/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.22 2001/09/20 15:54:22 vicinanz Updated Strip Structure (Double Stack) Revision 1.21 2001/08/28 08:45:59 vicinanz TTask and TFolder structures implemented Revision 1.20 2001/05/16 14:57:24 alibrary New files for folders and Stack Revision 1.19 2001/05/04 10:09:48 vicinanz Major upgrades to the strip structure Revision 1.18 2000/12/04 08:48:20 alibrary Fixing problems in the HEAD Revision 1.17 2000/10/02 21:28:17 fca Removal of useless dependecies via forward declarations Revision 1.16 2000/05/10 16:52:18 vicinanz New TOF version with holes for PHOS/RICH Revision 1.14.2.1 2000/05/10 09:37:16 vicinanz New version with Holes for PHOS/RICH Revision 1.14 1999/11/05 22:39:06 fca New hits structure Revision 1.13 1999/11/02 11:26:39 fca added stdlib.h for exit Revision 1.12 1999/11/01 20:41:57 fca Added protections against using the wrong version of FRAME Revision 1.11 1999/10/22 08:04:14 fca Correct improper use of negative parameters Revision 1.10 1999/10/16 19:30:06 fca Corrected Rotation Matrix and CVS log Revision 1.9 1999/10/15 15:35:20 fca New version for frame1099 with and without holes Revision 1.8 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight: design of C.Williams // // This class contains the functions for version 2 of the Time Of Flight // // detector. // // // VERSION WITH 5 MODULES AND TILTED STRIPS // // HOLES FOR PHOS AND RICH DETECTOR // // Authors: // // Alessio Seganti // Domenico Vicinanza // // University of Salerno - Italy // // Fabrizio Pierella // University of Bologna - Italy // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTOFv2.h" #include "TBRIK.h" #include "TGeometry.h" #include "TNode.h" #include #include "TObject.h" #include "AliRun.h" #include "AliMC.h" #include "AliMagF.h" #include "AliConst.h" ClassImp(AliTOFv2) //_____________________________________________________________________________ AliTOFv2::AliTOFv2() { // // Default constructor // } //_____________________________________________________________________________ AliTOFv2::AliTOFv2(const char *name, const char *title) : AliTOF(name,title) { // // Standard constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* frame=gAlice->GetModule("FRAME"); if(!frame) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } else if(frame->IsVersion()!=1) { Error("Ctor","FRAME version 1 needed with this version of TOF\n"); exit(1); } } //____________________________________________________________________________ void AliTOFv2::BuildGeometry() { // // Build TOF ROOT geometry for the ALICE event display // TNode *node, *top; const int kColorTOF = 27; // Find top TNODE top = gAlice->GetGeometry()->GetNode("alice"); // Position the different copies const Float_t krTof =(fRmax+fRmin)/2; const Float_t khTof = fRmax-fRmin; const Int_t kNTof = fNTof; const Float_t kPi = TMath::Pi(); const Float_t kangle = 2*kPi/kNTof; Float_t ang; // Define TOF basic volume char nodeName0[6], nodeName1[6], nodeName2[6]; char nodeName3[6], nodeName4[6], rotMatNum[6]; new TBRIK("S_TOF_C","TOF box","void", 120*0.5,khTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", 120*0.5,khTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", 120*0.5,khTof*0.5,fZlenA*0.5); for (Int_t nodeNum=1;nodeNum<19;nodeNum++){ if (nodeNum<10) { sprintf(rotMatNum,"rot50%i",nodeNum); sprintf(nodeName0,"FTO00%i",nodeNum); sprintf(nodeName1,"FTO10%i",nodeNum); sprintf(nodeName2,"FTO20%i",nodeNum); sprintf(nodeName3,"FTO30%i",nodeNum); sprintf(nodeName4,"FTO40%i",nodeNum); } if (nodeNum>9) { sprintf(rotMatNum,"rot5%i",nodeNum); sprintf(nodeName0,"FTO0%i",nodeNum); sprintf(nodeName1,"FTO1%i",nodeNum); sprintf(nodeName2,"FTO2%i",nodeNum); sprintf(nodeName3,"FTO3%i",nodeNum); sprintf(nodeName4,"FTO4%i",nodeNum); } new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); ang = (4.5-nodeNum) * kangle; top->cd(); node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),299.15,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-299.15,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); if (nodeNum !=1 && nodeNum!=2 && nodeNum !=18) { top->cd(); node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),146.45,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-146.45,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); } // Holes for RICH detector if ((nodeNum<8 || nodeNum>12) && nodeNum !=1 && nodeNum!=2 && nodeNum !=18) { top->cd(); node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),0.,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); } // Holes for PHOS detector (+ Holes for RICH detector, central part) } // end loop on nodeNum } //_____________________________________________________________________________ void AliTOFv2::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv2::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, Float_t zlenB, Float_t zlenA, Float_t ztof0) { // // Definition of the Time Of Fligh Resistive Plate Chambers // xFLT, yFLT, zFLT - sizes of TOF modules (large) Float_t ycoor, zcoor; Float_t par[3]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; Int_t nrot = 0; Float_t hTof = fRmax-fRmin; Float_t radius = fRmin+2.;//cm par[0] = xtof * 0.5; par[1] = ytof * 0.5; par[2] = zlenC * 0.5; gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3); par[2] = zlenB * 0.5; gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3); par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3); // Positioning of modules Float_t zcor1 = ztof0 - zlenC*0.5; Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; Float_t zcor3 = 0.; AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); Float_t db = 0.5;//cm Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC; xFLT = fStripLn; yFLT = ytof; zFLTA = zlenA; zFLTB = zlenB; zFLTC = zlenC; xFST = xFLT-fDeadBndX*2;//cm // Sizes of MRPC pads Float_t yPad = 0.505;//cm // Large not sensitive volumes with Insensitive Freon par[0] = xFLT*0.5; par[1] = yFLT*0.5; if(fDebug) cout <Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTB * 0.5); gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTC * 0.5); gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); ////////// Layers of Aluminum before and after detector ////////// ////////// Aluminum Box for Modules (2.0 mm thickness) ///////// ////////// lateral walls not simulated par[0] = xFLT*0.5; par[1] = 0.1;//cm ycoor = -yFLT/2 + par[1]; par[2] = (zFLTA *0.5); gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY"); gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY"); ///////////////// Detector itself ////////////////////// const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge //and the boundary of the strip const Int_t knx = fNpadX; // number of pads along x const Int_t knz = fNpadZ; // number of pads along z const Float_t kspace = fSpace; //cm distance from the front plate of the box Float_t zSenStrip = fZpad*fNpadZ;//cm Float_t stripWidth = zSenStrip + 2*kdeadBound; par[0] = xFLT*0.5; par[1] = yPad*0.5; par[2] = stripWidth*0.5; // new description for strip volume -double stack strip- // -- all constants are expressed in cm // heigth of different layers const Float_t khhony = 1. ; // heigth of HONY Layer const Float_t khpcby = 0.15 ; // heigth of PCB Layer const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer const Float_t khglasseiy = 0.17; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm) const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture const Float_t kwsensmz = 2*3.5 ; // cm const Float_t klsensmx = 48*2.5; // cm const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume // heigth of the FSTR Volume (the strip volume) const Float_t khstripy = 2*khhony+3*khpcby+4*(khmyly+khgraphy+khglasseiy)+2*khsensmy; // width of the FSTR Volume (the strip volume) const Float_t kwstripz = 10.; // length of the FSTR Volume (the strip volume) const Float_t klstripx = 122.; Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5}; // coordinates of the strip center in the strip reference frame; used for positioning // internal strip volumes Float_t posfp[3]={0.,0.,0.}; // FSTR volume definition and filling this volume with non sensitive Gas Mixture gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3); //-- HONY Layer definition // parfp[0] = -1; parfp[1] = khhony*0.5; // parfp[2] = -1; gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3); // positioning 2 HONY Layers on FSTR volume posfp[1]=-khstripy*0.5+parfp[1]; gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- PCB Layer definition parfp[1] = khpcby*0.5; gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3); // positioning 2 PCB Layers on FSTR volume posfp[1]=-khstripy*0.5+khhony+parfp[1]; gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // positioning the central PCB layer gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY"); //-- MYLAR Layer definition parfp[1] = khmyly*0.5; gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3); // positioning 2 MYLAR Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // adding further 2 MYLAR Layers on FSTR volume posfp[1] = khpcby*0.5+parfp[1]; gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Graphite Layer definition parfp[1] = khgraphy*0.5; gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3); // positioning 2 Graphite Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1]; gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // adding further 2 Graphite Layers on FSTR volume posfp[1] = khpcby*0.5+khmyly+parfp[1]; gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Glass (EXT. +Semi INT.) Layer definition parfp[1] = khglasseiy*0.5; gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3); // positioning 2 Glass Layers on FSTR volume posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1]; gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); // adding further 2 Glass Layers on FSTR volume posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1]; gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- Sensitive Mixture Layer definition parfp[0] = klsensmx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwsensmz*0.5; gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3); gMC->Gsvolu("FNSE","BOX",idtmed[512],parfp,3); // positioning 2 gas Layers on FSTR volume // the upper is insensitive freon // while the remaining is sensitive posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1]; gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY"); // dividing FSEN along z in knz=2 and along x in knx=48 gMC->Gsdvn("FSEZ","FSEN",knz,3); gMC->Gsdvn("FSEX","FSEZ",knx,1); // FPAD volume definition parfp[0] = klpadx*0.5; parfp[1] = khsensmy*0.5; parfp[2] = kwpadz*0.5; gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3); // positioning the FPAD volumes on previous divisions gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY"); //// Positioning the Strips (FSTR) in the FLT volumes ///// // Plate A (Central) Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel Float_t gap = fGapA; //cm distance between the strip axis Float_t zpos = 0; Float_t ang = 0; Int_t i=1,j=1; nrot = 0; zcoor = 0; ycoor = -14.5 + kspace ; //2 cm over front plate AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } zcoor -= zSenStrip; j++; Int_t upDown = -1; // upDown=-1 -> Upper strip // upDown=+1 -> Lower strip do{ ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ kspace; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } j += 2; upDown*= -1; // Alternate strips zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+ upDown*gap*TMath::Tan(ang)+ (zSenStrip/2)/TMath::Cos(ang); gap = fGapB; zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zcoor/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ kspace; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } ycoor = -hTof/2.+ kspace;//2 cm over front plate // Plate B nrot = 0; i=1; upDown = 1; Float_t deadRegion = 1.0;//cm zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang)- deadRegion/TMath::Cos(ang); ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -hTof*0.5+ kspace ; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } i++; upDown*=-1; do { zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- upDown*gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -hTof*0.5+ kspace ; //2 cm over front plate ycoor += (1-(upDown+1)/2)*gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } upDown*=-1; i++; } while (TMath::Abs(ang*kRaddeg)<22.5); //till we reach a tilting angle of 22.5 degrees ycoor = -hTof*0.5+ kspace ; //2 cm over front plate zpos = zpos - zSenStrip/TMath::Cos(ang); do { ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTB/2+zFLTA/2+db); gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); zpos = zpos - zSenStrip/TMath::Cos(ang); if(fDebug) { printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } i++; } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); // Plate C zpos = zpos + zSenStrip/TMath::Cos(ang); zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+ gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); nrot = 0; i=0; ycoor= -hTof*0.5+kspace+gap; do { i++; ang = atan(zpos/radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); if(fDebug) { printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i); printf("%s: y = %f, z = %f, zpos = %f \n",ClassName(),ycoor,zcoor,zpos); } zpos = zpos - zSenStrip/TMath::Cos(ang); } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t); ////////// Layers after strips ///////////////// // honeycomb (Polyethilene) Layer after (1.2cm) Float_t overSpace = fOverSpc;//cm par[0] = xFLT*0.5; par[1] = 0.6; par[2] = (zFLTA *0.5); ycoor = -yFLT/2 + overSpace + par[1]; gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // Electronics (Cu) after ycoor += par[1]; par[0] = xFLT*0.5; par[1] = 1.43*0.05*0.5; // 5% of X0 par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // cooling WAter after ycoor += par[1]; par[0] = xFLT*0.5; par[1] = 36.1*0.02*0.5; // 2% of X0 par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // frame of Air ycoor += par[1]; par[0] = xFLT*0.5; par[1] = (yFLT/2-ycoor-0.2)*0.5; // Aluminum layer considered (0.2 cm) par[2] = (zFLTA *0.5); ycoor += par[1]; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTB *0.5); gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); par[2] = (zFLTC *0.5); gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); /* fp //Back Plate honycomb (2cm) par[0] = -1; par[1] = 2 *0.5; par[2] = -1; ycoor = yFLT/2 - par[1]; gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); fp */ } //_____________________________________________________________________________ void AliTOFv2::DrawModule() const { // // Draw a shaded view of the Time Of Flight version 2 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ALIC","SEEN",0); gMC->Gsatt("FTOA","SEEN",1); gMC->Gsatt("FTOB","SEEN",1); gMC->Gsatt("FTOC","SEEN",1); gMC->Gsatt("FLTA","SEEN",1); gMC->Gsatt("FLTB","SEEN",1); gMC->Gsatt("FLTC","SEEN",1); gMC->Gsatt("FPLA","SEEN",1); gMC->Gsatt("FPLB","SEEN",1); gMC->Gsatt("FPLC","SEEN",1); gMC->Gsatt("FSTR","SEEN",1); gMC->Gsatt("FPEA","SEEN",1); gMC->Gsatt("FPEB","SEEN",1); gMC->Gsatt("FPEC","SEEN",1); gMC->Gsatt("FLZ1","SEEN",0); gMC->Gsatt("FLZ2","SEEN",0); gMC->Gsatt("FLZ3","SEEN",0); gMC->Gsatt("FLX1","SEEN",0); gMC->Gsatt("FLX2","SEEN",0); gMC->Gsatt("FLX3","SEEN",0); gMC->Gsatt("FPAD","SEEN",0); gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv2::DrawDetectorModules() { // // Draw a shaded view of the TOF detector version 2 // AliMC* pMC = AliMC::GetMC(); //Set ALIC mother transparent pMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible // //=====> Level 1 // Level 1 for TOF volumes gMC->Gsatt("B077","seen",0); //==========> Level 2 // Level 2 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped - gMC->Gsatt("B071","seen",0); gMC->Gsatt("B074","seen",0); gMC->Gsatt("B075","seen",0); gMC->Gsatt("B080","seen",0); // B080 does not has sub-level // Level 2 of B071 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped - gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped - gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped - gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped - gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels - gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped - gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped - gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels - gMC->Gsatt("BTO1","seen",0); // Level 2 of B074 gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels - gMC->Gsatt("BTO2","seen",0); // Level 2 of B075 gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels - gMC->Gsatt("BTO3","seen",0); // ==================> Level 3 // Level 3 of B071 / Level 2 of BTO1 gMC->Gsatt("FTOC","seen",-2); gMC->Gsatt("FTOB","seen",-2); gMC->Gsatt("FTOA","seen",-2); // Level 3 of B074 / Level 2 of BTO2 // -> cfr previous settings // Level 3 of B075 / Level 2 of BTO3 // -> cfr previous settings gMC->Gdopt("hide","on"); gMC->Gdopt("shad","on"); gMC->Gsatt("*", "fill", 5); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015); gMC->Gdhead(1111,"TOF detector V1"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv2::DrawDetectorStrips() { // // Draw a shaded view of the TOF strips for version 2 // AliMC* pMC = AliMC::GetMC(); //Set ALIC mother transparent pMC->Gsatt("ALIC","SEEN",0); // //Set volumes visible //=====> Level 1 // Level 1 for TOF volumes gMC->Gsatt("B077","seen",0); //==========> Level 2 // Level 2 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped - gMC->Gsatt("B071","seen",0); gMC->Gsatt("B074","seen",0); gMC->Gsatt("B075","seen",0); gMC->Gsatt("B080","seen",0); // B080 does not has sub-level // Level 2 of B071 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped - gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped - gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped - gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped - gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels - gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped - gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped - gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels - gMC->Gsatt("BTO1","seen",0); // ==================> Level 3 // Level 3 of B071 / Level 2 of BTO1 gMC->Gsatt("FTOC","seen",0); gMC->Gsatt("FTOB","seen",0); gMC->Gsatt("FTOA","seen",0); // Level 3 of B074 / Level 2 of BTO2 // -> cfr previous settings // Level 3 of B075 / Level 2 of BTO3 // -> cfr previous settings // ==========================> Level 4 // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOC gMC->Gsatt("FLTC","seen",0); // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOB gMC->Gsatt("FLTB","seen",0); // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOA gMC->Gsatt("FLTA","seen",0); // Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOC // -> cfr previous settings // Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOB // -> cfr previous settings // Level 4 of B075 / Level 3 of BTO3 / Level 2 of FTOC // -> cfr previous settings //======================================> Level 5 // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOC / Level 2 of FLTC gMC->Gsatt("FALC","seen",0); // no children for FALC gMC->Gsatt("FSTR","seen",-2); gMC->Gsatt("FPEC","seen",0); // no children for FPEC gMC->Gsatt("FECC","seen",0); // no children for FECC gMC->Gsatt("FWAC","seen",0); // no children for FWAC gMC->Gsatt("FAIC","seen",0); // no children for FAIC // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOB / Level 2 of FLTB gMC->Gsatt("FALB","seen",0); // no children for FALB //--> gMC->Gsatt("FSTR","seen",-2); // -> cfr previous settings gMC->Gsatt("FPEB","seen",0); // no children for FPEB gMC->Gsatt("FECB","seen",0); // no children for FECB gMC->Gsatt("FWAB","seen",0); // no children for FWAB gMC->Gsatt("FAIB","seen",0); // no children for FAIB // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOA / Level 2 of FLTA gMC->Gsatt("FALA","seen",0); // no children for FALB //--> gMC->Gsatt("FSTR","seen",-2); // -> cfr previous settings gMC->Gsatt("FPEA","seen",0); // no children for FPEA gMC->Gsatt("FECA","seen",0); // no children for FECA gMC->Gsatt("FWAA","seen",0); // no children for FWAA gMC->Gsatt("FAIA","seen",0); // no children for FAIA // Level 2 of B074 gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels - gMC->Gsatt("BTO2","seen",0); // Level 2 of B075 gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels - gMC->Gsatt("BTO3","seen",0); // for others Level 5, cfr. previous settings gMC->Gdopt("hide","on"); gMC->Gdopt("shad","on"); gMC->Gsatt("*", "fill", 5); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015); gMC->Gdhead(1111,"TOF Strips V1"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv2::CreateMaterials() { // // Define materials for the Time Of Flight // AliTOF::CreateMaterials(); } //_____________________________________________________________________________ void AliTOFv2::Init() { // // Initialise the detector after the geometry has been defined // if(fDebug) { printf("%s: **************************************" " TOF " "**************************************\n",ClassName()); printf("\n%s: Version 2 of TOF initialing, " "TOF with holes for PHOS and RICH \n",ClassName()); } AliTOF::Init(); fIdFTOA = gMC->VolId("FTOA"); fIdFTOB = gMC->VolId("FTOB"); fIdFTOC = gMC->VolId("FTOC"); fIdFLTA = gMC->VolId("FLTA"); fIdFLTB = gMC->VolId("FLTB"); fIdFLTC = gMC->VolId("FLTC"); if(fDebug) { printf("%s: **************************************" " TOF " "**************************************\n",ClassName()); } } //_____________________________________________________________________________ void AliTOFv2::StepManager() { // // Procedure called at each step in the Time Of Flight // TLorentzVector mom, pos; Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[13],phi,phid,z; Int_t vol[5]; Int_t sector, plate, padx, padz, strip; Int_t copy, padzid, padxid, stripid, i; Int_t *idtmed = fIdtmed->GetArray()-499; Float_t incidenceAngle; if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdSens) { // getting information about hit volumes padzid=gMC->CurrentVolOffID(2,copy); padz=copy; padxid=gMC->CurrentVolOffID(1,copy); padx=copy; stripid=gMC->CurrentVolOffID(4,copy); strip=copy; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); // Double_t NormPos=1./pos.Rho(); Double_t normMom=1./mom.Rho(); // getting the cohordinates in pad ref system xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); pm[0] = (Float_t)mom.X()*normMom; pm[1] = (Float_t)mom.Y()*normMom; pm[2] = (Float_t)mom.Z()*normMom; gMC->Gmtod(xm,xpad,1); gMC->Gmtod(pm,ppad,2); incidenceAngle = TMath::ACos(ppad[1])*kRaddeg; z = pos[2]; plate = 0; if (TMath::Abs(z) <= fZlenA*0.5) plate = 3; if (z < (fZlenA*0.5+fZlenB) && z > fZlenA*0.5) plate = 4; if (z >-(fZlenA*0.5+fZlenB) && z < -fZlenA*0.5) plate = 2; if (z > (fZlenA*0.5+fZlenB)) plate = 5; if (z <-(fZlenA*0.5+fZlenB)) plate = 1; phi = pos.Phi(); phid = phi*kRaddeg+180.; sector = Int_t (phid/20.); sector++; for(i=0;i<3;++i) { hits[i] = pos[i]; hits[i+3] = pm[i]; } hits[6] = mom.Rho(); hits[7] = pos[3]; hits[8] = xpad[0]; hits[9] = xpad[1]; hits[10]= xpad[2]; hits[11]= incidenceAngle; hits[12]= gMC->Edep(); vol[0]= sector; vol[1]= plate; vol[2]= strip; vol[3]= padx; vol[4]= padz; AddHit(gAlice->CurrentTrack(),vol, hits); } }