" #include "TObject.h" #include "TRandom.h" #include "AliRun.h" #include "AliConst.h" ClassImp(AliTOF) //_____________________________________________________________________________ AliTOF::AliTOF() { // // Default constructor // fIshunt = 0; } //_____________________________________________________________________________ AliTOF::AliTOF(const char *name, const char *title) : AliDetector(name,title) { // // AliTOF standard constructor // // Here are fixed some important parameters // // Initialization of hits and digits array // fHits = new TClonesArray("AliTOFhit", 405); gAlice->AddHitList(fHits); fIshunt = 0; fDigits = new TClonesArray("AliTOFdigit",405); // // Digitization parameters // // (Transfer Functions to be inserted here) // SetMarkerColor(7); SetMarkerStyle(2); SetMarkerSize(0.4); // General Geometrical Parameters fNTof = 18; fRmax = 399.0;//cm fRmin = 370.0;//cm fZlenC = 177.5;//cm fZlenB = 141.0;//cm fZlenA = 106.0;//cm fZtof = 370.5;//cm // Strip Parameters fStripLn = 122.0;//cm Strip Length fSpace = 5.5;//cm Space Beetween the strip and the bottom of the plate fDeadBndZ= 1.5;//cm Dead Boundaries of a Strip along Z direction (width) fDeadBndX= 1.0;//cm Dead Boundaries of a Strip along X direction (length) fXpad = 2.5;//cm X size of a pad fZpad = 3.5;//cm Z size of a pad fGapA = 4.; //cm Gap beetween tilted strip in A-type plate fGapB = 6.; //cm Gap beetween tilted strip in B-type plate fOverSpc = 15.3;//cm Space available for sensitive layers in radial direction fNpadX = 48; // Number of pads in a strip along the X direction fNpadZ = 2; // Number of pads in a strip along the Z direction fPadXStr = fNpadX*fNpadZ; //Number of pads per strip fNStripA = 0; fNStripB = 0; fNStripC = 0; // Physical performances fTimeRes = 100.;//ps fChrgRes = 100.;//pC // DAQ characteristics fPadXSector = 1932; fNRoc = 14; fNFec = 32; fNTdc = 32; fNPadXRoc = (Int_t)fPadXSector/fNRoc; } //_____________________________________________________________________________ void AliTOF::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Add a TOF hit // TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliTOFhit(fIshunt, track, vol, hits); } //_____________________________________________________________________________ void AliTOF::AddDigit(Int_t *tracks, Int_t *vol, Float_t *digits) { // // Add a TOF digit // TClonesArray &ldigits = *fDigits; new (ldigits[fNdigits++]) AliTOFdigit(tracks, vol, digits); } //_____________________________________________________________________________ void AliTOF::CreateGeometry() { // // Common geometry code // //Begin_Html /* */ //End_Html // const Double_t kPi=TMath::Pi(); const Double_t kDegrad=kPi/180.; // Float_t xTof, yTof, Wall; // frame inbetween TOF modules Wall = 4.;//cm // Sizes of TOF module with its support etc.. xTof = 2.*(fRmin*TMath::Tan(10*kDegrad)-Wall/2-.5); yTof = fRmax-fRmin; // TOF module internal definitions TOFpc(xTof, yTof, fZlenC, fZlenB, fZlenA, fZtof); } //_____________________________________________________________________________ void AliTOF::DrawModule() { // // Draw a shaded view of the common part of the TOF geometry // cout << " Drawing of AliTOF"<< endl; // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("FTOA","SEEN",1); gMC->Gsatt("FTOB","SEEN",1); gMC->Gsatt("FTOC","SEEN",1); gMC->Gsatt("FLTA","SEEN",1); gMC->Gsatt("FLTB","SEEN",1); gMC->Gsatt("FLTC","SEEN",1); gMC->Gsatt("FSTR","SEEN",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOF::CreateMaterials() { // // Defines TOF materials for all versions // Authors : Maxim Martemianov, Boris Zagreev (ITEP) // 18/09/98 // Int_t ISXFLD = gAlice->Field()->Integ(); Float_t SXMGMX = gAlice->Field()->Max(); // //--- Quartz (SiO2) Float_t aq[2] = { 28.0855,15.9994 }; Float_t zq[2] = { 14.,8. }; Float_t wq[2] = { 1.,2. }; Float_t dq = 2.20; Int_t nq = -2; // --- Freon Float_t afre[2] = {12.011,18.9984032 }; Float_t zfre[2] = { 6., 9.}; Float_t wfre[2] = { 5.,12.}; Float_t densfre = 1.5; Int_t nfre = -2; // --- CO2 Float_t ac[2] = {12.,16.}; Float_t zc[2] = { 6., 8.}; Float_t wc[2] = { 1., 2.}; Float_t dc = .001977; Int_t nc = -2; // For mylar (C5H4O2) Float_t amy[3] = { 12., 1., 16. }; Float_t zmy[3] = { 6., 1., 8. }; Float_t wmy[3] = { 5., 4., 2. }; Float_t dmy = 1.39; Int_t nmy = -3; // For polyethilene (CH2) for honeycomb!!!! Float_t ape[2] = { 12., 1. }; Float_t zpe[2] = { 6., 1. }; Float_t wpe[2] = { 1., 2. }; Float_t dpe = 0.935*0.479; //To have 1%X0 for 1cm as for honeycomb Int_t npe = -2; // --- G10 Float_t ag10[4] = { 12.,1.,16.,28. }; Float_t zg10[4] = { 6.,1., 8.,14. }; Float_t wmatg10[4] = { .259,.288,.248,.205 }; Float_t densg10 = 1.7; Int_t nlmatg10 = -4; // --- DME Float_t adme[5] = { 12.,1.,16.,19.,79. }; Float_t zdme[5] = { 6.,1., 8., 9.,35. }; Float_t wmatdme[5] = { .4056,.0961,.2562,.1014,.1407 }; Float_t densdme = .00205; Int_t nlmatdme = 5; // ---- ALUMINA (AL203) Float_t aal[2] = { 27.,16.}; Float_t zal[2] = { 13., 8.}; Float_t wmatal[2] = { 2.,3. }; Float_t densal = 2.3; Int_t nlmatal = -2; // -- Water Float_t awa[2] = { 1., 16. }; Float_t zwa[2] = { 1., 8. }; Float_t wwa[2] = { 2., 1. }; Float_t dwa = 1.0; Int_t nwa = -2; // //AliMaterial(0, "Vacuum$", 1e-16, 1e-16, 1e-16, 1e16, 1e16); AliMaterial( 1, "Air$",14.61,7.3,0.001205,30423.24,67500.); AliMaterial( 2, "Cu $", 63.54, 29.0, 8.96, 1.43, 14.8); AliMaterial( 3, "C $", 12.01, 6.0, 2.265,18.8, 74.4); AliMixture ( 4, "Polyethilene$", ape, zpe, dpe, npe, wpe); AliMixture ( 5, "G10$", ag10, zg10, densg10, nlmatg10, wmatg10); AliMixture ( 6, "DME ", adme, zdme, densdme, nlmatdme, wmatdme); AliMixture ( 7, "CO2$", ac, zc, dc, nc, wc); AliMixture ( 8, "ALUMINA$", aal, zal, densal, nlmatal, wmatal); AliMaterial( 9, "Al $", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(10, "C-TRD$", 12.01, 6., 2.265*18.8/69.282*15./100, 18.8, 74.4); // for 15% AliMixture (11, "Mylar$", amy, zmy, dmy, nmy, wmy); AliMixture (12, "Freon$", afre, zfre, densfre, nfre, wfre); AliMixture (13, "Quartz$", aq, zq, dq, nq, wq); AliMixture (14, "Water$", awa, zwa, dwa, nwa, wwa); Float_t epsil, stmin, deemax, stemax; // Previous data // EPSIL = 0.1 ! Tracking precision, // STEMAX = 0.1 ! Maximum displacement for multiple scattering // DEEMAX = 0.1 ! Maximum fractional energy loss, DLS // STMIN = 0.1 // // New data epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scattering deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; AliMedium( 1, "Air$" , 1, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 2, "Cu $" , 2, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 3, "C $" , 3, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 4, "Pol$" , 4, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 5, "G10$" , 5, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 6, "DME$" , 6, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 7, "CO2$" , 7, 0, ISXFLD, SXMGMX, 10., -.01, -.1, .01, -.01); AliMedium( 8,"ALUMINA$", 8, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium( 9,"Al Frame$",9, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(10, "DME-S$", 6, 1, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(11, "C-TRD$", 10, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(12, "Myl$" , 11, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(13, "Fre$" , 12, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(14, "Fre-S$", 12, 1, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(15, "Glass$", 13, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); AliMedium(16, "Water$", 14, 0, ISXFLD, SXMGMX, 10., stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ Int_t AliTOF::DistancetoPrimitive(Int_t , Int_t ) { // // Returns distance from mouse pointer to detector, default version // return 9999; } //_____________________________________________________________________________ void AliTOF::Init() { // // Initialise TOF detector after it has been built // // Set id of TOF sensitive volume if (IsVersion() !=0) fIdSens=gMC->VolId("FPAD"); // } //____________________________________________________________________________ void AliTOF::MakeBranch(Option_t* option) // // Initializes the Branches of the TOF inside the // trees written for each event. // AliDetector::MakeBranch initializes just the // Branch inside TreeH. Here we add the branch in // TreeD. // { AliDetector::MakeBranch(option); Int_t buffersize = 4000; Char_t branchname[10]; sprintf(branchname,"%s",GetName()); char *D = strstr(option,"D"); if (fDigits && gAlice->TreeD() && D){ gAlice->TreeD()->Branch(branchname,&fDigits,buffersize); printf("Making Branch %s for digits \n",branchname); } } //____________________________________________________________________________ void AliTOF::FinishEvent() { // Hits2Digits(); } //____________________________________________________________________________ void AliTOF::Hits2Digits(Int_t evNumber) // // Starting from the Hits Tree (TreeH), this // function writes the Digits Tree (TreeD) storing // the digits informations. // Has to be called just at the end of an event or // at the end of a whole run. // It could also be called by AliTOF::Finish Event() // but it can be too heavy. // Just for MC events. // // Called by the macro H2D.C // { AliTOFhit* currentHit; TTree *TD, *TH; Int_t tracks[3]; Int_t vol[5]; Float_t digit[2]; TClonesArray* TOFhits=this->Hits(); Int_t nparticles = gAlice->GetEvent(evNumber); if (nparticles <= 0) return; TD = gAlice->TreeD(); TH = gAlice->TreeH(); Int_t ntracks =(Int_t) TH->GetEntries(); Int_t nbytes, nhits; TRandom *rnd = new TRandom(); for (Int_t ntk=0; ntkGetEvent(ntk); nhits = TOFhits->GetEntriesFast(); for (Int_t hit=0; hitAt(hit)); vol[0] = currentHit->GetSector(); vol[1] = currentHit->GetPlate(); vol[2] = currentHit->GetPad_x(); vol[3] = currentHit->GetPad_z(); vol[4] = currentHit->GetStrip(); Float_t IdealTime = currentHit->GetTof(); Float_t TDCTime = rnd->Gaus(IdealTime, fTimeRes); digit[0] = TDCTime; Float_t IdealCharge = currentHit->GetEdep(); Float_t ADCcharge = rnd->Gaus(IdealCharge, fChrgRes); digit[1] = ADCcharge; Int_t Track = currentHit -> GetTrack(); tracks[0] = Track; tracks[1] = 0; tracks[2] = 0; Bool_t Overlap = CheckOverlap(vol, digit, Track); if(!Overlap) AddDigit(tracks, vol, digit); } } TD->Fill(); TD->Write(); } //___________________________________________________________________________ Bool_t AliTOF::CheckOverlap(Int_t* vol, Float_t* digit,Int_t Track) // // Checks if 2 or more hits belong to the same pad. // In this case the data assigned to the digit object // are the ones of the first hit in order of Time. // // Called only by Hits2Digits. // { Bool_t Overlap = 0; Int_t vol2[5]; for (Int_t ndig=0; ndigUncheckedAt(ndig)); currentDigit->GetLocation(vol2); Bool_t Idem=1; for (Int_t i=0;i<=4;i++){ if (vol[i]!=vol2[i]) Idem=0;} if (Idem){ Float_t TDC2 = digit[0]; Float_t TDC1 = currentDigit->GetTdc(); if (TDC1>TDC2){ currentDigit->SetTdc(TDC2); currentDigit->SetAdc(digit[1]); } currentDigit->AddTrack(Track); Overlap = 1; } } return Overlap; } //____________________________________________________________________________ void AliTOF::Digits2Raw(Int_t evNumber) // // Starting from digits, writes the // Raw Data objects, i.e. a // TClonesArray of 18 AliTOFRawSector objects // { TTree* TD; Int_t nparticles = gAlice->GetEvent(evNumber); if (nparticles <= 0) return; TD = gAlice->TreeD(); TClonesArray* TOFdigits = this->Digits(); Int_t ndigits = TOFdigits->GetEntriesFast(); TClonesArray* Raw = new TClonesArray("AliTOFRawSector",fNTof+2); for (Int_t isect=1;isect<=fNTof;isect++){ AliTOFRawSector* currentSector = (AliTOFRawSector*)Raw->UncheckedAt(isect); TClonesArray* RocData = (TClonesArray*)currentSector->GetRocData(); for (Int_t digit=0; digitUncheckedAt(digit); Int_t sector = currentDigit->GetSector(); if (sector==isect){ Int_t Pad = currentDigit -> GetTotPad(); Int_t Roc = (Int_t)(Pad/fNPadXRoc)-1; if (Roc>=fNRoc) printf("Wrong n. of ROC ! Roc = %i",Roc); Int_t PadRoc = (Int_t) Pad%fNPadXRoc; Int_t Fec = (Int_t)(PadRoc/fNFec)-1; Int_t Tdc = (Int_t)(PadRoc%fNFec)-1; Float_t Time = currentDigit->GetTdc(); Float_t Charge = currentDigit->GetAdc(); AliTOFRoc* currentROC = (AliTOFRoc*)RocData->UncheckedAt(Roc); Int_t Error = 0; currentROC->AddItem(Fec, Tdc, Error, Charge, Time); } } UInt_t TotSize=16,RocSize=0; UInt_t RocHead[14],RocChek[14]; UInt_t GlobalCheckSum=0; for (UInt_t iRoc = 1; iRoc<(UInt_t)fNRoc; iRoc++){ AliTOFRoc* currentRoc = (AliTOFRoc*)RocData->UncheckedAt(iRoc); RocSize = currentRoc->Items*2+1; TotSize += RocSize*4; if (RocSize>=TMath::Power(2,16)) RocSize=0; RocHead[iRoc] = iRoc<<28; RocHead[iRoc] += RocSize; RocChek[iRoc] = currentRoc->GetCheckSum(); Int_t HeadCheck = currentRoc->BitCount(RocHead[iRoc]); GlobalCheckSum += HeadCheck; GlobalCheckSum += RocChek[iRoc]; } AliTOFRoc* DummyRoc = new AliTOFRoc(); TotSize *= 4; if (TotSize>=TMath::Power(2,24)) TotSize=0; UInt_t Header = TotSize; UInt_t SectId = ((UInt_t)isect)<<24; Header += SectId; GlobalCheckSum += DummyRoc->BitCount(Header); currentSector->SetGlobalCS(GlobalCheckSum); currentSector->SetHeader(Header); } } //____________________________________________________________________________ void AliTOF::Raw2Digits(Int_t evNumber) // // Converts Raw Data objects into digits objects. // We schematize the raw data with a // TClonesArray of 18 AliTOFRawSector objects // { TTree *TD; Int_t vol[5]; Int_t tracks[3]; Float_t digit[2]; tracks[0]=0; tracks[1]=0; tracks[2]=0; Int_t nparticles = gAlice->GetEvent(evNumber); if (nparticles <= 0) return; TD = gAlice->TreeD(); TClonesArray* Raw = new TClonesArray("AliTOFRawSector",fNTof+2); for(Int_t nSec=1; nSec<=fNTof; nSec++){ AliTOFRawSector* currentSector = (AliTOFRawSector*)Raw->UncheckedAt(nSec); TClonesArray* RocData = (TClonesArray*)currentSector->GetRocData(); for(Int_t nRoc=1; nRoc<=14; nRoc++){ AliTOFRoc* currentRoc = (AliTOFRoc*)RocData->UncheckedAt(nRoc); Int_t currentItems = currentRoc->GetItems(); for(Int_t item=1; itemGetTotPad(item); vol[0] = nSec; Int_t nStrip = (Int_t)(nPad/fPadXStr)+1; Int_t nPlate = 5; if (nStrip<=fNStripC+2*fNStripB+fNStripA) nPlate = 4; if (nStrip<=fNStripC+fNStripB+fNStripA) nPlate = 3; if (nStrip<=fNStripC+fNStripB) nPlate = 2; if (nStrip<=fNStripC) nPlate=1; vol[1] = nPlate; switch (nPlate){ case 1: break; case 2: nStrip -= (fNStripC); break; case 3: nStrip -= (fNStripC+fNStripB); break; case 4: nStrip -= (fNStripC+fNStripB+fNStripA); break; case 5: nStrip -= (fNStripC+2*fNStripB+fNStripA); break; } vol[2] = nStrip; Int_t Pad = nPad%fPadXStr; if (Pad==0) Pad=fPadXStr; Int_t nPadX=0, nPadZ=0; (Pad>fNpadX)? nPadX -= fNpadX : nPadX = Pad ; vol[3] = nPadX; (Pad>fNpadX)? nPadZ = 2 : nPadZ = 1 ; vol[4] = nPadZ; UInt_t error=0; Float_t TDC = currentRoc->GetTime(item,error); if (!error) digit[0]=TDC; digit[1] = currentRoc->GetCharge(item); AddDigit(tracks,vol,digit); } } } TD->Fill(); TD->Write(); } /******************************************************************************/ ClassImp(AliTOFhit) //______________________________________________________________________________ AliTOFhit::AliTOFhit(Int_t shunt, Int_t track, Int_t *vol, Float_t *hits) :AliHit(shunt, track) // // Constructor of hit object // { // // Store a TOF hit // _______________ // // Hit Volume // fSector= vol[0]; fPlate = vol[1]; fStrip = vol[2]; fPad_x = vol[3]; fPad_z = vol[4]; // //Position fX = hits[0]; fY = hits[1]; fZ = hits[2]; // // Momentum fPx = hits[3]; fPy = hits[4]; fPz = hits[5]; fPmom= hits[6]; // // Time Of Flight fTof = hits[7]; //TOF[s] // // Other Data fDx = hits[8]; //Distance from the edge along x axis fDy = hits[9]; //Y cohordinate of the hit fDz = hits[10]; //Distance from the edge along z axis fIncA= hits[11]; //Incidence angle fEdep= hits[12]; //Energy loss in TOF pad } //****************************************************************************** ClassImp(AliTOFdigit) //______________________________________________________________________________ AliTOFdigit::AliTOFdigit(Int_t *tracks, Int_t *vol,Float_t *digit) :AliDigit(tracks) // // Constructor of digit object // { fSector = vol[0]; fPlate = vol[1]; fStrip = vol[2]; fPad_x = vol[3]; fPad_z = vol[4]; fTdc = digit[0]; fAdc = digit[1]; } //______________________________________________________________________________ void AliTOFdigit::GetLocation(Int_t *Loc) // // Get the cohordinates of the digit // in terms of Sector - Plate - Strip - Pad // { Loc[0]=fSector; Loc[1]=fPlate; Loc[2]=fStrip; Loc[3]=fPad_x; Loc[4]=fPad_z; } //______________________________________________________________________________ Int_t AliTOFdigit::GetTotPad() // // Get the "total" index of the pad inside a Sector // starting from the digits data. // { AliTOF* TOF; if(gAlice){ TOF =(AliTOF*) gAlice->GetDetector("TOF"); }else{ printf("AliTOFdigit::GetTotPad - No AliRun object present, exiting"); return 0; } Int_t Pad = fPad_x+TOF->fNpadX*(fPad_z-1); Int_t Before=0; switch(fPlate){ case 1: Before = 0; break; case 2: Before = TOF->fNStripC; break; case 3: Before = TOF->fNStripB + TOF->fNStripC; break; case 4: Before = TOF->fNStripA + TOF->fNStripB + TOF->fNStripC; break; case 5: Before = TOF->fNStripA + 2*TOF->fNStripB + TOF->fNStripC; break; } Int_t Strip = fStrip+Before; Int_t PadTot = TOF->fPadXStr*(Strip-1)+Pad; return PadTot; } //______________________________________________________________________________ void AliTOFdigit::AddTrack(Int_t track) // // Add a track to the digit // { if (fTracks[1]==0){ fTracks[1] = track; }else if (fTracks[2]==0){ fTracks[2] = track; }else{ printf("AliTOFdigit::AddTrack ERROR: Too many Tracks (>3) \n"); } }