/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.4.2.1 2000/05/10 09:37:16 vicinanz New version with Holes for PHOS/RICH Revision 1.14 1999/11/05 22:39:06 fca New hits structure Revision 1.13 1999/11/02 11:26:39 fca added stdlib.h for exit Revision 1.12 1999/11/01 20:41:57 fca Added protections against using the wrong version of FRAME Revision 1.11 1999/10/22 08:04:14 fca Correct improper use of negative parameters Revision 1.10 1999/10/16 19:30:06 fca Corrected Rotation Matrix and CVS log Revision 1.9 1999/10/15 15:35:20 fca New version for frame1099 with and without holes Revision 1.8 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Of Flight: design of C.Williams // // This class contains the functions for version 1 of the Time Of Flight // // detector. // // // VERSION WITH 5 MODULES AND TILTED STRIPS // // FULL COVERAGE VERSION // // Authors: // // Alessio Seganti // Domenico Vicinanza // // University of Salerno - Italy // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTOFv4.h" #include "TBRIK.h" #include "TNode.h" #include "TObject.h" #include "AliRun.h" #include "AliConst.h" ClassImp(AliTOFv4) //_____________________________________________________________________________ AliTOFv4::AliTOFv4() { // // Default constructor // } //_____________________________________________________________________________ AliTOFv4::AliTOFv4(const char *name, const char *title) : AliTOF(name,title) { // // Standard constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* FRAME=gAlice->GetModule("FRAME"); if(!FRAME) { Error("Ctor","TOF needs FRAME to be present\n"); exit(1); } else if(FRAME->IsVersion()!=1) { Error("Ctor","FRAME version 1 needed with this version of TOF\n"); exit(1); } } //_____________________________________________________________________________ void AliTOFv4::BuildGeometry() { // // Build TOF ROOT geometry for the ALICE event display // TNode *Node, *Top; const int kColorTOF = 27; // Find top TNODE Top = gAlice->GetGeometry()->GetNode("alice"); // Position the different copies const Float_t rTof =(fRmax+fRmin)/2; const Float_t hTof = fRmax-fRmin; const Int_t fNTof = 18; const Float_t kPi = TMath::Pi(); const Float_t angle = 2*kPi/fNTof; Float_t ang; // Define TOF basic volume char NodeName0[6], NodeName1[6], NodeName2[6]; char NodeName3[6], NodeName4[6], RotMatNum[6]; new TBRIK("S_TOF_C","TOF box","void", 120*0.5,hTof*0.5,fZlenC*0.5); new TBRIK("S_TOF_B","TOF box","void", 120*0.5,hTof*0.5,fZlenB*0.5); new TBRIK("S_TOF_A","TOF box","void", 120*0.5,hTof*0.5,fZlenA*0.5); for (Int_t NodeNum=1;NodeNum<19;NodeNum++){ if (NodeNum<10) { sprintf(RotMatNum,"rot50%i",NodeNum); sprintf(NodeName0,"FTO00%i",NodeNum); sprintf(NodeName1,"FTO10%i",NodeNum); sprintf(NodeName2,"FTO20%i",NodeNum); sprintf(NodeName3,"FTO30%i",NodeNum); sprintf(NodeName4,"FTO40%i",NodeNum); } if (NodeNum>9) { sprintf(RotMatNum,"rot5%i",NodeNum); sprintf(NodeName0,"FTO0%i",NodeNum); sprintf(NodeName1,"FTO1%i",NodeNum); sprintf(NodeName2,"FTO2%i",NodeNum); sprintf(NodeName3,"FTO3%i",NodeNum); sprintf(NodeName4,"FTO4%i",NodeNum); } new TRotMatrix(RotMatNum,RotMatNum,90,-20*NodeNum,90,90-20*NodeNum,0,0); ang = (4.5-NodeNum) * angle; Top->cd(); Node = new TNode(NodeName0,NodeName0,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),299.15,RotMatNum); Node->SetLineColor(kColorTOF); fNodes->Add(Node); Top->cd(); Node = new TNode(NodeName1,NodeName1,"S_TOF_C",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-299.15,RotMatNum); Node->SetLineColor(kColorTOF); fNodes->Add(Node); Top->cd(); Node = new TNode(NodeName2,NodeName2,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),146.45,RotMatNum); Node->SetLineColor(kColorTOF); fNodes->Add(Node); Top->cd(); Node = new TNode(NodeName3,NodeName3,"S_TOF_B",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),-146.45,RotMatNum); Node->SetLineColor(kColorTOF); fNodes->Add(Node); Top->cd(); Node = new TNode(NodeName4,NodeName4,"S_TOF_A",rTof*TMath::Cos(ang),rTof*TMath::Sin(ang),0.,RotMatNum); Node->SetLineColor(kColorTOF); fNodes->Add(Node); } } //_____________________________________________________________________________ void AliTOFv4::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv4::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC, Float_t zlenB, Float_t zlenA, Float_t ztof0) { // // Definition of the Time Of Fligh Resistive Plate Chambers // xFLT, yFLT, zFLT - sizes of TOF modules (large) Float_t ycoor, zcoor; Float_t par[10]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; Int_t nrot = 0; Float_t hTof = fRmax-fRmin; Float_t Radius = fRmin+2.;//cm par[0] = xtof * 0.5; par[1] = ytof * 0.5; par[2] = zlenC * 0.5; gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3); par[2] = zlenB * 0.5; gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3); par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3); // Positioning of modules Float_t zcor1 = ztof0 - zlenC*0.5; Float_t zcor2 = ztof0 - zlenC - zlenB*0.5; Float_t zcor3 = 0.; AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.); AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.); gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOB", 1, "BTO3", 0, zcor2, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY"); gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY"); gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY"); Float_t db = 0.5;//cm Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC; xFLT = fStripLn; yFLT = ytof; zFLTA = zlenA; zFLTB = zlenB; zFLTC = zlenC; xFST = xFLT-fDeadBndX*2;//cm // Sizes of MRPC pads Float_t yPad = 0.505;//cm // Large not sensitive volumes with CO2 par[0] = xFLT*0.5; par[1] = yFLT*0.5; cout <<"************************* TOF geometry **************************"<Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTB * 0.5); gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY"); par[2] = (zFLTC * 0.5); gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // CO2 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY"); ////////// Layers before detector //////////////////// // MYlar layer in front 1.0 mm thick at the beginning par[0] = -1; par[1] = 0.1;//cm par[2] = -1; ycoor = -yFLT/2 + par[1]; gMC->Gsvolu("FMYA", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FMYA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FMYB", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FMYB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FMYC", "BOX ", idtmed[508], par, 3); // Alluminium gMC->Gspos ("FMYC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // honeycomb (special Polyethilene Layer of 1cm) ycoor = ycoor + par[1]; par[0] = -1; par[1] = 0.5;//cm par[2] = -1; ycoor = ycoor + par[1]; gMC->Gsvolu("FPLA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPLA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPLB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPLB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPLC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPLC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); ///////////////// Detector itself ////////////////////// const Float_t DeadBound = fDeadBndZ; //cm non-sensitive between the pad edge //and the boundary of the strip const Int_t nx = fNpadX; // number of pads along x const Int_t nz = fNpadZ; // number of pads along z const Float_t Space = fSpace; //cm distance from the front plate of the box Float_t zSenStrip = fZpad*fNpadZ;//cm Float_t StripWidth = zSenStrip + 2*DeadBound; par[0] = xFLT*0.5; par[1] = yPad*0.5; par[2] = StripWidth*0.5; // glass layer of detector STRip gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3); // Non-Sesitive Freon boundaries par[0] = xFLT*0.5; par[1] = 0.110*0.5;//cm par[2] = -1; gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3); gMC->Gspos ("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY"); // MYlar for Internal non-sesitive boundaries // par[1] = 0.025;//cm // gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); // gMC->Gspos ("FMYI",0,"FNSF",0.,0.,0.,0,"MANY"); // MYlar eXternal layers par[1] = 0.035*0.5;//cm ycoor = -yPad*0.5+par[1]; gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3); gMC->Gspos ("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY"); gMC->Gspos ("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); ycoor += par[1]; // GRaphyte Layers par[1] = 0.003*0.5; ycoor += par[1]; gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3); gMC->Gspos ("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY"); gMC->Gspos ("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY"); // freon sensitive layer (Chlorine-Fluorine-Carbon) par[0] = xFST*0.5; par[1] = 0.110*0.5; par[2] = zSenStrip*0.5; gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3); gMC->Gspos ("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY"); // Pad definition x & z gMC->Gsdvn("FLZ","FCFC", nz, 3); gMC->Gsdvn("FLX","FLZ" , nx, 1); // MRPC PAD itself par[0] = -1; par[1] = -1; par[2] = -1; gMC->Gsvolu("FPAD", "BOX ", idtmed[513], par, 3); gMC->Gspos ("FPAD", 0, "FLX", 0., 0., 0., 0, "ONLY"); //// Positioning the Strips (FSTR) in the FLT volumes ///// // Plate A (Central) Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel Float_t Gap = fGapA; //cm distance between the strip axis Float_t zpos = 0; Float_t ang = 0; Int_t i=1,j=1; nrot = 0; zcoor = 0; ycoor = -14.5 + Space ; //2 cm over front plate AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.); gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY"); printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); zcoor -= zSenStrip; j++; Int_t UpDown = -1; // UpDown=-1 -> Upper strip // UpDown=+1 -> Lower strip do{ ang = atan(zcoor/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ Space; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); j += 2; UpDown*= -1; // Alternate strips zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- UpDown*Gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2); zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+ UpDown*Gap*TMath::Tan(ang)+ (zSenStrip/2)/TMath::Cos(ang); Gap = fGapB; zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)- UpDown*Gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zcoor/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.); AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.); ang /= kRaddeg; ycoor = -14.5+ Space; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY"); gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY"); printf("%f, St. %2i, Pl.3 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); ycoor = -hTof/2.+ Space;//2 cm over front plate // Plate B nrot = 0; i=1; UpDown = 1; Float_t DeadRegion = 1.0;//cm zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)- UpDown*Gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang)- DeadRegion/TMath::Cos(ang); ang = atan(zpos/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -hTof*0.5+ Space ; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); i++; UpDown*=-1; do { zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)- UpDown*Gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); ang = atan(zpos/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; ycoor = -hTof*0.5+ Space ; //2 cm over front plate ycoor += (1-(UpDown+1)/2)*Gap; zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); UpDown*=-1; i++; } while (TMath::Abs(ang*kRaddeg)<22.5); //till we reach a tilting angle of 22.5 degrees ycoor = -hTof*0.5+ Space ; //2 cm over front plate zpos = zpos - zSenStrip/TMath::Cos(ang); do { ang = atan(zpos/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTB/2+zFLTA/2+db); gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); zpos = zpos - zSenStrip/TMath::Cos(ang); printf("%f, St. %2i, Pl.4 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); i++; } while (zpos-StripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db); // Plate C zpos = zpos + zSenStrip/TMath::Cos(ang); zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+ Gap*TMath::Tan(ang)- (zSenStrip/2)/TMath::Cos(ang); nrot = 0; i=0; ycoor= -hTof*0.5+Space+Gap; do { i++; ang = atan(zpos/Radius); ang *= kRaddeg; AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.); ang /= kRaddeg; zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2); gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY"); printf("%f, St. %2i, Pl.5 ",ang*kRaddeg,i); printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos); zpos = zpos - zSenStrip/TMath::Cos(ang); } while (zpos-StripWidth*TMath::Cos(ang)*0.5>-t); ////////// Layers after detector ///////////////// // honeycomb (Polyethilene) Layer after (3cm) Float_t OverSpace = fOverSpc;//cm par[0] = -1; par[1] = 0.6; par[2] = -1; ycoor = -yFLT/2 + OverSpace + par[1]; gMC->Gsvolu("FPEA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPEB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FPEC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // Electronics (Cu) after ycoor += par[1]; par[0] = -1; par[1] = 1.43*0.05*0.5; // 5% of X0 par[2] = -1; ycoor += par[1]; gMC->Gsvolu("FECA", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FECB", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FECC", "BOX ", idtmed[501], par, 3); // Cu gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); // cooling WAter after ycoor += par[1]; par[0] = -1; par[1] = 36.1*0.02*0.5; // 2% of X0 par[2] = -1; ycoor += par[1]; gMC->Gsvolu("FWAA", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FWAB", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FWAC", "BOX ", idtmed[515], par, 3); // Water gMC->Gspos ("FWAC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); //Back Plate honycomb (2cm) par[0] = -1; par[1] = 2 *0.5; par[2] = -1; ycoor = yFLT/2 - par[1]; gMC->Gsvolu("FBPA", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPB", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY"); gMC->Gsvolu("FBPC", "BOX ", idtmed[503], par, 3); // Hony gMC->Gspos ("FBPC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv4::DrawModule() { // // Draw a shaded view of the Time Of Flight version 1 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // // Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN",0); // // Set the volumes visible gMC->Gsatt("ALIC","SEEN",0); gMC->Gsatt("FTOA","SEEN",1); gMC->Gsatt("FTOB","SEEN",1); gMC->Gsatt("FTOC","SEEN",1); gMC->Gsatt("FLTA","SEEN",1); gMC->Gsatt("FLTB","SEEN",1); gMC->Gsatt("FLTC","SEEN",1); gMC->Gsatt("FPLA","SEEN",1); gMC->Gsatt("FPLB","SEEN",1); gMC->Gsatt("FPLC","SEEN",1); gMC->Gsatt("FSTR","SEEN",1); gMC->Gsatt("FPEA","SEEN",1); gMC->Gsatt("FPEB","SEEN",1); gMC->Gsatt("FPEC","SEEN",1); gMC->Gsatt("FLZ1","SEEN",0); gMC->Gsatt("FLZ2","SEEN",0); gMC->Gsatt("FLZ3","SEEN",0); gMC->Gsatt("FLX1","SEEN",0); gMC->Gsatt("FLX2","SEEN",0); gMC->Gsatt("FLX3","SEEN",0); gMC->Gsatt("FPAD","SEEN",0); gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 4, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv4::CreateMaterials() { // // Define materials for the Time Of Flight // AliTOF::CreateMaterials(); } //_____________________________________________________________________________ void AliTOFv4::Init() { // // Initialise the detector after the geometry has been defined // printf("**************************************" " TOF " "**************************************\n"); printf("\n Version 4 of TOF initialing, " "symmetric TOF - Full Coverage version\n"); AliTOF::Init(); fIdFTOA = gMC->VolId("FTOA"); fIdFTOB = gMC->VolId("FTOB"); fIdFTOC = gMC->VolId("FTOC"); fIdFLTA = gMC->VolId("FLTA"); fIdFLTB = gMC->VolId("FLTB"); fIdFLTC = gMC->VolId("FLTC"); printf("**************************************" " TOF " "**************************************\n"); } //_____________________________________________________________________________ void AliTOFv4::StepManager() { // // Procedure called at each step in the Time Of Flight // TLorentzVector mom, pos; Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[13],phi,phid,z; Int_t vol[5]; Int_t sector, plate, pad_x, pad_z, strip; Int_t copy, pad_z_id, pad_x_id, strip_id, i; Int_t *idtmed = fIdtmed->GetArray()-499; Float_t IncidenceAngle; if(gMC->GetMedium()==idtmed[513] && gMC->IsTrackEntering() && gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdSens) { // getting information about hit volumes pad_z_id=gMC->CurrentVolOffID(2,copy); pad_z=copy; pad_x_id=gMC->CurrentVolOffID(1,copy); pad_x=copy; strip_id=gMC->CurrentVolOffID(5,copy); strip=copy; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); // Double_t NormPos=1./pos.Rho(); Double_t NormMom=1./mom.Rho(); // getting the cohordinates in pad ref system xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); pm[0] = (Float_t)mom.X()*NormMom; pm[1] = (Float_t)mom.Y()*NormMom; pm[2] = (Float_t)mom.Z()*NormMom; gMC->Gmtod(xm,xpad,1); gMC->Gmtod(pm,ppad,2); IncidenceAngle = TMath::ACos(ppad[1])*kRaddeg; z = pos[2]; plate = 0; if (TMath::Abs(z) <= fZlenA*0.5) plate = 3; if (z < (fZlenA*0.5+fZlenB) && z > fZlenA*0.5) plate = 4; if (z >-(fZlenA*0.5+fZlenB) && z < -fZlenA*0.5) plate = 2; if (z > (fZlenA*0.5+fZlenB)) plate = 5; if (z <-(fZlenA*0.5+fZlenB)) plate = 1; phi = pos.Phi(); phid = phi*kRaddeg+180.; sector = Int_t (phid/20.); sector++; for(i=0;i<3;++i) { hits[i] = pos[i]; hits[i+3] = pm[i]; } hits[6] = mom.Rho(); hits[7] = pos[3]; hits[8] = xpad[0]; hits[9] = xpad[1]; hits[10]= xpad[2]; hits[11]= IncidenceAngle; hits[12]= gMC->Edep(); vol[0]= sector; vol[1]= plate; vol[2]= strip; vol[3]= pad_x; vol[4]= pad_z; AddHit(gAlice->CurrentTrack(),vol, hits); } }