/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.11 2007/10/08 17:52:55 decaro hole region in front of PHOS detector: update of sectors' numbers Revision 1.10 2007/10/07 19:40:46 decaro right handling of l2t matrices and alignable entries in case of TOF staging geometry Revision 1.9 2007/10/07 19:36:29 decaro TOF materials and volumes description: update Revision 1.8 2007/10/04 13:15:37 arcelli updates to comply with AliTOFGeometryV5 becoming AliTOFGeometry Revision 1.7 2007/10/03 18:07:26 arcelli right handling of l2t matrices and alignable entries in case of TOF holes (Annalisa) Revision 1.6 2007/10/03 10:41:16 arcelli adding tracking-to-local matrices for new AliTOFcluster Revision 1.5 2007/07/27 08:14:48 morsch Write all track references into the same branch. Revision 1.4 2007/05/29 16:51:05 decaro Update of the front-end electronics and cooling system description Revision 1.3.2 2007/05/29 decaro FEA+cooling zone description: update FEA+cooling orientation (side A/ side C) -> correction Revision 1.3.1 2007/05/24 decaro Change the FEA+cooling zone description: - FCA1/FCA2, air boxes, contain: FFEA volume, G10 box, FAL1/FAL2/FAL3 volumes, aluminium boxes; - FRO1/FRO2/FRO3/FRO4/FBAR, aluminum boxes; - changed FTUB positions; Revision 1.3 2007/05/04 14:05:42 decaro Ineffective comment cleanup Revision 1.2 2007/05/04 12:59:22 arcelli Change the TOF SM paths for misalignment (one layer up) Revision 1.1 2007/05/02 17:32:58 decaro TOF geometry description as installed (G. Cara Romeo, A. De Caro) Revision 0.1 2007 March G. Cara Romeo and A. De Caro Implemented a more realistic TOF geometry description, in terms of: - material badget, - services and front end electronics description, - TOF crate readout modules (added volume FTOS in ALIC_1/BBMO_1/BBCE_%i -for i=1,...,18-, and in ALIC_1/BFMO_%i -for i=19,...,36- volumes) As the 5th version in terms of geometrical positioning of volumes. */ /////////////////////////////////////////////////////////////////////////////// // // // This class contains the functions for version 6 of the Time Of Flight // // detector. // // // // VERSION WITH 6 MODULES AND TILTED STRIPS // // // // FULL COVERAGE VERSION + OPTION for PHOS holes // // // // // //Begin_Html // /* // // */ // //End_Html // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "AliConst.h" #include "AliGeomManager.h" #include "AliLog.h" #include "AliMagF.h" #include "AliMC.h" #include "AliRun.h" #include "AliTrackReference.h" #include "AliTOFGeometry.h" #include "AliTOFv6T0.h" extern TVirtualMC *gMC; extern TGeoManager *gGeoManager; extern AliRun *gAlice; ClassImp(AliTOFv6T0) // TOF sectors with Nino masks: 0, 8, 9, 10, 16 const Bool_t AliTOFv6T0::fgkFEAwithMasks[18] = {kTRUE , kFALSE, kFALSE, kFALSE, kFALSE, kFALSE, kFALSE, kFALSE, kTRUE , kTRUE , kTRUE , kFALSE, kFALSE, kFALSE, kFALSE, kFALSE, kTRUE , kFALSE}; const Float_t AliTOFv6T0::fgkModuleWallThickness = 0.33; // cm const Float_t AliTOFv6T0::fgkInterCentrModBorder1 = 49.5 ; // cm const Float_t AliTOFv6T0::fgkInterCentrModBorder2 = 57.5 ; // cm const Float_t AliTOFv6T0::fgkExterInterModBorder1 = 196.0 ; // cm const Float_t AliTOFv6T0::fgkExterInterModBorder2 = 203.5 ; // cm //const Float_t AliTOFv6T0::fgkLengthInCeModBorder = 7.2 ; // cm // it was 4.7 cm (AdC) const Float_t AliTOFv6T0::fgkLengthInCeModBorderU = 5.0 ; // cm const Float_t AliTOFv6T0::fgkLengthInCeModBorderD = 7.0 ; // cm const Float_t AliTOFv6T0::fgkLengthExInModBorder = 5.0 ; // cm // it was 7.0 cm (AdC) const Float_t AliTOFv6T0::fgkModuleCoverThickness = 2.0 ; // cm const Float_t AliTOFv6T0::fgkFEAwidth1 = 19.0; // cm const Float_t AliTOFv6T0::fgkFEAwidth2 = 39.5;//38.5; // cm const Float_t AliTOFv6T0::fgkSawThickness = 1.0; // cm const Float_t AliTOFv6T0::fgkCBLw = 13.5; // cm const Float_t AliTOFv6T0::fgkCBLh1 = 2.0; // cm const Float_t AliTOFv6T0::fgkCBLh2 = 12.3; // cm const Float_t AliTOFv6T0::fgkBetweenLandMask = 0.1; // cm const Float_t AliTOFv6T0::fgkAl1parameters[3] = {fgkFEAwidth1*0.5, 0.4, 0.2}; // cm const Float_t AliTOFv6T0::fgkAl2parameters[3] = {7.25, 0.75, 0.25}; // cm const Float_t AliTOFv6T0::fgkAl3parameters[3] = {3., 4., 0.1}; // cm const Float_t AliTOFv6T0::fgkRoof1parameters[3] = {fgkAl1parameters[0], fgkAl1parameters[2], 1.45}; // cm const Float_t AliTOFv6T0::fgkRoof2parameters[3] = {fgkAl3parameters[0], 0.1, 1.15}; // cm const Float_t AliTOFv6T0::fgkFEAparameters[3] = {fgkFEAwidth1*0.5, 5.6, 0.1}; // cm const Float_t AliTOFv6T0::fgkBar[3] = {8.575, 0.6, 0.25}; // cm const Float_t AliTOFv6T0::fgkBar1[3] = {fgkBar[0], fgkBar[1], 0.1}; // cm const Float_t AliTOFv6T0::fgkBar2[3] = {fgkBar[0], 0.1, fgkBar[1] - 2.*fgkBar1[2]}; // cm const Float_t AliTOFv6T0::fgkBarS[3] = {2., fgkBar[1], fgkBar[2]}; // cm const Float_t AliTOFv6T0::fgkBarS1[3] = {fgkBarS[0], fgkBar1[1], fgkBar1[2]}; // cm const Float_t AliTOFv6T0::fgkBarS2[3] = {fgkBarS[0], fgkBar2[1], fgkBar2[2]}; // cm //_____________________________________________________________________________ AliTOFv6T0::AliTOFv6T0(): fIdFTOA(-1), fIdFTOB(-1), fIdFTOC(-1), fIdFLTA(-1), fIdFLTB(-1), fIdFLTC(-1)//, //fTOFHoles(kFALSE) { // // Default constructor // } //_____________________________________________________________________________ AliTOFv6T0::AliTOFv6T0(const char *name, const char *title): AliTOF(name,title,"tzero"), fIdFTOA(-1), fIdFTOB(-1), fIdFTOC(-1), fIdFLTA(-1), fIdFLTB(-1), fIdFLTC(-1)//, //fTOFHoles(kFALSE) { // // Standard constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF /* AliModule* frame = (AliModule*)gAlice->GetModule("FRAME"); if(!frame) { AliFatal("TOF needs FRAME to be present"); } else { if (fTOFGeometry) delete fTOFGeometry; fTOFGeometry = new AliTOFGeometry(); if(frame->IsVersion()==1) { AliDebug(1,Form("Frame version %d", frame->IsVersion())); AliDebug(1,"Full Coverage for TOF"); fTOFHoles=false;} else { AliDebug(1,Form("Frame version %d", frame->IsVersion())); AliDebug(1,"TOF with Holes for PHOS"); fTOFHoles=true;} } */ if (fTOFGeometry) delete fTOFGeometry; fTOFGeometry = new AliTOFGeometry(); fTOFGeometry->SetHoles(fTOFHoles); //AliTOF::fTOFGeometry = fTOFGeometry; // Save the geometry TDirectory* saveDir = gDirectory; AliRunLoader::Instance()->CdGAFile(); fTOFGeometry->Write("TOFgeometry"); saveDir->cd(); } //_____________________________________________________________________________ void AliTOFv6T0::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // AliGeomManager::ELayerID idTOF = AliGeomManager::kTOF; Int_t modUID, modnum=0; TString volPath; TString symName; TString vpL0 = "ALIC_1/B077_1/BSEGMO"; TString vpL1 = "_1/BTOF"; TString vpL2 = "_1"; TString vpL3 = "/FTOA_0"; TString vpL4 = "/FLTA_0/FSTR_"; TString snSM = "TOF/sm"; TString snSTRIP = "/strip"; Int_t nSectors=fTOFGeometry->NSectors(); Int_t nStrips =fTOFGeometry->NStripA()+ 2*fTOFGeometry->NStripB()+ 2*fTOFGeometry->NStripC(); // // The TOF MRPC Strips // The symbolic names are: TOF/sm00/strip01 // ... // TOF/sm17/strip91 Int_t imod=0; for (Int_t isect = 0; isect < nSectors; isect++) { for (Int_t istr = 1; istr <= nStrips; istr++) { modUID = AliGeomManager::LayerToVolUID(idTOF, modnum++); if (fTOFSectors[isect]==-1) continue; if (fTOFHoles && (isect==13 || isect==14 || isect==15)) { if (istr<39) { vpL3 = "/FTOB_0"; vpL4 = "/FLTB_0/FSTR_"; } else if (istr>53) { vpL3 = "/FTOC_0"; vpL4 = "/FLTC_0/FSTR_"; } else continue; } else { vpL3 = "/FTOA_0"; vpL4 = "/FLTA_0/FSTR_"; } volPath = vpL0; volPath += isect; volPath += vpL1; volPath += isect; volPath += vpL2; volPath += vpL3; volPath += vpL4; volPath += istr; symName = snSM; symName += Form("%02d",isect); symName += snSTRIP; symName += Form("%02d",istr); AliDebug(2,"--------------------------------------------"); AliDebug(2,Form("Alignable object %d", imod)); AliDebug(2,Form("volPath=%s\n",volPath.Data())); AliDebug(2,Form("symName=%s\n",symName.Data())); AliDebug(2,"--------------------------------------------"); if(!gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data(),modUID)) AliError(Form("Alignable entry %s not set",symName.Data())); //T2L matrices for alignment TGeoPNEntry *e = gGeoManager->GetAlignableEntryByUID(modUID); if (e) { TGeoHMatrix *globMatrix = e->GetGlobalOrig(); Double_t phi = 20.0 * (isect % 18) + 10.0; TGeoHMatrix *t2l = new TGeoHMatrix(); t2l->RotateZ(phi); t2l->MultiplyLeft(&(globMatrix->Inverse())); e->SetMatrix(t2l); } else { AliError(Form("Alignable entry %s is not valid!",symName.Data())); } imod++; } } // // The TOF supermodules // The symbolic names are: TOF/sm00 // ... // TOF/sm17 // for (Int_t isect = 0; isect < nSectors; isect++) { volPath = vpL0; volPath += isect; volPath += vpL1; volPath += isect; volPath += vpL2; symName = snSM; symName += Form("%02d",isect); AliDebug(2,"--------------------------------------------"); AliDebug(2,Form("Alignable object %d", isect+imod)); AliDebug(2,Form("volPath=%s\n",volPath.Data())); AliDebug(2,Form("symName=%s\n",symName.Data())); AliDebug(2,"--------------------------------------------"); gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data()); } } //_____________________________________________________________________________ void AliTOFv6T0::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv6T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenA) { // // Definition of the Time Of Fligh Resistive Plate Chambers // AliDebug(1, "************************* TOF geometry **************************"); AliDebug(1,Form(" xtof %f", xtof)); AliDebug(1,Form(" ytof %f", ytof)); AliDebug(1,Form(" zlenA %f", zlenA)); AliDebug(2,Form(" zlenA*0.5 = %f", zlenA*0.5)); Float_t xFLT, yFLT, zFLTA; xFLT = xtof - 2.*fgkModuleWallThickness; yFLT = ytof*0.5 - fgkModuleWallThickness; zFLTA = zlenA - 2.*fgkModuleWallThickness; CreateModules(xtof, ytof, zlenA, xFLT, yFLT, zFLTA); MakeStripsInModules(ytof, zlenA); CreateModuleCovers(xtof, zlenA); CreateBackZone(xtof, ytof, zlenA); MakeFrontEndElectronics(xtof); MakeFEACooling(xtof); MakeNinoMask(xtof); MakeSuperModuleCooling(xtof, ytof, zlenA); MakeSuperModuleServices(xtof, ytof, zlenA); MakeModulesInBTOFvolumes(ytof, zlenA); MakeCoversInBTOFvolumes(); MakeBackInBTOFvolumes(ytof); MakeReadoutCrates(ytof); } //_____________________________________________________________________________ void AliTOFv6T0::CreateModules(Float_t xtof, Float_t ytof, Float_t zlenA, Float_t xFLT, Float_t yFLT, Float_t zFLTA) const { // // Create supermodule volume // and wall volumes to separate 5 modules // const Float_t kPi = TMath::Pi(); Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[8]; for (Int_t ii=0; ii<8; ii++) idrotm[ii]=0; // Definition of the of fibre glass modules (FTOA, FTOB and FTOC) Float_t par[3]; par[0] = xtof * 0.5; par[1] = ytof * 0.25; par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[503], par, 3); // Fibre glass if (fTOFHoles) { par[0] = xtof * 0.5; par[1] = ytof * 0.25; par[2] = (zlenA*0.5 - fgkInterCentrModBorder1)*0.5; gMC->Gsvolu("FTOB", "BOX ", idtmed[503], par, 3); // Fibre glass gMC->Gsvolu("FTOC", "BOX ", idtmed[503], par, 3); // Fibre glass } // Definition and positioning // of the not sensitive volumes with Insensitive Freon (FLTA, FLTB and FLTC) par[0] = xFLT*0.5; par[1] = yFLT*0.5; par[2] = zFLTA*0.5; gMC->Gsvolu("FLTA", "BOX ", idtmed[506], par, 3); // Freon mix Float_t xcoor, ycoor, zcoor; xcoor = 0.; ycoor = fgkModuleWallThickness*0.5; zcoor = 0.; gMC->Gspos ("FLTA", 0, "FTOA", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) { par[2] = (zlenA*0.5 - 2.*fgkModuleWallThickness - fgkInterCentrModBorder1)*0.5; gMC->Gsvolu("FLTB", "BOX ", idtmed[506], par, 3); // Freon mix gMC->Gsvolu("FLTC", "BOX ", idtmed[506], par, 3); // Freon mix //xcoor = 0.; //ycoor = fgkModuleWallThickness*0.5; zcoor = fgkModuleWallThickness; gMC->Gspos ("FLTB", 0, "FTOB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos ("FLTC", 0, "FTOC", xcoor, ycoor,-zcoor, 0, "ONLY"); } // Definition and positioning // of the fibre glass walls between central and intermediate modules (FWZ1 and FWZ2) Float_t alpha, tgal, beta, tgbe, trpa[11]; //tgal = (yFLT - 2.*fgkLengthInCeModBorder)/(fgkInterCentrModBorder2 - fgkInterCentrModBorder1); tgal = (yFLT - fgkLengthInCeModBorderU - fgkLengthInCeModBorderD)/(fgkInterCentrModBorder2 - fgkInterCentrModBorder1); alpha = TMath::ATan(tgal); beta = (kPi*0.5 - alpha)*0.5; tgbe = TMath::Tan(beta); trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = 2.*fgkModuleWallThickness; //trpa[4] = (fgkLengthInCeModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[5] = (fgkLengthInCeModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[4] = (fgkLengthInCeModBorderD - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[5] = (fgkLengthInCeModBorderD + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = 2.*fgkModuleWallThickness; trpa[8] = (fgkLengthInCeModBorderD - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[9] = (fgkLengthInCeModBorderD + 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[8] = (fgkLengthInCeModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[9] = (fgkLengthInCeModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZ1D", "TRAP", idtmed[503], trpa, 11); // Fibre glass AliMatrix (idrotm[0],90., 90.,180.,0.,90.,180.); AliMatrix (idrotm[1],90., 90., 0.,0.,90., 0.); //xcoor = 0.; //ycoor = -(yFLT - fgkLengthInCeModBorder)*0.5; ycoor = -(yFLT - fgkLengthInCeModBorderD)*0.5; zcoor = fgkInterCentrModBorder1; gMC->Gspos("FWZ1D", 1, "FLTA", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FWZ1D", 2, "FLTA", xcoor, ycoor,-zcoor, idrotm[1], "ONLY"); Float_t y0B, ycoorB, zcoorB; if (fTOFHoles) { //y0B = fgkLengthInCeModBorder - fgkModuleWallThickness*tgbe; y0B = fgkLengthInCeModBorderD - fgkModuleWallThickness*tgbe; trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = fgkModuleWallThickness; trpa[4] = (y0B - fgkModuleWallThickness*tgbe)*0.5; trpa[5] = (y0B + fgkModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = fgkModuleWallThickness; trpa[8] = (y0B - fgkModuleWallThickness*tgbe)*0.5; trpa[9] = (y0B + fgkModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; //xcoor = 0.; ycoorB = ycoor - fgkModuleWallThickness*0.5*tgbe; zcoorB = (zlenA*0.5 - 2.*fgkModuleWallThickness - fgkInterCentrModBorder1)*0.5 - 2.*fgkModuleWallThickness; gMC->Gsvolu("FWZAD", "TRAP", idtmed[503], trpa, 11); // Fibre glass gMC->Gspos("FWZAD", 1, "FLTB", xcoor, ycoorB, zcoorB, idrotm[1], "ONLY"); gMC->Gspos("FWZAD", 2, "FLTC", xcoor, ycoorB,-zcoorB, idrotm[0], "ONLY"); } tgal = (yFLT - fgkLengthInCeModBorderU - fgkLengthInCeModBorderD)/(fgkInterCentrModBorder2 - fgkInterCentrModBorder1); alpha = TMath::ATan(tgal); beta = (kPi*0.5 - alpha)*0.5; tgbe = TMath::Tan(beta); trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = 2.*fgkModuleWallThickness; //trpa[4] = (fgkLengthInCeModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[5] = (fgkLengthInCeModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[4] = (fgkLengthInCeModBorderU - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[5] = (fgkLengthInCeModBorderU + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = 2.*fgkModuleWallThickness; trpa[8] = (fgkLengthInCeModBorderU - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[9] = (fgkLengthInCeModBorderU + 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[8] = (fgkLengthInCeModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; //trpa[9] = (fgkLengthInCeModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZ1U", "TRAP", idtmed[503], trpa, 11); // Fibre glass AliMatrix (idrotm[2],90.,270., 0.,0.,90.,180.); AliMatrix (idrotm[3],90.,270.,180.,0.,90., 0.); //xcoor = 0.; //ycoor = (yFLT - fgkLengthInCeModBorder)*0.5; ycoor = (yFLT - fgkLengthInCeModBorderU)*0.5; zcoor = fgkInterCentrModBorder2; gMC->Gspos("FWZ1U", 1, "FLTA", xcoor, ycoor, zcoor,idrotm[2], "ONLY"); gMC->Gspos("FWZ1U", 2, "FLTA", xcoor, ycoor,-zcoor,idrotm[3], "ONLY"); if (fTOFHoles) { //y0B = fgkLengthInCeModBorder + fgkModuleWallThickness*tgbe; y0B = fgkLengthInCeModBorderU + fgkModuleWallThickness*tgbe; trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = fgkModuleWallThickness; trpa[4] = (y0B - fgkModuleWallThickness*tgbe)*0.5; trpa[5] = (y0B + fgkModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = fgkModuleWallThickness; trpa[8] = (y0B - fgkModuleWallThickness*tgbe)*0.5; trpa[9] = (y0B + fgkModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZBU", "TRAP", idtmed[503], trpa, 11); // Fibre glass //xcoor = 0.; ycoorB = ycoor - fgkModuleWallThickness*0.5*tgbe; zcoorB = (zlenA*0.5 - 2.*fgkModuleWallThickness - fgkInterCentrModBorder1)*0.5 - (fgkInterCentrModBorder2 - fgkInterCentrModBorder1) - 2.*fgkModuleWallThickness; gMC->Gspos("FWZBU", 1, "FLTB", xcoor, ycoorB, zcoorB, idrotm[3], "ONLY"); gMC->Gspos("FWZBU", 2, "FLTC", xcoor, ycoorB,-zcoorB, idrotm[2], "ONLY"); } trpa[0] = 0.5*(fgkInterCentrModBorder2 - fgkInterCentrModBorder1)/TMath::Cos(alpha); trpa[1] = 2.*fgkModuleWallThickness; trpa[2] = xFLT*0.5; trpa[3] = -beta*kRaddeg; trpa[4] = 0.; trpa[5] = 0.; gMC->Gsvolu("FWZ2", "PARA", idtmed[503], trpa, 6); // Fibre glass AliMatrix (idrotm[4], alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.); AliMatrix (idrotm[5],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90., 0.); //xcoor = 0.; //ycoor = 0.; ycoor = (fgkLengthInCeModBorderD - fgkLengthInCeModBorderU)*0.5; zcoor = (fgkInterCentrModBorder2 + fgkInterCentrModBorder1)*0.5; gMC->Gspos("FWZ2", 1, "FLTA", xcoor, ycoor, zcoor, idrotm[4], "ONLY"); gMC->Gspos("FWZ2", 2, "FLTA", xcoor, ycoor,-zcoor, idrotm[5], "ONLY"); if (fTOFHoles) { trpa[0] = 0.5*(fgkInterCentrModBorder2 - fgkInterCentrModBorder1)/TMath::Cos(alpha); trpa[1] = fgkModuleWallThickness; trpa[2] = xFLT*0.5; trpa[3] = -beta*kRaddeg; trpa[4] = 0.; trpa[5] = 0.; gMC->Gsvolu("FWZC", "PARA", idtmed[503], trpa, 6); // Fibre glass //xcoor = 0.; ycoorB = ycoor - fgkModuleWallThickness*tgbe; zcoorB = (zlenA*0.5 - 2.*fgkModuleWallThickness - fgkInterCentrModBorder1)*0.5 - (fgkInterCentrModBorder2 - fgkInterCentrModBorder1)*0.5 - 2.*fgkModuleWallThickness; gMC->Gspos("FWZC", 1, "FLTB", xcoor, ycoorB, zcoorB, idrotm[5], "ONLY"); gMC->Gspos("FWZC", 2, "FLTC", xcoor, ycoorB,-zcoorB, idrotm[4], "ONLY"); } // Definition and positioning // of the fibre glass walls between intermediate and lateral modules (FWZ3 and FWZ4) tgal = (yFLT - 2.*fgkLengthExInModBorder)/(fgkExterInterModBorder2 - fgkExterInterModBorder1); alpha = TMath::ATan(tgal); beta = (kPi*0.5 - alpha)*0.5; tgbe = TMath::Tan(beta); trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = 2.*fgkModuleWallThickness; trpa[4] = (fgkLengthExInModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[5] = (fgkLengthExInModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = 2.*fgkModuleWallThickness; trpa[8] = (fgkLengthExInModBorder - 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[9] = (fgkLengthExInModBorder + 2.*fgkModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZ3", "TRAP", idtmed[503], trpa, 11); // Fibre glass //xcoor = 0.; ycoor = (yFLT - fgkLengthExInModBorder)*0.5; zcoor = fgkExterInterModBorder1; gMC->Gspos("FWZ3", 1, "FLTA", xcoor, ycoor, zcoor,idrotm[3], "ONLY"); gMC->Gspos("FWZ3", 2, "FLTA", xcoor, ycoor,-zcoor,idrotm[2], "ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = (yFLT - fgkLengthExInModBorder)*0.5; zcoor = -fgkExterInterModBorder1 + (zlenA*0.5 + fgkInterCentrModBorder1 - 2.*fgkModuleWallThickness)*0.5; gMC->Gspos("FWZ3", 5, "FLTB", xcoor, ycoor, zcoor, idrotm[2], "ONLY"); gMC->Gspos("FWZ3", 6, "FLTC", xcoor, ycoor,-zcoor, idrotm[3], "ONLY"); } //xcoor = 0.; ycoor = -(yFLT - fgkLengthExInModBorder)*0.5; zcoor = fgkExterInterModBorder2; gMC->Gspos("FWZ3", 3, "FLTA", xcoor, ycoor, zcoor, idrotm[1], "ONLY"); gMC->Gspos("FWZ3", 4, "FLTA", xcoor, ycoor,-zcoor, idrotm[0], "ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = -(yFLT - fgkLengthExInModBorder)*0.5; zcoor = -fgkExterInterModBorder2 + (zlenA*0.5 + fgkInterCentrModBorder1 - 2.*fgkModuleWallThickness)*0.5; gMC->Gspos("FWZ3", 7, "FLTB", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FWZ3", 8, "FLTC", xcoor, ycoor,-zcoor, idrotm[1], "ONLY"); } trpa[0] = 0.5*(fgkExterInterModBorder2 - fgkExterInterModBorder1)/TMath::Cos(alpha); trpa[1] = 2.*fgkModuleWallThickness; trpa[2] = xFLT*0.5; trpa[3] = -beta*kRaddeg; trpa[4] = 0.; trpa[5] = 0.; gMC->Gsvolu("FWZ4", "PARA", idtmed[503], trpa, 6); // Fibre glass AliMatrix (idrotm[6],alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.); AliMatrix (idrotm[7],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90.,0.); //xcoor = 0.; ycoor = 0.; zcoor = (fgkExterInterModBorder2 + fgkExterInterModBorder1)*0.5; gMC->Gspos("FWZ4", 1, "FLTA", xcoor, ycoor, zcoor, idrotm[7], "ONLY"); gMC->Gspos("FWZ4", 2, "FLTA", xcoor, ycoor,-zcoor, idrotm[6], "ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = 0.; zcoor = -(fgkExterInterModBorder2 + fgkExterInterModBorder1)*0.5 + (zlenA*0.5 + fgkInterCentrModBorder1 - 2.*fgkModuleWallThickness)*0.5; gMC->Gspos("FWZ4", 3, "FLTB", xcoor, ycoor, zcoor, idrotm[6], "ONLY"); gMC->Gspos("FWZ4", 4, "FLTC", xcoor, ycoor,-zcoor, idrotm[7], "ONLY"); } } //_____________________________________________________________________________ void AliTOFv6T0::CreateModuleCovers(Float_t xtof, Float_t zlenA) const { // // Create covers for module: // per each module zone, defined according to // fgkInterCentrModBorder2, fgkExterInterModBorder1 and zlenA+2 values, // there is a frame of thickness 2cm in Al // and the contained zones in honeycomb of Al. // There is also an interface layer (1.6mm thichness) // and plastic and Cu corresponding to the flat cables. // Int_t *idtmed = fIdtmed->GetArray()-499; Float_t par[3]; par[0] = xtof*0.5 + 2.; par[1] = fgkModuleCoverThickness*0.5; par[2] = zlenA*0.5 + 2.; gMC->Gsvolu("FPEA", "BOX ", idtmed[500], par, 3); // Air if (fTOFHoles) gMC->Gsvolu("FPEB", "BOX ", idtmed[500], par, 3); // Air const Float_t kAlCoverThickness = 1.5; const Float_t kInterfaceCardThickness = 0.16; const Float_t kAlSkinThickness = 0.1; //par[0] = xtof*0.5 + 2.; par[1] = kAlCoverThickness*0.5; //par[2] = zlenA*0.5 + 2.; gMC->Gsvolu("FALT", "BOX ", idtmed[504], par, 3); // Al if (fTOFHoles) gMC->Gsvolu("FALB", "BOX ", idtmed[504], par, 3); // Al Float_t xcoor, ycoor, zcoor; xcoor = 0.; ycoor = 0.; zcoor = 0.; gMC->Gspos("FALT", 0, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) gMC->Gspos("FALB", 0, "FPEB", xcoor, ycoor, zcoor, 0, "ONLY"); par[0] = xtof*0.5; //par[1] = kAlCoverThickness*0.5; par[2] = fgkInterCentrModBorder2 - 2.; gMC->Gsvolu("FPE1", "BOX ", idtmed[505], par, 3); // Al honeycomb //xcoor = 0.; //ycoor = 0.; //zcoor = 0.; gMC->Gspos("FPE1", 0, "FALT", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) { //par[0] = xtof*0.5; par[1] = kAlCoverThickness*0.5 - kAlSkinThickness; //par[2] = fgkInterCentrModBorder2 - 2.; gMC->Gsvolu("FPE4", "BOX ", idtmed[515], par, 3); // Al honeycomb for holes //xcoor = 0.; //ycoor = 0.; //zcoor = 0.; gMC->Gspos("FPE4", 0, "FALB", xcoor, ycoor, zcoor, 0, "ONLY"); } //par[0] = xtof*0.5; //par[1] = kAlCoverThickness*0.5; par[2] = (fgkExterInterModBorder1 - fgkInterCentrModBorder2)*0.5 - 2.; gMC->Gsvolu("FPE2", "BOX ", idtmed[505], par, 3); // Al honeycomb //xcoor = 0.; //ycoor = 0.; zcoor = (fgkExterInterModBorder1 + fgkInterCentrModBorder2)*0.5; gMC->Gspos("FPE2", 1, "FALT", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FPE2", 2, "FALT", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = 0.; //zcoor = (fgkExterInterModBorder1 + fgkInterCentrModBorder2)*0.5; gMC->Gspos("FPE2", 1, "FALB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FPE2", 2, "FALB", xcoor, ycoor,-zcoor, 0, "ONLY"); } //par[0] = xtof*0.5; //par[1] = kAlCoverThickness*0.5; par[2] = (zlenA*0.5 + 2. - fgkExterInterModBorder1)*0.5 - 2.; gMC->Gsvolu("FPE3", "BOX ", idtmed[505], par, 3); // Al honeycomb //xcoor = 0.; //ycoor = 0.; zcoor = (zlenA*0.5 + 2. + fgkExterInterModBorder1)*0.5; gMC->Gspos("FPE3", 1, "FALT", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FPE3", 2, "FALT", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = 0.; zcoor = (zlenA*0.5 + 2. + fgkExterInterModBorder1)*0.5; gMC->Gspos("FPE3", 1, "FALB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FPE3", 2, "FALB", xcoor, ycoor,-zcoor, 0, "ONLY"); } // volumes for Interface cards par[0] = xtof*0.5; par[1] = kInterfaceCardThickness*0.5; par[2] = fgkInterCentrModBorder2 - 2.; gMC->Gsvolu("FIF1", "BOX ", idtmed[502], par, 3); // G10 //xcoor = 0.; ycoor = kAlCoverThickness*0.5 + kInterfaceCardThickness*0.5; zcoor = 0.; gMC->Gspos("FIF1", 0, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); //par[0] = xtof*0.5; //par[1] = kInterfaceCardThickness*0.5; par[2] = (fgkExterInterModBorder1 - fgkInterCentrModBorder2)*0.5 - 2.; gMC->Gsvolu("FIF2", "BOX ", idtmed[502], par, 3); // G10 //xcoor = 0.; //ycoor = kAlCoverThickness*0.5 + kInterfaceCardThickness*0.5; zcoor = (fgkExterInterModBorder1 + fgkInterCentrModBorder2)*0.5; gMC->Gspos("FIF2", 1, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FIF2", 2, "FPEA", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { gMC->Gspos("FIF2", 1, "FPEB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FIF2", 2, "FPEB", xcoor, ycoor,-zcoor, 0, "ONLY"); } //par[0] = xtof*0.5; //par[1] = kInterfaceCardThickness*0.5; par[2] = (zlenA*0.5 + 2. - fgkExterInterModBorder1)*0.5 - 2.; gMC->Gsvolu("FIF3", "BOX ", idtmed[502], par, 3); // G10 //xcoor = 0.; //ycoor = kAlCoverThickness*0.5 + kInterfaceCardThickness*0.5; zcoor = (zlenA*0.5 + 2. + fgkExterInterModBorder1)*0.5; gMC->Gspos("FIF3", 1, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FIF3", 2, "FPEA", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { gMC->Gspos("FIF3", 1, "FPEB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FIF3", 2, "FPEB", xcoor, ycoor,-zcoor, 0, "ONLY"); } // volumes for flat cables // plastic const Float_t kPlasticFlatCableThickness = 0.25; par[0] = xtof*0.5; par[1] = kPlasticFlatCableThickness*0.5; par[2] = fgkInterCentrModBorder2 - 2.; gMC->Gsvolu("FFC1", "BOX ", idtmed[513], par, 3); // Plastic (CH2) //xcoor = 0.; ycoor = -kAlCoverThickness*0.5 - kPlasticFlatCableThickness*0.5; zcoor = 0.; gMC->Gspos("FFC1", 0, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); //par[0] = xtof*0.5; //par[1] = kPlasticFlatCableThickness*0.5; par[2] = (fgkExterInterModBorder1 - fgkInterCentrModBorder2)*0.5 - 2.; gMC->Gsvolu("FFC2", "BOX ", idtmed[513], par, 3); // Plastic (CH2) //xcoor = 0.; //ycoor = -kAlCoverThickness*0.5 - kPlasticFlatCableThickness*0.5; zcoor = (fgkExterInterModBorder1 + fgkInterCentrModBorder2)*0.5; gMC->Gspos("FFC2", 1, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FFC2", 2, "FPEA", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { gMC->Gspos("FFC2", 1, "FPEB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FFC2", 2, "FPEB", xcoor, ycoor,-zcoor, 0, "ONLY"); } //par[0] = xtof*0.5; //par[1] = kPlasticFlatCableThickness*0.5; par[2] = (zlenA*0.5 + 2. - fgkExterInterModBorder1)*0.5 - 2.; gMC->Gsvolu("FFC3", "BOX ", idtmed[513], par, 3); // Plastic (CH2) //xcoor = 0.; //ycoor = -kAlCoverThickness*0.5 - kPlasticFlatCableThickness*0.5; zcoor = (zlenA*0.5 + 2. + fgkExterInterModBorder1)*0.5; gMC->Gspos("FFC3", 1, "FPEA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FFC3", 2, "FPEA", xcoor, ycoor,-zcoor, 0, "ONLY"); if (fTOFHoles) { gMC->Gspos("FFC3", 1, "FPEB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FFC3", 2, "FPEB", xcoor, ycoor,-zcoor, 0, "ONLY"); } // Cu const Float_t kCopperFlatCableThickness = 0.01; par[0] = xtof*0.5; par[1] = kCopperFlatCableThickness*0.5; par[2] = fgkInterCentrModBorder2 - 2.; gMC->Gsvolu("FCC1", "BOX ", idtmed[512], par, 3); // Cu gMC->Gspos("FCC1", 0, "FFC1", 0., 0., 0., 0, "ONLY"); //par[0] = xtof*0.5; //par[1] = kCopperFlatCableThickness*0.5; par[2] = (fgkExterInterModBorder1 - fgkInterCentrModBorder2)*0.5 - 2.; gMC->Gsvolu("FCC2", "BOX ", idtmed[512], par, 3); // Cu gMC->Gspos("FCC2", 0, "FFC2", 0., 0., 0., 0, "ONLY"); //par[0] = xtof*0.5; //par[1] = kCopperFlatCableThickness*0.5; par[2] = (zlenA*0.5 + 2. - fgkExterInterModBorder1)*0.5 - 2.; gMC->Gsvolu("FCC3", "BOX ", idtmed[512], par, 3); // Cu gMC->Gspos("FCC3", 0, "FFC3", 0., 0., 0., 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::MakeModulesInBTOFvolumes(Float_t ytof, Float_t zlenA) const { // // Fill BTOF_%i (for i=0,...17) volumes // with volumes FTOA (MRPC strip container), // In case of TOF holes, three sectors (i.e. 13th, 14th and 15th) // are filled with volumes: FTOB and FTOC (MRPC containers), // const Int_t kSize=16; Int_t idrotm[1]={0}; //AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,-90.); AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,270.); Float_t xcoor, ycoor, zcoor; xcoor = 0.; // Positioning of fibre glass modules (FTOA, FTOB and FTOC) for(Int_t isec=0; isecNSectors(); isec++){ if(fTOFSectors[isec]==-1)continue; char name[kSize]; snprintf(name, kSize, "BTOF%d",isec); if (fTOFHoles && (isec==13 || isec==14 || isec==15)) { //xcoor = 0.; ycoor = (zlenA*0.5 + fgkInterCentrModBorder1)*0.5; zcoor = -ytof * 0.25; gMC->Gspos("FTOB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 0, name, xcoor,-ycoor, zcoor, idrotm[0], "ONLY"); } else { //xcoor = 0.; ycoor = 0.; zcoor = -ytof * 0.25; gMC->Gspos("FTOA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); } } } //_____________________________________________________________________________ void AliTOFv6T0::MakeCoversInBTOFvolumes() const { // // Fill BTOF_%i (for i=0,...17) volumes // with volumes FPEA (to separate strips from FEA cards) // In case of TOF holes, three sectors (i.e. 13th, 14th and 15th) // are filled with FPEB volumes // (to separate MRPC strips from FEA cards) // const Int_t kSize=16; Int_t idrotm[1]={0}; //AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,-90.); AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,270.); Float_t xcoor, ycoor, zcoor; xcoor = 0.; ycoor = 0.; zcoor = fgkModuleCoverThickness*0.5; char name[kSize]; // Positioning of module covers (FPEA, FPEB) for(Int_t isec=0; isecNSectors(); isec++) { if(fTOFSectors[isec]==-1)continue; snprintf(name, kSize, "BTOF%d",isec); if (fTOFHoles && (isec==13 || isec==14 || isec==15)) gMC->Gspos("FPEB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); else gMC->Gspos("FPEA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); } } //_____________________________________________________________________________ void AliTOFv6T0::MakeBackInBTOFvolumes(Float_t ytof) const { // // Fill BTOF_%i (for i=0,...17) volumes with volumes called FAIA and // FAIC (FEA cards and services container). // In case of TOF holes, three sectors (i.e. 13th, 14th and 15th) are // filled with volumes FAIB (FEA cards and services container). // const Int_t kSize=16; Int_t idrotm[1]={0}; //AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,-90.); AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,270.); Float_t xcoor, ycoor, zcoor; xcoor = 0.; ycoor = 0.; zcoor = fgkModuleCoverThickness + (ytof*0.5 - fgkModuleCoverThickness)*0.5; char name[kSize]; // Positioning of FEA cards and services containers (FAIA, FAIC and FAIB) for(Int_t isec=0; isecNSectors(); isec++) { if(fTOFSectors[isec]==-1)continue; snprintf(name, kSize, "BTOF%d",isec); if (fgkFEAwithMasks[isec]) gMC->Gspos("FAIA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); else { if (fTOFHoles && (isec==13 || isec==14 || isec==15)) gMC->Gspos("FAIB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); else gMC->Gspos("FAIC", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); } } } //_____________________________________________________________________________ void AliTOFv6T0::MakeStripsInModules(Float_t ytof, Float_t zlenA) const { // // Define MRPC strip volume, called FSTR // Insert FSTR volume in FLTA/B/C volumes // Float_t yFLT = ytof*0.5 - fgkModuleWallThickness; Int_t *idtmed = fIdtmed->GetArray()-499; ///////////////// Detector itself ////////////////////// const Int_t knx = fTOFGeometry->NpadX(); // number of pads along x const Int_t knz = fTOFGeometry->NpadZ(); // number of pads along z const Float_t kPadX = fTOFGeometry->XPad(); // pad length along x const Float_t kPadZ = fTOFGeometry->ZPad(); // pad length along z // new description for strip volume -double stack strip- // -- all constants are expressed in cm // height of different layers const Float_t khhony = 1.0; // height of HONY Layer const Float_t khpcby = 0.08; // height of PCB Layer const Float_t khrgly = 0.055; // height of RED GLASS Layer const Float_t khfiliy = 0.125; // height of FISHLINE Layer const Float_t khglassy = 0.160*0.5; // semi-height of GLASS Layer const Float_t khglfy = khfiliy+2.*khglassy; // height of GLASS Layer const Float_t khcpcby = 0.16; // height of PCB Central Layer const Float_t kwhonz = 8.1; // z dimension of HONEY Layer const Float_t kwpcbz1 = 10.64; // z dimension of PCB Lower Layer const Float_t kwpcbz2 = 11.6; // z dimension of PCB Upper Layer const Float_t kwcpcbz = 12.4; // z dimension of PCB Central Layer const Float_t kwrglz = 8.; // z dimension of RED GLASS Layer const Float_t kwglfz = 7.; // z dimension of GLASS Layer const Float_t klsensmx = knx*kPadX; // length of Sensitive Layer const Float_t khsensmy = 0.0105; // height of Sensitive Layer const Float_t kwsensmz = knz*kPadZ; // width of Sensitive Layer // height of the FSTR Volume (the strip volume) const Float_t khstripy = 2.*khhony+2.*khpcby+4.*khrgly+2.*khglfy+khcpcby; // width of the FSTR Volume (the strip volume) const Float_t kwstripz = kwcpcbz; // length of the FSTR Volume (the strip volume) const Float_t klstripx = fTOFGeometry->StripLength(); // FSTR volume definition-filling this volume with non sensitive Gas Mixture Float_t parfp[3]={klstripx*0.5, khstripy*0.5, kwstripz*0.5}; gMC->Gsvolu("FSTR", "BOX", idtmed[506], parfp, 3); // Freon mix Float_t posfp[3]={0.,0.,0.}; // NOMEX (HONEYCOMB) Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khhony*0.5; parfp[2] = kwhonz*0.5; gMC->Gsvolu("FHON", "BOX", idtmed[501], parfp, 3); // Nomex (Honeycomb) // positioning 2 NOMEX Layers on FSTR volume //posfp[0] = 0.; posfp[1] =-khstripy*0.5 + parfp[1]; //posfp[2] = 0.; gMC->Gspos("FHON", 1, "FSTR", 0., posfp[1], 0., 0, "ONLY"); gMC->Gspos("FHON", 2, "FSTR", 0.,-posfp[1], 0., 0, "ONLY"); // Lower PCB Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khpcby*0.5; parfp[2] = kwpcbz1*0.5; gMC->Gsvolu("FPC1", "BOX", idtmed[502], parfp, 3); // G10 // Upper PCB Layer definition //parfp[0] = klstripx*0.5; //parfp[1] = khpcby*0.5; parfp[2] = kwpcbz2*0.5; gMC->Gsvolu("FPC2", "BOX", idtmed[502], parfp, 3); // G10 // positioning 2 external PCB Layers in FSTR volume //posfp[0] = 0.; posfp[1] =-khstripy*0.5+khhony+parfp[1]; //posfp[2] = 0.; gMC->Gspos("FPC1", 1, "FSTR", 0.,-posfp[1], 0., 0, "ONLY"); gMC->Gspos("FPC2", 1, "FSTR", 0., posfp[1], 0., 0, "ONLY"); // Central PCB layer definition //parfp[0] = klstripx*0.5; parfp[1] = khcpcby*0.5; parfp[2] = kwcpcbz*0.5; gMC->Gsvolu("FPCB", "BOX", idtmed[502], parfp, 3); // G10 gGeoManager->GetVolume("FPCB")->VisibleDaughters(kFALSE); // positioning the central PCB layer gMC->Gspos("FPCB", 1, "FSTR", 0., 0., 0., 0, "ONLY"); // Sensitive volume definition Float_t parfs[3] = {klsensmx*0.5, khsensmy*0.5, kwsensmz*0.5}; gMC->Gsvolu("FSEN", "BOX", idtmed[507], parfs, 3); // Cu sensitive // dividing FSEN along z in knz=2 and along x in knx=48 gMC->Gsdvn("FSEZ", "FSEN", knz, 3); gMC->Gsdvn("FPAD", "FSEZ", knx, 1); // positioning sensitive layer inside FPCB gMC->Gspos("FSEN", 1, "FPCB", 0., 0., 0., 0, "ONLY"); // RED GLASS Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khrgly*0.5; parfp[2] = kwrglz*0.5; gMC->Gsvolu("FRGL", "BOX", idtmed[508], parfp, 3); // red glass // positioning 4 RED GLASS Layers in FSTR volume //posfp[0] = 0.; posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; //posfp[2] = 0.; gMC->Gspos("FRGL", 1, "FSTR", 0., posfp[1], 0., 0, "ONLY"); gMC->Gspos("FRGL", 4, "FSTR", 0.,-posfp[1], 0., 0, "ONLY"); //posfp[0] = 0.; posfp[1] = (khcpcby+khrgly)*0.5; //posfp[2] = 0.; gMC->Gspos("FRGL", 2, "FSTR", 0.,-posfp[1], 0., 0, "ONLY"); gMC->Gspos("FRGL", 3, "FSTR", 0., posfp[1], 0., 0, "ONLY"); // GLASS Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khglassy; parfp[2] = kwglfz*0.5; gMC->Gsvolu("FGLF", "BOX", idtmed[508], parfp, 3); // glass // positioning 2 GLASS Layers in FSTR volume //posfp[0] = 0.; posfp[1] = (khcpcby + khglfy)*0.5 + khrgly; //posfp[2] = 0.; gMC->Gspos("FGLF", 1, "FSTR", 0.,-posfp[1], 0., 0, "ONLY"); gMC->Gspos("FGLF", 2, "FSTR", 0., posfp[1], 0., 0, "ONLY"); // Positioning the Strips (FSTR volumes) in the FLT volumes Int_t maxStripNumbers [5] ={fTOFGeometry->NStripC(), fTOFGeometry->NStripB(), fTOFGeometry->NStripA(), fTOFGeometry->NStripB(), fTOFGeometry->NStripC()}; Int_t idrotm[91]; for (Int_t ii=0; ii<91; ii++) idrotm[ii]=0; Int_t totalStrip = 0; Float_t xpos, zpos, ypos, ang; for(Int_t iplate = 0; iplate < fTOFGeometry->NPlates(); iplate++){ if (iplate>0) totalStrip += maxStripNumbers[iplate-1]; for(Int_t istrip = 0; istrip < maxStripNumbers[iplate]; istrip++){ ang = fTOFGeometry->GetAngles(iplate,istrip); AliDebug(1, Form(" iplate = %1i, istrip = %2i ---> ang = %f", iplate, istrip, ang)); if (ang>0.) AliMatrix (idrotm[istrip+totalStrip],90.,0.,90.+ang,90., ang, 90.); else if (ang==0.) AliMatrix (idrotm[istrip+totalStrip],90.,0.,90.,90., 0., 0.); else if (ang<0.) AliMatrix (idrotm[istrip+totalStrip],90.,0.,90.+ang,90.,-ang,270.); xpos = 0.; ypos = fTOFGeometry->GetHeights(iplate,istrip) + yFLT*0.5; zpos = fTOFGeometry->GetDistances(iplate,istrip); gMC->Gspos("FSTR", istrip+totalStrip+1, "FLTA", xpos, ypos,-zpos, idrotm[istrip+totalStrip], "ONLY"); if (fTOFHoles) { if (istrip+totalStrip+1>53) gMC->Gspos("FSTR", istrip+totalStrip+1, "FLTC", xpos, ypos,-zpos-(zlenA*0.5 - 2.*fgkModuleWallThickness + fgkInterCentrModBorder1)*0.5, idrotm[istrip+totalStrip], "ONLY"); if (istrip+totalStrip+1<39) gMC->Gspos("FSTR", istrip+totalStrip+1, "FLTB", xpos, ypos,-zpos+(zlenA*0.5 - 2.*fgkModuleWallThickness + fgkInterCentrModBorder1)*0.5, idrotm[istrip+totalStrip], "ONLY"); } } } } //_____________________________________________________________________________ void AliTOFv6T0::CreateBackZone(Float_t xtof, Float_t ytof, Float_t zlenA) const { // // Define: // - containers for FEA cards, cooling system // signal cables and supermodule support structure // (volumes called FAIA/B/C), // - containers for FEA cards and some cooling // elements for a FEA (volumes called FCA1/2). // Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[1]={0}; // Definition of the air card containers (FAIA, FAIC and FAIB) Float_t par[3]; par[0] = xtof*0.5; par[1] = (ytof*0.5 - fgkModuleCoverThickness)*0.5; par[2] = zlenA*0.5; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air if (fTOFHoles) gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; //Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; // FEA card mother-volume definition Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; gMC->Gsvolu("FCA1", "BOX ", idtmed[500], carpar, 3); // Air gMC->Gsvolu("FCA2", "BOX ", idtmed[500], carpar, 3); // Air // rotation matrix AliMatrix(idrotm[0], 90.,180., 90., 90.,180., 0.); // FEA card mother-volume positioning Float_t rowstep = 6.66; Float_t rowgap[5] = {13.5, 22.9, 16.94, 23.8, 20.4}; Int_t rowb[5] = {6, 7, 6, 19, 7}; Float_t carpos[3] = {0., -(ytof*0.5 - fgkModuleCoverThickness)*0.5 + carpar[1], -0.8}; gMC->Gspos("FCA1", 91, "FAIA", carpos[0], carpos[1], carpos[2], 0, "MANY"); gMC->Gspos("FCA2", 91, "FAIC", carpos[0], carpos[1], carpos[2], 0, "MANY"); Int_t row = 1; Int_t nrow = 0; for (Int_t sg= -1; sg< 2; sg+= 2) { carpos[2] = sg*zlenA*0.5 - 0.8; for (Int_t nb=0; nb<5; ++nb) { carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep); nrow = row + rowb[nb]; for ( ; row < nrow ; ++row) { carpos[2] -= sg*rowstep; if (nb==4) { gMC->Gspos("FCA1", row, "FAIA", carpos[0], carpos[1], carpos[2], 0, "ONLY"); gMC->Gspos("FCA2", row, "FAIC", carpos[0], carpos[1], carpos[2], 0, "ONLY"); } else { switch (sg) { case 1: gMC->Gspos("FCA1", row, "FAIA", carpos[0], carpos[1], carpos[2], 0, "ONLY"); gMC->Gspos("FCA2", row, "FAIC", carpos[0], carpos[1], carpos[2], 0, "ONLY"); break; case -1: gMC->Gspos("FCA1", row, "FAIA", carpos[0], carpos[1], carpos[2], idrotm[0], "ONLY"); gMC->Gspos("FCA2", row, "FAIC", carpos[0], carpos[1], carpos[2], idrotm[0], "ONLY"); break; } } } } } if (fTOFHoles) { row = 1; for (Int_t sg= -1; sg< 2; sg+= 2) { carpos[2] = sg*zlenA*0.5 - 0.8; for (Int_t nb=0; nb<4; ++nb) { carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep); nrow = row + rowb[nb]; for ( ; row < nrow ; ++row) { carpos[2] -= sg*rowstep; switch (sg) { case 1: gMC->Gspos("FCA1", row, "FAIB", carpos[0], carpos[1], carpos[2], 0, "ONLY"); break; case -1: gMC->Gspos("FCA1", row, "FAIB", carpos[0], carpos[1], carpos[2], idrotm[0], "ONLY"); break; } } } } } } //_____________________________________________________________________________ void AliTOFv6T0::MakeFrontEndElectronics(Float_t xtof) const { // // Fill FCA1/2 volumes with FEA cards (FFEA volumes). // Int_t *idtmed = fIdtmed->GetArray()-499; // FEA card volume definition Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; gMC->Gsvolu("FFEA", "BOX ", idtmed[502], feaParam, 3); // G10 Float_t al1[3] = {fgkAl1parameters[0], fgkAl1parameters[1], fgkAl1parameters[2]}; Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; //Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; // FEA card volume positioning Float_t xCoor = xtof*0.5 - 25.; Float_t yCoor =-carpar[1] + feaParam[1]; Float_t zCoor =-carpar[2] + (2.*feaRoof1[2] - 2.*al1[2] - feaParam[2]); gMC->Gspos("FFEA", 1, "FCA1",-xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 4, "FCA1", xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 1, "FCA2",-xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 4, "FCA2", xCoor, yCoor, zCoor, 0, "ONLY"); xCoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FFEA", 2, "FCA1",-xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 3, "FCA1", xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 2, "FCA2",-xCoor, yCoor, zCoor, 0, "ONLY"); gMC->Gspos("FFEA", 3, "FCA2", xCoor, yCoor, zCoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::MakeFEACooling(Float_t xtof) const { // // Make cooling system attached to each FEA card // (FAL1, FRO1 and FBAR/1/2 volumes) // in FCA1/2 volume containers. // Int_t *idtmed = fIdtmed->GetArray()-499; // first FEA cooling element definition Float_t al1[3] = {fgkAl1parameters[0], fgkAl1parameters[1], fgkAl1parameters[2]}; gMC->Gsvolu("FAL1", "BOX ", idtmed[504], al1, 3); // Al // second FEA cooling element definition Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; gMC->Gsvolu("FRO1", "BOX ", idtmed[504], feaRoof1, 3); // Al Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; //Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; // definition and positioning of a small air groove in the FRO1 volume Float_t airHole[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1]*0.5, feaRoof1[2]}; gMC->Gsvolu("FREE", "BOX ", idtmed[500], airHole, 3); // Air gMC->Gspos("FREE", 1, "FRO1", 0., feaRoof1[1]-airHole[1], 0., 0, "ONLY"); gGeoManager->GetVolume("FRO1")->VisibleDaughters(kFALSE); // third FEA cooling element definition Float_t bar[3] = {fgkBar[0], fgkBar[1], fgkBar[2]}; gMC->Gsvolu("FBAR", "BOX ", idtmed[504], bar, 3); // Al Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; // fourth FEA cooling element definition Float_t bar1[3] = {fgkBar1[0], fgkBar1[1], fgkBar1[2]}; gMC->Gsvolu("FBA1", "BOX ", idtmed[504], bar1, 3); // Al // fifth FEA cooling element definition Float_t bar2[3] = {fgkBar2[0], fgkBar2[1], fgkBar2[2]}; gMC->Gsvolu("FBA2", "BOX ", idtmed[504], bar2, 3); // Al // first FEA cooling element positioning Float_t xcoor = xtof*0.5 - 25.; Float_t ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - al1[1]; Float_t zcoor =-carpar[2] + 2.*feaRoof1[2] - al1[2]; gMC->Gspos("FAL1", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 1, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 4, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FAL1", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 2, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL1", 3, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); // second FEA cooling element positioning xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - feaRoof1[1]; zcoor =-carpar[2] + feaRoof1[2]; gMC->Gspos("FRO1", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "MANY"); // (AdC) gMC->Gspos("FRO1", 4, "FCA1", xcoor, ycoor, zcoor, 0, "MANY"); // (AdC) gMC->Gspos("FRO1", 1, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FRO1", 4, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FRO1", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "MANY"); // (AdC) gMC->Gspos("FRO1", 3, "FCA1", xcoor, ycoor, zcoor, 0, "MANY"); // (AdC) gMC->Gspos("FRO1", 2, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FRO1", 3, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); // third FEA cooling element positioning xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - bar[1]; zcoor =-carpar[2] + bar[2]; gMC->Gspos("FBAR", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 1, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 4, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FBAR", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 2, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAR", 3, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); // fourth FEA cooling element positioning Float_t tubepar[3] = {0., 0.4, xtof*0.5 - fgkCBLw}; xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - bar[1]; zcoor =-carpar[2] + 2.*bar[2] + 2.*tubepar[1] + bar1[2]; gMC->Gspos("FBA1", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 1, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 4, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FBA1", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 2, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA1", 3, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); // fifth FEA cooling element positioning xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - bar2[1]; zcoor =-carpar[2] + 2.*bar[2] + bar2[2]; gMC->Gspos("FBA2", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 1, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 4, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FBA2", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 2, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 3, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - 2.*bar2[1] - 2.*tubepar[1] - bar2[1]; zcoor =-carpar[2] + 2.*bar[2] + bar2[2]; gMC->Gspos("FBA2", 5, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 8, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 5, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 8, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FBA2", 6, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 7, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 6, "FCA2",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBA2", 7, "FCA2", xcoor, ycoor, zcoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::MakeNinoMask(Float_t xtof) const { // // Make cooling Nino mask // for each FEA card (FAL2/3 and FRO2 volumes) // in FCA1 volume container. // Int_t *idtmed = fIdtmed->GetArray()-499; // first Nino ASIC mask volume definition Float_t al2[3] = {fgkAl2parameters[0], fgkAl2parameters[1], fgkAl2parameters[2]}; gMC->Gsvolu("FAL2", "BOX ", idtmed[504], al2, 3); // Al // second Nino ASIC mask volume definition Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; gMC->Gsvolu("FAL3", "BOX ", idtmed[504], al3, 3); // Al // third Nino ASIC mask volume definition Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; gMC->Gsvolu("FRO2", "BOX ", idtmed[504], feaRoof2, 3); // Al Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; // first Nino ASIC mask volume positioning Float_t xcoor = xtof*0.5 - 25.; Float_t ycoor = carpar[1] - 2.*al3[1]; Float_t zcoor = carpar[2] - 2.*al3[2] - al2[2]; gMC->Gspos("FAL2", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL2", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FAL2", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL2", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); // second Nino ASIC mask volume positioning xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - al3[1]; zcoor = carpar[2] - al3[2]; gMC->Gspos("FAL3", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL3", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FAL3", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FAL3", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); // third Nino ASIC mask volume positioning xcoor = xtof*0.5 - 25.; ycoor = carpar[1] - fgkRoof2parameters[1]; zcoor = carpar[2] - 2.*al3[2] - fgkRoof2parameters[2]; gMC->Gspos("FRO2", 1, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FRO2", 4, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); xcoor = feaParam[0] + (fgkFEAwidth2*0.5 - fgkFEAwidth1); gMC->Gspos("FRO2", 2, "FCA1",-xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FRO2", 3, "FCA1", xcoor, ycoor, zcoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::MakeSuperModuleCooling(Float_t xtof, Float_t ytof, Float_t zlenA) const { // // Make cooling tubes (FTUB volume) // and cooling bars (FTLN and FLO1/2/3 volumes) // in FAIA/B/C volume containers. // Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[1]={0}; // cooling tube volume definition Float_t tubepar[3] = {0., 0.4, xtof*0.5 - fgkCBLw - fgkSawThickness}; gMC->Gsvolu("FTUB", "TUBE", idtmed[512], tubepar, 3); // Cu // water cooling tube volume definition Float_t tubeparW[3] = {0., 0.3, tubepar[2]}; gMC->Gsvolu("FITU", "TUBE", idtmed[509], tubeparW, 3); // H2O // Positioning of the water tube into the steel one gMC->Gspos("FITU", 1, "FTUB", 0., 0., 0., 0, "ONLY"); // definition of transverse components of SM cooling system Float_t trapar[3] = {tubepar[2], 6.175/*6.15*/, 0.7}; gMC->Gsvolu("FTLN", "BOX ", idtmed[504], trapar, 3); // Al // rotation matrix AliMatrix(idrotm[0], 180., 90., 90., 90., 90., 0.); Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; Float_t bar[3] = {fgkBar[0], fgkBar[1], fgkBar[2]}; Float_t bar2[3] = {fgkBar2[0], fgkBar2[1], fgkBar2[2]}; Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; //Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; Float_t ytub =-(ytof*0.5 - fgkModuleCoverThickness)*0.5 + carpar[1] + carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - 2.*bar2[1] - tubepar[1]; // Positioning of tubes for the SM cooling system Float_t ycoor = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - 2.*bar2[1] - tubepar[1]; Float_t zcoor =-carpar[2] + 2.*bar[2] + tubepar[1]; gMC->Gspos("FTUB", 1, "FCA1", 0., ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FTUB", 1, "FCA2", 0., ycoor, zcoor, idrotm[0], "ONLY"); gGeoManager->GetVolume("FTUB")->VisibleDaughters(kFALSE); Float_t yFLTN = trapar[1] - (ytof*0.5 - fgkModuleCoverThickness)*0.5; for (Int_t sg= -1; sg< 2; sg+= 2) { // Positioning of transverse components for the SM cooling system gMC->Gspos("FTLN", 5+4*sg, "FAIA", 0., yFLTN, 369.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+3*sg, "FAIA", 0., yFLTN, 366.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+2*sg, "FAIA", 0., yFLTN, 198.8*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+sg, "FAIA", 0., yFLTN, 56.82*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+4*sg, "FAIC", 0., yFLTN, 369.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+3*sg, "FAIC", 0., yFLTN, 366.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+2*sg, "FAIC", 0., yFLTN, 198.8*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+sg, "FAIC", 0., yFLTN, 56.82*sg, 0, "MANY"); } // definition of longitudinal components of SM cooling system Float_t lonpar1[3] = {2., 0.5, 56.82 - trapar[2]}; Float_t lonpar2[3] = {lonpar1[0], lonpar1[1], (198.8 - 56.82)*0.5 - trapar[2]}; Float_t lonpar3[3] = {lonpar1[0], lonpar1[1], (366.9 - 198.8)*0.5 - trapar[2]}; gMC->Gsvolu("FLO1", "BOX ", idtmed[504], lonpar1, 3); // Al gMC->Gsvolu("FLO2", "BOX ", idtmed[504], lonpar2, 3); // Al gMC->Gsvolu("FLO3", "BOX ", idtmed[504], lonpar3, 3); // Al // Positioning of longitudinal components for the SM cooling system ycoor = ytub + (tubepar[1] + 2.*bar2[1] + lonpar1[1]); gMC->Gspos("FLO1", 4, "FAIA",-24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 2, "FAIA", 24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 4, "FAIC",-24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 2, "FAIC", 24., ycoor, 0., 0, "MANY"); zcoor = (198.8 + 56.82)*0.5; gMC->Gspos("FLO2", 4, "FAIA",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 2, "FAIA", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 4, "FAIC",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 2, "FAIC", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 8, "FAIA",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 6, "FAIA", 24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 8, "FAIC",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 6, "FAIC", 24., ycoor, zcoor, 0, "MANY"); zcoor = (366.9 + 198.8)*0.5; gMC->Gspos("FLO3", 4, "FAIA",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 2, "FAIA", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 4, "FAIC",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 2, "FAIC", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 8, "FAIA",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 6, "FAIA", 24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 8, "FAIC",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 6, "FAIC", 24., ycoor, zcoor, 0, "MANY"); ycoor = ytub - (tubepar[1] + 2.*bar2[1] + lonpar1[1]); gMC->Gspos("FLO1", 3, "FAIA",-24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 1, "FAIA", 24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 3, "FAIC",-24., ycoor, 0., 0, "MANY"); gMC->Gspos("FLO1", 1, "FAIC", 24., ycoor, 0., 0, "MANY"); zcoor = (198.8 + 56.82)*0.5; gMC->Gspos("FLO2", 3, "FAIA",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 1, "FAIA", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 3, "FAIC",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 1, "FAIC", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 7, "FAIA",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 5, "FAIA", 24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 7, "FAIC",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO2", 5, "FAIC", 24., ycoor, zcoor, 0, "MANY"); zcoor = (366.9 + 198.8)*0.5; gMC->Gspos("FLO3", 3, "FAIA",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 1, "FAIA", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 3, "FAIC",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 1, "FAIC", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 7, "FAIA",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 5, "FAIA", 24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 7, "FAIC",-24., ycoor, zcoor, 0, "MANY"); gMC->Gspos("FLO3", 5, "FAIC", 24., ycoor, zcoor, 0, "MANY"); Float_t carpos[3] = {25. - xtof*0.5, (11.5 - (ytof*0.5 - fgkModuleCoverThickness))*0.5, 0.}; if (fTOFHoles) { for (Int_t sg= -1; sg< 2; sg+= 2) { carpos[2] = sg*zlenA*0.5; gMC->Gspos("FTLN", 5+4*sg, "FAIB", 0., yFLTN, 369.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+3*sg, "FAIB", 0., yFLTN, 366.9*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+2*sg, "FAIB", 0., yFLTN, 198.8*sg, 0, "MANY"); gMC->Gspos("FTLN", 5+sg, "FAIB", 0., yFLTN, 56.82*sg, 0, "MANY"); } ycoor = ytub + (tubepar[1] + 2.*bar2[1] + lonpar1[1]); zcoor = (198.8 + 56.82)*0.5; gMC->Gspos("FLO2", 2, "FAIB",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 1, "FAIB",-24., ycoor, zcoor, 0, "MANY"); zcoor = (366.9 + 198.8)*0.5; gMC->Gspos("FLO3", 2, "FAIB",-24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 1, "FAIB",-24., ycoor, zcoor, 0, "MANY"); ycoor = ytub - (tubepar[1] + 2.*bar2[1] + lonpar1[1]); zcoor = (198.8 + 56.82)*0.5; gMC->Gspos("FLO2", 4, "FAIB", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO2", 3, "FAIB", 24., ycoor, zcoor, 0, "MANY"); zcoor = (366.9 + 198.8)*0.5; gMC->Gspos("FLO3", 4, "FAIB", 24., ycoor,-zcoor, 0, "MANY"); gMC->Gspos("FLO3", 3, "FAIB", 24., ycoor, zcoor, 0, "MANY"); } Float_t barS[3] = {fgkBarS[0], fgkBarS[1], fgkBarS[2]}; gMC->Gsvolu("FBAS", "BOX ", idtmed[504], barS, 3); // Al Float_t barS1[3] = {fgkBarS1[0], fgkBarS1[1], fgkBarS1[2]}; gMC->Gsvolu("FBS1", "BOX ", idtmed[504], barS1, 3); // Al Float_t barS2[3] = {fgkBarS2[0], fgkBarS2[1], fgkBarS2[2]}; gMC->Gsvolu("FBS2", "BOX ", idtmed[504], barS2, 3); // Al Float_t ytubBis = carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - 2.*barS2[1] - tubepar[1]; ycoor = ytubBis; zcoor =-carpar[2] + barS[2]; gMC->Gspos("FBAS", 1, "FCA1",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAS", 2, "FCA1", 24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAS", 1, "FCA2",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBAS", 2, "FCA2", 24., ycoor, zcoor, 0, "ONLY"); zcoor =-carpar[2] + 2.*barS[2] + 2.*tubepar[1] + barS1[2]; gMC->Gspos("FBS1", 1, "FCA1",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS1", 2, "FCA1", 24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS1", 1, "FCA2",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS1", 2, "FCA2", 24., ycoor, zcoor, 0, "ONLY"); ycoor = ytubBis + (tubepar[1] + barS2[1]); zcoor =-carpar[2] + 2.*barS[2] + barS2[2]; gMC->Gspos("FBS2", 1, "FCA1",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 2, "FCA1", 24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 1, "FCA2",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 2, "FCA2", 24., ycoor, zcoor, 0, "ONLY"); ycoor = ytubBis - (tubepar[1] + barS2[1]); //zcoor =-carpar[2] + 2.*barS[2] + barS2[2]; gMC->Gspos("FBS2", 3, "FCA1",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 4, "FCA1", 24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 3, "FCA2",-24., ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FBS2", 4, "FCA2", 24., ycoor, zcoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::MakeSuperModuleServices(Float_t xtof, Float_t ytof, Float_t zlenA) const { // // Make signal cables (FCAB/L and FCBL/B volumes), // supemodule cover (FCOV volume) and wall (FSAW volume) // in FAIA/B/C volume containers. // Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[3]={0,0,0}; Float_t tubepar[3] = {0., 0.4, xtof*0.5 - fgkCBLw - fgkSawThickness}; Float_t al1[3] = {fgkAl1parameters[0], fgkAl1parameters[1], fgkAl1parameters[2]}; Float_t al3[3] = {fgkAl3parameters[0], fgkAl3parameters[1], fgkAl3parameters[2]}; Float_t feaRoof1[3] = {fgkRoof1parameters[0], fgkRoof1parameters[1], fgkRoof1parameters[2]}; //Float_t feaRoof2[3] = {fgkRoof2parameters[0], fgkRoof2parameters[1], fgkRoof2parameters[2]}; Float_t feaParam[3] = {fgkFEAparameters[0], fgkFEAparameters[1], fgkFEAparameters[2]}; // FEA cables definition Float_t cbpar[3] = {0., 0.5, (tubepar[2] - (fgkFEAwidth2 - fgkFEAwidth1/6.)*0.5)*0.5}; gMC->Gsvolu("FCAB", "TUBE", idtmed[510], cbpar, 3); // copper+alu Float_t cbparS[3] = {cbpar[0], cbpar[1], (tubepar[2] - (xtof*0.5 - 25. + (fgkFEAwidth1 - fgkFEAwidth1/6.)*0.5))*0.5}; gMC->Gsvolu("FCAL", "TUBE", idtmed[510], cbparS, 3); // copper+alu // rotation matrix AliMatrix(idrotm[0], 180., 90., 90., 90., 90., 0.); Float_t carpar[3] = {xtof*0.5 - fgkCBLw - fgkSawThickness, feaParam[1] + feaRoof1[1] + fgkRoof2parameters[1]*0.5, feaRoof1[2] + fgkBetweenLandMask*0.5 + al3[2]}; Float_t bar2[3] = {fgkBar2[0], fgkBar2[1], fgkBar2[2]}; Float_t ytub =-(ytof*0.5 - fgkModuleCoverThickness)*0.5 + carpar[1] + carpar[1] - 2.*fgkRoof2parameters[1]*0.5 - 2.*feaRoof1[1] - 2.*bar2[1] - tubepar[1]; // FEA cables positioning Float_t xcoor = (tubepar[2] + (fgkFEAwidth2 - fgkFEAwidth1/6.)*0.5)*0.5; Float_t ycoor = ytub - 3.; Float_t zcoor =-carpar[2] + (2.*feaRoof1[2] - 2.*al1[2] - 2.*feaParam[2] - cbpar[1]); gMC->Gspos("FCAB", 1, "FCA1",-xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAB", 2, "FCA1", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAB", 1, "FCA2",-xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAB", 2, "FCA2", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); xcoor = (tubepar[2] + (xtof*0.5 - 25. + (fgkFEAwidth1 - fgkFEAwidth1/6.)*0.5))*0.5; ycoor -= 2.*cbpar[1]; gMC->Gspos("FCAL", 1, "FCA1",-xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAL", 2, "FCA1", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAL", 1, "FCA2",-xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FCAL", 2, "FCA2", xcoor, ycoor, zcoor, idrotm[0], "ONLY"); // Cables and tubes on the side blocks // constants definition const Float_t kCBLl = zlenA*0.5; // length of block const Float_t kCBLlh = zlenA*0.5 - fgkInterCentrModBorder2; // length of block in case of holes //const Float_t fgkCBLw = 13.5; // width of block //const Float_t fgkCBLh1 = 2.; // min. height of block //const Float_t fgkCBLh2 = 12.3; // max. height of block //const Float_t fgkSawThickness = 1.; // Al wall thickness // lateral cable and tube volume definition Float_t tgal = (fgkCBLh2 - fgkCBLh1)/(2.*kCBLl); Float_t cblpar[11]; cblpar[0] = fgkCBLw *0.5; cblpar[1] = 0.; cblpar[2] = 0.; cblpar[3] = kCBLl *0.5; cblpar[4] = fgkCBLh1 *0.5; cblpar[5] = fgkCBLh2 *0.5; cblpar[6] = TMath::ATan(tgal)*kRaddeg; cblpar[7] = kCBLl *0.5; cblpar[8] = fgkCBLh1 *0.5; cblpar[9] = fgkCBLh2 *0.5; cblpar[10]= cblpar[6]; gMC->Gsvolu("FCBL", "TRAP", idtmed[511], cblpar, 11); // cables and tubes mix // Side Al Walls definition Float_t sawpar[3] = {fgkSawThickness*0.5, fgkCBLh2*0.5, kCBLl}; gMC->Gsvolu("FSAW", "BOX ", idtmed[504], sawpar, 3); // Al AliMatrix(idrotm[1], 90., 90., 180., 0., 90., 180.); AliMatrix(idrotm[2], 90., 90., 0., 0., 90., 0.); // lateral cable and tube volume positioning xcoor = (xtof - fgkCBLw)*0.5 - 2.*sawpar[0]; ycoor = (fgkCBLh1 + fgkCBLh2)*0.25 - (ytof*0.5 - fgkModuleCoverThickness)*0.5; zcoor = kCBLl*0.5; gMC->Gspos("FCBL", 1, "FAIA", -xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBL", 2, "FAIA", xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBL", 3, "FAIA", -xcoor, ycoor, zcoor, idrotm[2], "ONLY"); gMC->Gspos("FCBL", 4, "FAIA", xcoor, ycoor, zcoor, idrotm[2], "ONLY"); gMC->Gspos("FCBL", 1, "FAIC", -xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBL", 2, "FAIC", xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBL", 3, "FAIC", -xcoor, ycoor, zcoor, idrotm[2], "ONLY"); gMC->Gspos("FCBL", 4, "FAIC", xcoor, ycoor, zcoor, idrotm[2], "ONLY"); if (fTOFHoles) { cblpar[3] = kCBLlh *0.5; cblpar[5] = fgkCBLh1*0.5 + kCBLlh*tgal; cblpar[7] = kCBLlh *0.5; cblpar[9] = cblpar[5]; gMC->Gsvolu("FCBB", "TRAP", idtmed[511], cblpar, 11); // cables and tubes mix xcoor = (xtof - fgkCBLw)*0.5 - 2.*sawpar[0]; ycoor = (fgkCBLh1 + 2.*cblpar[5])*0.25 - (ytof*0.5 - fgkModuleCoverThickness)*0.5; zcoor = kCBLl-kCBLlh*0.5; gMC->Gspos("FCBB", 1, "FAIB", -xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBB", 2, "FAIB", xcoor, ycoor, -zcoor, idrotm[1], "ONLY"); gMC->Gspos("FCBB", 3, "FAIB", -xcoor, ycoor, zcoor, idrotm[2], "ONLY"); gMC->Gspos("FCBB", 4, "FAIB", xcoor, ycoor, zcoor, idrotm[2], "ONLY"); } // lateral cable and tube volume positioning xcoor = xtof*0.5 - sawpar[0]; ycoor = (fgkCBLh2 - ytof*0.5 + fgkModuleCoverThickness)*0.5; zcoor = 0.; gMC->Gspos("FSAW", 1, "FAIA", -xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FSAW", 2, "FAIA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FSAW", 1, "FAIC", -xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FSAW", 2, "FAIC", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) { xcoor = xtof*0.5 - sawpar[0]; ycoor = (fgkCBLh2 - ytof*0.5 + fgkModuleCoverThickness)*0.5; gMC->Gspos("FSAW", 1, "FAIB", -xcoor, ycoor, 0., 0, "ONLY"); gMC->Gspos("FSAW", 2, "FAIB", xcoor, ycoor, 0., 0, "ONLY"); } // TOF Supermodule cover definition and positioning Float_t covpar[3] = {xtof*0.5, 0.075, zlenA*0.5}; gMC->Gsvolu("FCOV", "BOX ", idtmed[504], covpar, 3); // Al if (fTOFHoles) { covpar[2] = (zlenA*0.5 - fgkInterCentrModBorder2)*0.5; gMC->Gsvolu("FCOB", "BOX ", idtmed[504], covpar, 3); // Al covpar[2] = fgkInterCentrModBorder2; gMC->Gsvolu("FCOP", "BOX ", idtmed[513], covpar, 3); // Plastic (CH2) } xcoor = 0.; ycoor = (ytof*0.5 - fgkModuleCoverThickness)*0.5 - covpar[1]; zcoor = 0.; gMC->Gspos("FCOV", 0, "FAIA", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FCOV", 0, "FAIC", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) { zcoor = (zlenA*0.5 + fgkInterCentrModBorder2)*0.5; gMC->Gspos("FCOB", 1, "FAIB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos("FCOB", 2, "FAIB", xcoor, ycoor, -zcoor, 0, "ONLY"); zcoor = 0.; gMC->Gspos("FCOP", 0, "FAIB", xcoor, ycoor, zcoor, 0, "ONLY"); } } //_____________________________________________________________________________ void AliTOFv6T0::MakeReadoutCrates(Float_t ytof) const { // Services Volumes // Empty crate weight: 50 Kg, electronics cards + cables ~ 52 Kg. // Per each side (A and C) the total weight is: 2x102 ~ 204 Kg. // ... + weight of the connection pannel for the steel cooling system (Cr 18%, Ni 12%, Fe 70%) // + other remaining elements + various supports // Each FEA card weight + all supports // (including all bolts and not including the cable connectors) // 353.1 g. // Per each strip there are 4 FEA cards, then // the total weight of the front-end electonics section is: 353.1 g x 4 = 1412.4 g. // Services Volumes // Empty crate weight: 50 Kg, electronics cards + cables ~ 52 Kg. // Per each side (A and C) the total weight is: 2x102 ~ 204 Kg. // ... + weight of the connection pannel for the steel cooling system (Cr 18%, Ni 12%, Fe 70%) // + other remaining elements + various supports // Each FEA card weight + all supports // (including all bolts and not including the cable connectors) // 353.1 g. // Per each strip there are 4 FEA cards, then // the total weight of the front-end electonics section is: 353.1 g x 4 = 1412.4 g. // Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[18]; for (Int_t ii=0; ii<18; ii++) idrotm[ii]=0; // volume definition Float_t serpar[3] = {29.*0.5, 121.*0.5, 90.*0.5}; gMC->Gsvolu("FTOS", "BOX ", idtmed[514], serpar, 3); // Al + Cu + steel Float_t xcoor, ycoor, zcoor; zcoor = (118.-90.)*0.5; Float_t phi = -10., ra = fTOFGeometry->Rmin() + ytof*0.5; for (Int_t i = 0; i < fTOFGeometry->NSectors(); i++) { phi += 20.; xcoor = ra * TMath::Cos(phi * kDegrad); ycoor = ra * TMath::Sin(phi * kDegrad); AliMatrix(idrotm[i], 90., phi, 90., phi + 270., 0., 0.); gMC->Gspos("FTOS", i, "BFMO", xcoor, ycoor, zcoor, idrotm[i], "ONLY"); } zcoor = (90. - 223.)*0.5; gMC->Gspos("FTOS", 1, "BBCE", ra, -3., zcoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::CreateMaterials() { // // Define materials for the Time Of Flight // //AliTOF::CreateMaterials(); AliMagF *magneticField = (AliMagF*)((AliMagF*)TGeoGlobalMagField::Instance()->GetField()); Int_t isxfld = magneticField->Integ(); Float_t sxmgmx = magneticField->Max(); //--- Quartz (SiO2) --- Float_t aq[2] = { 28.0855,15.9994}; Float_t zq[2] = { 14.,8. }; Float_t wq[2] = { 1.,2. }; Float_t dq = 2.7; // (+5.9%) Int_t nq = -2; // --- Nomex (C14H22O2N2) --- Float_t anox[4] = {12.011,1.00794,15.9994,14.00674}; Float_t znox[4] = { 6., 1., 8., 7.}; Float_t wnox[4] = {14., 22., 2., 2.}; //Float_t dnox = 0.048; //old value Float_t dnox = 0.22; // (x 4.6) Int_t nnox = -4; // --- G10 {Si, O, C, H, O} --- Float_t we[7], na[7]; Float_t ag10[5] = {28.0855,15.9994,12.011,1.00794,15.9994}; Float_t zg10[5] = {14., 8., 6., 1., 8.}; Float_t wmatg10[5]; Int_t nlmatg10 = 5; na[0]= 1. , na[1]= 2. , na[2]= 0. , na[3]= 0. , na[4]= 0.; MaterialMixer(we,ag10,na,5); wmatg10[0]= we[0]*0.6; wmatg10[1]= we[1]*0.6; na[0]= 0. , na[1]= 0. , na[2]= 14. , na[3]= 20. , na[4]= 3.; MaterialMixer(we,ag10,na,5); wmatg10[2]= we[2]*0.4; wmatg10[3]= we[3]*0.4; wmatg10[4]= we[4]*0.4; AliDebug(1,Form("wg10 %f %f %f %f %f", wmatg10[0], wmatg10[1], wmatg10[2], wmatg10[3], wmatg10[4])); //Float_t densg10 = 1.7; //old value Float_t densg10 = 2.0; // (+17.8%) // --- Water --- Float_t awa[2] = { 1.00794, 15.9994 }; Float_t zwa[2] = { 1., 8. }; Float_t wwa[2] = { 2., 1. }; Float_t dwa = 1.0; Int_t nwa = -2; // --- Air --- Float_t aAir[4]={12.011,14.00674,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; // --- Fibre Glass --- Float_t afg[4] = {28.0855,15.9994,12.011,1.00794}; Float_t zfg[4] = {14., 8., 6., 1.}; Float_t wfg[4] = {0.12906,0.29405,0.51502,0.06187}; //Float_t dfg = 1.111; Float_t dfg = 2.05; // (x1.845) Int_t nfg = 4; // --- Freon C2F4H2 + SF6 --- Float_t afre[4] = {12.011,1.00794,18.9984032,32.0065}; Float_t zfre[4] = { 6., 1., 9., 16.}; Float_t wfre[4] = {0.21250,0.01787,0.74827,0.021355}; Float_t densfre = 0.00375; Int_t nfre = 4; // --- Cables and tubes {Al, Cu} --- Float_t acbt[2] = {26.981539,63.546}; Float_t zcbt[2] = {13., 29.}; Float_t wcbt[2] = {0.407,0.593}; Float_t decbt = 0.68; // --- Cable {CH2, Al, Cu} --- Float_t asc[4] = {12.011, 1.00794, 26.981539,63.546}; Float_t zsc[4] = { 6., 1., 13., 29.}; Float_t wsc[4]; for (Int_t ii=0; ii<4; ii++) wsc[ii]=0.; Float_t wDummy[4], nDummy[4]; for (Int_t ii=0; ii<4; ii++) wDummy[ii]=0.; for (Int_t ii=0; ii<4; ii++) nDummy[ii]=0.; nDummy[0] = 1.; nDummy[1] = 2.; MaterialMixer(wDummy,asc,nDummy,2); wsc[0] = 0.4375*wDummy[0]; wsc[1] = 0.4375*wDummy[1]; wsc[2] = 0.3244; wsc[3] = 0.2381; Float_t dsc = 1.223; // --- Crates boxes {Al, Cu, Fe, Cr, Ni} --- Float_t acra[5]= {26.981539,63.546,55.845,51.9961,58.6934}; Float_t zcra[5]= {13., 29., 26., 24., 28.}; Float_t wcra[5]= {0.7,0.2,0.07,0.018,0.012}; Float_t dcra = 0.77; // --- Polietilene CH2 --- Float_t aPlastic[2] = {12.011, 1.00794}; Float_t zPlastic[2] = { 6., 1.}; Float_t wPlastic[2] = { 1., 2.}; //Float_t dPlastic = 0.92; // PDB value Float_t dPlastic = 0.93; // (~+1.1%) Int_t nwPlastic = -2; AliMixture ( 0, "Air$", aAir, zAir, dAir, 4, wAir); AliMixture ( 1, "Nomex$", anox, znox, dnox, nnox, wnox); AliMixture ( 2, "G10$", ag10, zg10, densg10, nlmatg10, wmatg10); AliMixture ( 3, "fibre glass$", afg, zfg, dfg, nfg, wfg); AliMaterial( 4, "Al $", 26.981539, 13., 2.7, -8.9, 999.); Float_t factor = 0.4/1.5*2./3.; AliMaterial( 5, "Al honeycomb$", 26.981539, 13., 2.7*factor, -8.9/factor, 999.); AliMixture ( 6, "Freon$", afre, zfre, densfre, nfre, wfre); AliMixture ( 7, "Glass$", aq, zq, dq, nq, wq); AliMixture ( 8, "Water$", awa, zwa, dwa, nwa, wwa); AliMixture ( 9, "cables+tubes$", acbt, zcbt, decbt, 2, wcbt); AliMaterial(10, "Cu $", 63.546, 29., 8.96, -1.43, 999.); AliMixture (11, "cable$", asc, zsc, dsc, 4, wsc); AliMixture (12, "Al+Cu+steel$", acra, zcra, dcra, 5, wcra); AliMixture (13, "plastic$", aPlastic, zPlastic, dPlastic, nwPlastic, wPlastic); Float_t factorHoles = 1./36.5; AliMaterial(14, "Al honey for holes$", 26.981539, 13., 2.7*factorHoles, -8.9/factorHoles, 999.); Float_t epsil, stmin, deemax, stemax; // STD data // EPSIL = 0.1 ! Tracking precision, // STEMAX = 0.1 ! Maximum displacement for multiple scattering // DEEMAX = 0.1 ! Maximum fractional energy loss, DLS // STMIN = 0.1 // TOF data epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scattering deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; AliMedium( 1,"Air$", 0, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 2,"Nomex$", 1, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 3,"G10$", 2, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 4,"fibre glass$", 3, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 5,"Al Frame$", 4, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 6,"honeycomb$", 5, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 7,"Fre$", 6, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 8,"Cu-S$", 10, 1, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 9,"Glass$", 7, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(10,"Water$", 8, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(11,"Cable$", 11, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(12,"Cables+Tubes$", 9, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(13,"Copper$", 10, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(14,"Plastic$", 13, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(15,"Crates$", 12, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(16,"honey_holes$", 14, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliTOFv6T0::Init() { // // Initialise the detector after the geometry has been defined // AliDebug(1, "**************************************" " TOF " "**************************************"); AliDebug(1, " Version 4 of TOF initialing, " "symmetric TOF - Full Coverage version"); AliTOF::Init(); fIdFTOA = gMC->VolId("FTOA"); if (fTOFHoles) { fIdFTOB = gMC->VolId("FTOB"); fIdFTOC = gMC->VolId("FTOC"); } fIdFLTA = gMC->VolId("FLTA"); if (fTOFHoles) { fIdFLTB = gMC->VolId("FLTB"); fIdFLTC = gMC->VolId("FLTC"); } AliDebug(1, "**************************************" " TOF " "**************************************"); } //_____________________________________________________________________________ void AliTOFv6T0::StepManager() { // // Procedure called at each step in the Time Of Flight // TLorentzVector mom, pos; Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[14]; Int_t vol[5]; Int_t sector, plate, padx, padz, strip; Int_t copy, padzid, padxid, stripid, i; Int_t *idtmed = fIdtmed->GetArray()-499; Float_t incidenceAngle; const char* volpath; Int_t index = 0; if( gMC->IsTrackEntering() && gMC->TrackCharge() //&& gMC->GetMedium()==idtmed[507] && gMC->CurrentMedium()==idtmed[507] && gMC->CurrentVolID(copy)==fIdSens ) { AliMC *mcApplication = (AliMC*)gAlice->GetMCApp(); AddTrackReference(mcApplication->GetCurrentTrackNumber(), AliTrackReference::kTOF); //AddTrackReference(mcApplication->GetCurrentTrackNumber()); // getting information about hit volumes padzid=gMC->CurrentVolOffID(1,copy); padz=copy; padz--; padxid=gMC->CurrentVolOffID(0,copy); padx=copy; padx--; stripid=gMC->CurrentVolOffID(4,copy); strip=copy; strip--; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); Double_t normMom=1./mom.Rho(); // getting the coordinates in pad ref system xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); pm[0] = (Float_t)mom.X()*normMom; pm[1] = (Float_t)mom.Y()*normMom; pm[2] = (Float_t)mom.Z()*normMom; gMC->Gmtod(xm,xpad,1); // from MRS to DRS: coordinates convertion gMC->Gmtod(pm,ppad,2); // from MRS to DRS: direction cosinus convertion if (TMath::Abs(ppad[1])>1) { AliWarning("Abs(ppad) > 1"); ppad[1]=TMath::Sign((Float_t)1,ppad[1]); } incidenceAngle = TMath::ACos(ppad[1])*kRaddeg; plate = -1; if (strip < fTOFGeometry->NStripC()) { plate = 0; //strip = strip; } else if (strip >= fTOFGeometry->NStripC() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB()) { plate = 1; strip = strip - fTOFGeometry->NStripC(); } else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA()) { plate = 2; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB(); } else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() + fTOFGeometry->NStripB()) { plate = 3; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA(); } else { plate = 4; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA() - fTOFGeometry->NStripB(); } volpath=gMC->CurrentVolOffName(7); index=atoi(&volpath[4]); sector=-1; sector=index; //Old 6h convention // if(index<5){ // sector=index+13; // } // else{ // sector=index-5; // } for(i=0;i<3;++i) { hits[i] = pos[i]; hits[i+3] = pm[i]; } hits[6] = mom.Rho(); hits[7] = pos[3]; hits[8] = xpad[0]; hits[9] = xpad[1]; hits[10]= xpad[2]; hits[11]= incidenceAngle; hits[12]= gMC->Edep(); hits[13]= gMC->TrackLength(); vol[0]= sector; vol[1]= plate; vol[2]= strip; vol[3]= padx; vol[4]= padz; AddT0Hit(mcApplication->GetCurrentTrackNumber(),vol, hits); //AddT0Hit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits); } } //------------------------------------------------------------------- void AliTOFv6T0::MaterialMixer(Float_t * p, const Float_t * const a, const Float_t * const m, Int_t n) const { // a[] atomic weights vector (in) // (atoms present in more compound appear separately) // m[] number of corresponding atoms in the compound (in) Float_t t = 0.; for (Int_t i = 0; i < n; ++i) { p[i] = a[i]*m[i]; t += p[i]; } for (Int_t i = 0; i < n; ++i) { p[i] = p[i]/t; //AliDebug(1,Form((\n weight[%i] = %f (,i,p[i])); } }