/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.14 1999/11/05 22:39:06 fca New hits structure Revision 1.13 1999/11/01 20:41:57 fca Added protections against using the wrong version of FRAME Revision 1.12 1999/10/22 08:04:14 fca Correct improper use of negative parameters Revision 1.11 1999/10/16 19:30:05 fca Corrected Rotation Matrix and CVS log Revision 1.10 1999/10/15 15:35:20 fca New version for frame1099 with and without holes Revision 1.9 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight: design of C.Williams FCA // // This class contains the functions for version 1 of the Time Of Flight // // detector. // // // VERSION WITH 5 MODULES AND TILTED STRIPS // // WITH HOLES FOR PHOS AND HMPID // INSIDE A FULL COVERAGE SPACE FRAME // // // Authors: // // Alessio Seganti // Domenico Vicinanza // // University of Salerno - Italy // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTOFv2.h" #include "AliRun.h" #include "AliConst.h" ClassImp(AliTOFv2) //_____________________________________________________________________________ AliTOFv2::AliTOFv2() { // // Default constructor // } //_____________________________________________________________________________ AliTOFv2::AliTOFv2(const char *name, const char *title) : AliTOF(name,title) { // // Standard constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* FRAME=gAlice->GetModule("FRAME"); if(!FRAME) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } else if(FRAME->IsVersion()!=1) { Error("Ctor","FRAME version 1 needed with this version of TOF\n"); exit(1); } } //_____________________________________________________________________________ void AliTOFv2::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1, Float_t zlen2, Float_t zlen3, Float_t ztof0) { // // Definition of the Time Of Fligh Resistive Plate Chambers // xFLT, yFLT, zFLT - sizes of TOF modules (large) Int_t idrotm[100]; Int_t nrot = 0; Float_t ycoor, zcoor; Float_t par[10]; Int_t *idtmed = fIdtmed->GetArray()-499; par[0] = xtof / 2.; par[1] = ytof / 2.; par[2] = zlen1 / 2.; gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3); par[2] = zlen2 / 2.; gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3); par[2] = zlen3 / 2.; gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3); // Position of modules Float_t zcor1 = ztof0 - zlen1/2; Float_t zcor2 = ztof0 - zlen1 - zlen2/2.; Float_t zcor3 = 0.; AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.); AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.); gMC->Gspos("FTO1", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTO1", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO1", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTO1", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO1", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTO2", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTO2", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTO2", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); // Subtraction the distance to TOF module boundaries Float_t db = 7.; Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3; xFLT = xtof -(.5 +.5)*2; yFLT = ytof; zFLT1 = zlen1 - db; zFLT2 = zlen2 - db; zFLT3 = zlen3 - db; // Sizes of MRPC pads Float_t yPad = 0.505; // Large not sensitive volumes with CO2 par[0] = xFLT/2; par[1] = yFLT/2; cout <<"************************* TOF geometry **************************"<Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY"); par[2] = (zFLT2 / 2.); gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY"); par[2] = (zFLT3 / 2.); gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY"); ////////// Layers before detector //////////////////// // Alluminium layer in front 1.0 mm thick at the beginning par[0] = -1; par[1] = 0.1; par[2] = -1; ycoor = -yFLT/2 + par[1]; gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); // Honeycomb layer (1cm of special polyethilene) ycoor = ycoor + par[1]; par[0] = -1; par[1] = 0.5; par[2] = -1; ycoor = ycoor + par[1]; gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); ///////////////// Detector itself ////////////////////// const Float_t StripWidth = 7.81;//cm const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip const Int_t nx = 40; // number of pads along x const Int_t nz = 2; // number of pads along z const Float_t Gap=4.; //cm distance between the strip axis const Float_t Space = 5.5; //cm distance from the front plate of the box Float_t zSenStrip; zSenStrip = StripWidth-2*DeadBound;//cm par[0] = xFLT/2; par[1] = yPad/2; par[2] = StripWidth/2.; // Glass Layer of detector gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3); // Freon for non-sesitive boundaries par[0] = xFLT/2; par[1] = 0.110/2; par[2] = -1; gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3); gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY"); // Mylar for non-sesitive boundaries par[1] = 0.025; gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY"); // Mylar for outer layers par[1] = 0.035/2; ycoor = -yPad/2.+par[1]; gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3); gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY"); gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); ycoor += par[1]; // Graphyte layers par[1] = 0.003/2; ycoor += par[1]; gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3); gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY"); gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); // Freon sensitive layer par[0] = -1; par[1] = 0.110/2.; par[2] = zSenStrip/2.; gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3); gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY"); // Pad definition x & z gMC->Gsdvn("FLZ","FCFC", nz, 3); gMC->Gsdvn("FLX","FLZ" , nx, 1); // MRPC pixel itself par[0] = -1; par[1] = -1; par[2] = -1; gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3); gMC->Gspos("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY"); //// Positioning the Strips (FSTR) in the FLT volumes ///// // 3 (Central) Plate Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel Float_t zpos = 0; Float_t ang; Float_t Offset; Float_t last; nrot = 0; Int_t i=1,j=1; zcoor=0; Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip do{ ang = atan(zcoor/t); ang = ang*kRaddeg; AliMatrix (idrotm[nrot] ,90., 0.,90.-ang,90.,-ang,90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90.,ang,90.); ycoor = -29./2.+ Space; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; gMC->Gspos("FSTR",j,"FLT3",0.,ycoor,zcoor,idrotm[nrot],"ONLY"); gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); ang = ang/kRaddeg; zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang); UpDown*= -1; // Alternate strips i++; j+=2; } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5); ycoor = -29./2.+ Space; //2 cm over front plate // Plate 2 zpos = -zFLT3/2-7; ang = atan(zpos/sqrt(2*t*t-zpos*zpos)); Offset = StripWidth*TMath::Cos(ang)/2; zpos -= Offset; nrot = 0; i=1; // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently do { ang = atan(zpos/sqrt(2*t*t-zpos*zpos)); ang = ang*kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ycoor = -29./2.+ Space ; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2 gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); ang = ang/kRaddeg; zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang); last = StripWidth*TMath::Cos(ang)/2; UpDown*=-1; i++; } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7); // Plate 1 zpos = -t+zFLT1+3.5; ang = atan(zpos/sqrt(2*t*t-zpos*zpos)); Offset = StripWidth*TMath::Cos(ang)/2.; zpos -= Offset; nrot = 0; i=0; ycoor= -29./2.+Space+Gap/2; do { ang = atan(zpos/sqrt(2*t*t-zpos*zpos)); ang = ang*kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); i++; zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.); gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); ang = ang /kRaddeg; zpos = zpos - zSenStrip/TMath::Cos(ang); last = StripWidth*TMath::Cos(ang)/2.; } while (zpos>-t+7.+last); printf("#######################################################\n"); printf(" Distance from the bound of the FLT3: zFLT3- %f cm \n", t+zpos-(zSenStrip/2)/TMath::Cos(ang)); ang = atan(zpos/sqrt(2*t*t-zpos*zpos)); zpos = zpos - zSenStrip/TMath::Cos(ang); printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", t+zpos-(zSenStrip/2)/TMath::Cos(ang)); printf("#######################################################\n"); ////////// Layers after detector ///////////////// // Honeycomb layer after (3cm) Float_t OverSpace = Space + 7.3; /// StripWidth*TMath::Sin(ang) + 1.3; par[0] = -1; par[1] = 0.6; par[2] = -1; ycoor = -yFLT/2 + OverSpace + par[1]; gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); // Electronics (Cu) after ycoor += par[1]; par[0] = -1; par[1] = 1.43*0.05 / 2.; // 5% of X0 par[2] = -1; ycoor += par[1]; gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); // Cooling water after ycoor += par[1]; par[0] = -1; par[1] = 36.1*0.02 / 2.; // 2% of X0 par[2] = -1; ycoor += par[1]; gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); //back plate honycomb (2cm) par[0] = -1; par[1] = 2 / 2.; par[2] = -1; ycoor = yFLT/2 - par[1]; gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv2::DrawModule() { // // Draw a shaded view of the Time Of Flight version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ALIC","SEEN",0); gMC->Gsatt("FBAR","SEEN",1); gMC->Gsatt("FTO1","SEEN",1); gMC->Gsatt("FTO2","SEEN",1); gMC->Gsatt("FTO3","SEEN",1); gMC->Gsatt("FBT1","SEEN",1); gMC->Gsatt("FBT2","SEEN",1); gMC->Gsatt("FBT3","SEEN",1); gMC->Gsatt("FDT1","SEEN",1); gMC->Gsatt("FDT2","SEEN",1); gMC->Gsatt("FDT3","SEEN",1); gMC->Gsatt("FLT1","SEEN",1); gMC->Gsatt("FLT2","SEEN",1); gMC->Gsatt("FLT3","SEEN",1); gMC->Gsatt("FPL1","SEEN",1); gMC->Gsatt("FPL2","SEEN",1); gMC->Gsatt("FPL3","SEEN",1); gMC->Gsatt("FLD1","SEEN",1); gMC->Gsatt("FLD2","SEEN",1); gMC->Gsatt("FLD3","SEEN",1); gMC->Gsatt("FLZ1","SEEN",1); gMC->Gsatt("FLZ2","SEEN",1); gMC->Gsatt("FLZ3","SEEN",1); gMC->Gsatt("FLX1","SEEN",1); gMC->Gsatt("FLX2","SEEN",1); gMC->Gsatt("FLX3","SEEN",1); gMC->Gsatt("FPA0","SEEN",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv2::CreateMaterials() { // // Define materials for the Time Of Flight // AliTOF::CreateMaterials(); } //_____________________________________________________________________________ void AliTOFv2::Init() { // // Initialise the detector after the geometry has been defined // printf("**************************************" " TOF " "**************************************\n"); printf("\n Version 2 of TOF initialing, " "with openings for PHOS and RICH in symmetric frame\n\n"); AliTOF::Init(); fIdFTO2=gMC->VolId("FTO2"); fIdFTO3=gMC->VolId("FTO3"); fIdFLT1=gMC->VolId("FLT1"); fIdFLT2=gMC->VolId("FLT2"); fIdFLT3=gMC->VolId("FLT3"); printf("**************************************" " TOF " "**************************************\n"); } //_____________________________________________________________________________ void AliTOFv2::StepManager() { // // Procedure called at each step in the Time Of Flight // TLorentzVector mom, pos; Float_t hits[8],rho,phi,phid,z; Int_t sector, plate, pad_x, pad_z, strip; Int_t copy, pad_z_id, pad_x_id, strip_id, i; Int_t *idtmed = fIdtmed->GetArray()-499; if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdSens) { TClonesArray &lhits = *fHits; //_________getting information about hit volumes_____________ pad_z_id=gMC->CurrentVolOffID(2,copy); pad_z=copy; pad_x_id=gMC->CurrentVolOffID(1,copy); pad_x=copy; strip_id=gMC->CurrentVolOffID(5,copy); strip=copy; pad_z = (strip-1)*2+pad_z; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); rho = sqrt(pos[0]*pos[0]+pos[1]*pos[1]); phi = TMath::ACos(pos[0]/rho); Float_t as = TMath::ASin(pos[1]/rho); if (as<0) phi = 2*3.141592654-phi; z = pos[2]; if (z<=62. && z>=-62) plate = 3; if (z<=216. && z>62.) plate = 4; if (z>=-216. && z<-62.) plate = 2; if (z>216.) plate = 5; if (z<-216.) plate = 1; phid = phi*kRaddeg; sector = Int_t (phid/20.); sector++; Double_t ptot=mom.Rho(); Double_t norm=1/ptot; for(i=0;i<3;++i) { hits[i]=pos[i]; hits[i+3]=mom[i]*norm; } hits[6]=ptot; hits[7]=pos[3]; new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),sector, plate, pad_x, pad_z, hits); } }