/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.4 2007/05/29 16:51:05 decaro Update of the front-end electronics and cooling system description Revision 1.3.2 2007/05/29 decaro FEA+cooling zone description: update FEA+cooling orientation (side A/ side C) -> correction Revision 1.3.1 2007/05/24 decaro Change the FEA+cooling zone description: - FCA1/FCA2, air boxes, contain: FFEA volume, G10 box, FAL1/FAL2/FAL3 volumes, aluminium boxes; - FRO1/FRO2/FRO3/FRO4/FBAR, aluminum boxes; - changed FTUB positions; Revision 1.3 2007/05/04 14:05:42 decaro Ineffective comment cleanup Revision 1.2 2007/05/04 12:59:22 arcelli Change the TOF SM paths for misalignment (one layer up) Revision 1.1 2007/05/02 17:32:58 decaro TOF geometry description as installed (G. Cara Romeo, A. De Caro) Revision 0.1 2007 March G. Cara Romeo and A. De Caro Implemented a more realistic TOF geometry description, in terms of: - material badget, - services and front end electronics description, - TOF crate readout modules (added volume FTOS in ALIC_1/BBMO_1/BBCE_%i -for i=1,...,18-, and in ALIC_1/BFMO_%i -for i=19,...,36- volumes) As the 5th version in terms of geometrical positioning of volumes. */ /////////////////////////////////////////////////////////////////////////////// // // // This class contains the functions for version 6 of the Time Of Flight // // detector. // // // // VERSION WITH 6 MODULES AND TILTED STRIPS // // // // FULL COVERAGE VERSION + OPTION for PHOS holes // // // // // //Begin_Html // /* // // */ // //End_Html // // // /////////////////////////////////////////////////////////////////////////////// #include "TBRIK.h" #include "TGeometry.h" #include "TLorentzVector.h" #include "TNode.h" #include "TVirtualMC.h" #include "TGeoManager.h" #include "AliConst.h" #include "AliLog.h" #include "AliMagF.h" #include "AliMC.h" #include "AliRun.h" #include "AliTrackReference.h" #include "AliTOFGeometry.h" #include "AliTOFGeometryV5.h" #include "AliTOFv6T0.h" extern TDirectory *gDirectory; extern TVirtualMC *gMC; extern TGeoManager *gGeoManager; extern AliRun *gAlice; ClassImp(AliTOFv6T0) //_____________________________________________________________________________ AliTOFv6T0::AliTOFv6T0(): fIdFTOA(-1), fIdFTOB(-1), fIdFTOC(-1), fIdFLTA(-1), fIdFLTB(-1), fIdFLTC(-1), fTOFHoles(kFALSE) { // // Default constructor // } //_____________________________________________________________________________ AliTOFv6T0::AliTOFv6T0(const char *name, const char *title): AliTOF(name,title,"tzero"), fIdFTOA(-1), fIdFTOB(-1), fIdFTOC(-1), fIdFLTA(-1), fIdFLTB(-1), fIdFLTC(-1), fTOFHoles(kFALSE) { // // Standard constructor // // // Check that FRAME is there otherwise we have no place where to // put TOF AliModule* frame = (AliModule*)gAlice->GetModule("FRAME"); if(!frame) { AliFatal("TOF needs FRAME to be present"); } else{ if (fTOFGeometry) delete fTOFGeometry; fTOFGeometry = new AliTOFGeometryV5(); if(frame->IsVersion()==1) { AliDebug(1,Form("Frame version %d", frame->IsVersion())); AliDebug(1,"Full Coverage for TOF"); fTOFHoles=false;} else { AliDebug(1,Form("Frame version %d", frame->IsVersion())); AliDebug(1,"TOF with Holes for PHOS"); fTOFHoles=true;} } fTOFGeometry->SetHoles(fTOFHoles); //AliTOF::fTOFGeometry = fTOFGeometry; // Save the geometry TDirectory* saveDir = gDirectory; gAlice->GetRunLoader()->CdGAFile(); fTOFGeometry->Write("TOFgeometry"); saveDir->cd(); } //_____________________________________________________________________________ void AliTOFv6T0::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // TString volPath; TString symName; TString vpL0 = "ALIC_1/B077_1/BSEGMO"; TString vpL1 = "_1/BTOF"; TString vpL2 = "_1"; TString vpL3 = "/FTOA_0"; TString vpL4 = "/FLTA_0/FSTR_"; TString snSM = "TOF/sm"; TString snSTRIP = "/strip"; Int_t nSectors=fTOFGeometry->NSectors(); Int_t nStrips =fTOFGeometry->NStripA()+ 2*fTOFGeometry->NStripB()+ 2*fTOFGeometry->NStripC(); // // The TOF MRPC Strips // The symbolic names are: TOF/sm00/strip01 // ... // TOF/sm17/strip91 Int_t imod=0; for (Int_t isect = 0; isect < nSectors; isect++) { for (Int_t istr = 1; istr <= nStrips; istr++) { volPath = vpL0; volPath += isect; volPath += vpL1; volPath += isect; volPath += vpL2; volPath += vpL3; volPath += vpL4; volPath += istr; symName = snSM; symName += Form("%02d",isect); symName += snSTRIP; symName += Form("%02d",istr); AliDebug(2,"--------------------------------------------"); AliDebug(2,Form("Alignable object %d", imod)); AliDebug(2,Form("volPath=%s\n",volPath.Data())); AliDebug(2,Form("symName=%s\n",symName.Data())); AliDebug(2,"--------------------------------------------"); gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data()); imod++; } } // // The TOF supermodules // The symbolic names are: TOF/sm00 // ... // TOF/sm17 // for (Int_t isect = 0; isect < nSectors; isect++) { volPath = vpL0; volPath += isect; volPath += vpL1; volPath += isect; volPath += vpL2; symName = snSM; symName += Form("%02d",isect); AliDebug(2,"--------------------------------------------"); AliDebug(2,Form("Alignable object %d", isect+imod)); AliDebug(2,Form("volPath=%s\n",volPath.Data())); AliDebug(2,Form("symName=%s\n",symName.Data())); AliDebug(2,"--------------------------------------------"); gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data()); } } //____________________________________________________________________________ void AliTOFv6T0::BuildGeometry() { // // Build TOF ROOT geometry for the ALICE event display // TNode *node, *top; const int kColorTOF = 27; TGeometry *globalGeometry = (TGeometry*)gAlice->GetGeometry(); // Find top TNODE top = globalGeometry->GetNode("alice"); // Position the different copies const Float_t krTof =(fTOFGeometry->Rmax()+fTOFGeometry->Rmin())/2.; const Float_t khTof = fTOFGeometry->Rmax()-fTOFGeometry->Rmin(); const Int_t kNTof = fTOFGeometry->NSectors(); const Float_t kangle = k2PI/kNTof; const Float_t kInterCentrModBorder1 = 49.5; const Float_t kInterCentrModBorder2 = 57.5; Float_t ang; // define offset for nodes Float_t zOffsetB = (fTOFGeometry->ZlenA()*0.5 + (kInterCentrModBorder1+kInterCentrModBorder2)*0.5)*0.5; Float_t zOffsetA = 0.; // Define TOF basic volume char nodeName0[16], nodeName1[16], nodeName2[16]; char nodeName3[16], nodeName4[16], rotMatNum[16]; if (fTOFHoles) { new TBRIK("S_TOF_B","TOF box","void", fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenB()*0.5); new TBRIK("S_TOF_C","TOF box","void", fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenB()*0.5); } new TBRIK("S_TOF_A","TOF box","void", fTOFGeometry->StripLength()*0.5, khTof*0.5, fTOFGeometry->ZlenA()*0.5); for (Int_t nodeNum=1;nodeNum9) { sprintf(rotMatNum,"rot5%i",nodeNum); sprintf(nodeName0,"FTO0%i",nodeNum); sprintf(nodeName1,"FTO1%i",nodeNum); sprintf(nodeName2,"FTO2%i",nodeNum); sprintf(nodeName3,"FTO3%i",nodeNum); sprintf(nodeName4,"FTO4%i",nodeNum); } new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0); ang = (4.5-nodeNum) * kangle; if (fTOFHoles) { top->cd(); node = new TNode(nodeName2,nodeName2,"S_TOF_B", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang), zOffsetB,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); top->cd(); node = new TNode(nodeName3,nodeName3,"S_TOF_C", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang),-zOffsetB,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); } top->cd(); node = new TNode(nodeName4,nodeName4,"S_TOF_A", krTof*TMath::Cos(ang), krTof*TMath::Sin(ang), zOffsetA,rotMatNum); node->SetLineColor(kColorTOF); fNodes->Add(node); } // end loop on nodeNum } //_____________________________________________________________________________ void AliTOFv6T0::CreateGeometry() { // // Create geometry for Time Of Flight version 0 // //Begin_Html /* */ //End_Html // // Creates common geometry // AliTOF::CreateGeometry(); } //_____________________________________________________________________________ void AliTOFv6T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenA) { // // Definition of the Time Of Fligh Resistive Plate Chambers // const Float_t kPi = TMath::Pi(); const Float_t kInterCentrModBorder1 = 49.5; const Float_t kInterCentrModBorder2 = 57.5; const Float_t kExterInterModBorder1 = 196.0; const Float_t kExterInterModBorder2 = 203.5; const Float_t kLengthExInModBorder = 4.7; const Float_t kLengthInCeModBorder = 7.0; // module wall thickness (cm) const Float_t kModuleWallThickness = 0.33; // honeycomb layer between strips and cards (cm) const Float_t kHoneycombLayerThickness = 2.; AliDebug(1, "************************* TOF geometry **************************"); AliDebug(1,Form(" xtof %d", xtof)); AliDebug(1,Form(" ytof %d", ytof)); AliDebug(1,Form(" zlenA %d", zlenA)); AliDebug(2,Form(" zlenA*0.5 = %d", zlenA*0.5)); // Definition of the of fibre glass modules (FTOA, FTOB and FTOC) Float_t xcoor, ycoor, zcoor; Float_t par[3]; Int_t *idtmed = fIdtmed->GetArray()-499; Int_t idrotm[100]; par[0] = xtof * 0.5; par[1] = ytof * 0.25; par[2] = zlenA * 0.5; gMC->Gsvolu("FTOA", "BOX ", idtmed[503], par, 3); // fibre glass if (fTOFHoles) { par[0] = xtof * 0.5; par[1] = ytof * 0.25; par[2] = (zlenA*0.5 - kInterCentrModBorder1)*0.5; gMC->Gsvolu("FTOB", "BOX ", idtmed[503], par, 3); // fibre glass gMC->Gsvolu("FTOC", "BOX ", idtmed[503], par, 3); // fibre glass } // New supermodule card section description // 2 cm honeycomb layer between strips and cards par[0] = xtof*0.5 + 2.; par[1] = kHoneycombLayerThickness*0.5; par[2] = zlenA*0.5 + 2.; gMC->Gsvolu("FPEA", "BOX ", idtmed[506], par, 3); // Al + Cu honeycomb if (fTOFHoles) { //par[0] = xtof*0.5 + 2.; //par[1] = kHoneycombLayerThickness*0.5; par[2] = (zlenA*0.5 - kInterCentrModBorder1)*0.5 + 2.; gMC->Gsvolu("FPEB", "BOX ", idtmed[506], par, 3); // Al + Cu honeycomb } // Definition of the air card containers (FAIA and FAIB) par[0] = xtof*0.5; par[1] = (ytof*0.5 - kHoneycombLayerThickness)*0.5; par[2] = zlenA*0.5; gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air if (fTOFHoles) gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air // Positioning of fibre glass modules (FTOA, FTOB and FTOC) and // card containers (FPEA, FAIA and FAIB) //AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,-90.); AliMatrix(idrotm[0], 90., 0., 0., 0., 90.,270.); xcoor = 0.; for(Int_t isec=0; isecNSectors(); isec++){ if(fTOFSectors[isec]==-1)continue; char name[16]; sprintf(name, "BTOF%d",isec); if (fTOFHoles && (isec==11||isec==12)) { //if (fTOFHoles && (isec==16||isec==17)) { \\Old 6h convention //xcoor = 0.; ycoor = (zlenA*0.5 + kInterCentrModBorder1)*0.5; zcoor = -ytof * 0.25; gMC->Gspos("FTOB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FTOC", 0, name, xcoor,-ycoor, zcoor, idrotm[0], "ONLY"); //xcoor = 0.; //ycoor = (zlenA*0.5 + kInterCentrModBorder1)*0.5; zcoor = kHoneycombLayerThickness*0.5; gMC->Gspos("FPEB", 1, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); gMC->Gspos("FPEB", 2, name, xcoor,-ycoor, zcoor, idrotm[0], "ONLY"); //xcoor = 0.; ycoor = 0.; zcoor = kHoneycombLayerThickness + (ytof*0.5 - kHoneycombLayerThickness)*0.5; gMC->Gspos("FAIB", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); } else { //xcoor = 0.; ycoor = 0.; zcoor = -ytof * 0.25; gMC->Gspos("FTOA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); //xcoor = 0.; //ycoor = 0.; zcoor = kHoneycombLayerThickness*0.5; gMC->Gspos("FPEA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); //xcoor = 0.; //ycoor = 0.; zcoor = kHoneycombLayerThickness + (ytof*0.5 - kHoneycombLayerThickness)*0.5; gMC->Gspos("FAIA", 0, name, xcoor, ycoor, zcoor, idrotm[0], "ONLY"); } } // Definition and positioning // of the not sensitive volumes with Insensitive Freon (FLTA, FLTB and FLTC) Float_t xFLT, yFLT, zFLTA; xFLT = xtof - kModuleWallThickness*2.; yFLT = ytof*0.5 - kModuleWallThickness; zFLTA = zlenA - kModuleWallThickness*2.; par[0] = xFLT*0.5; par[1] = yFLT*0.5; par[2] = zFLTA*0.5; gMC->Gsvolu("FLTA", "BOX ", idtmed[507], par, 3); // Freon mix xcoor = 0.; ycoor = kModuleWallThickness*0.5; zcoor = 0.; gMC->Gspos ("FLTA", 0, "FTOA", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) { par[2] = (zlenA*0.5 - kInterCentrModBorder1 - kModuleWallThickness)*0.5; gMC->Gsvolu("FLTB", "BOX ", idtmed[507], par, 3); // Freon mix gMC->Gsvolu("FLTC", "BOX ", idtmed[507], par, 3); // Freon mix //xcoor = 0.; //ycoor = kModuleWallThickness*0.5; //zcoor = 0.; gMC->Gspos ("FLTB", 0, "FTOB", xcoor, ycoor, zcoor, 0, "ONLY"); gMC->Gspos ("FLTC", 0, "FTOC", xcoor, ycoor, zcoor, 0, "ONLY"); } Float_t alpha, tgal, beta, tgbe, trpa[11]; // Definition and positioning // of the fibre glass walls between central and intermediate modules (FWZ1 and FWZ2) tgal = (yFLT - 2.*kLengthInCeModBorder)/(kInterCentrModBorder2 - kInterCentrModBorder1); alpha = TMath::ATan(tgal); beta = (kPi*0.5 - alpha)*0.5; tgbe = TMath::Tan(beta); trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = kModuleWallThickness; trpa[4] = (kLengthInCeModBorder - kModuleWallThickness*tgbe)*0.5; trpa[5] = (kLengthInCeModBorder + kModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = kModuleWallThickness; trpa[8] = (kLengthInCeModBorder - kModuleWallThickness*tgbe)*0.5; trpa[9] = (kLengthInCeModBorder + kModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZ1","TRAP", idtmed[503], trpa, 11); // fibre glass AliMatrix (idrotm[1],90., 90.,180.,0.,90.,180.); AliMatrix (idrotm[4],90., 90., 0.,0.,90., 0.); xcoor = 0.; ycoor = -(yFLT - kLengthInCeModBorder)*0.5; zcoor = kInterCentrModBorder1; gMC->Gspos("FWZ1", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[1],"ONLY"); gMC->Gspos("FWZ1", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[4],"ONLY"); AliMatrix (idrotm[2],90.,270., 0.,0.,90.,180.); AliMatrix (idrotm[5],90.,270.,180.,0.,90., 0.); xcoor = 0.; ycoor = (yFLT - kLengthInCeModBorder)*0.5; zcoor = kInterCentrModBorder2; gMC->Gspos("FWZ1", 3,"FLTA", xcoor, ycoor, zcoor,idrotm[2],"ONLY"); gMC->Gspos("FWZ1", 4,"FLTA", xcoor, ycoor,-zcoor,idrotm[5],"ONLY"); trpa[0] = 0.5*(kInterCentrModBorder2 - kInterCentrModBorder1)/TMath::Cos(alpha); trpa[1] = kModuleWallThickness; trpa[2] = xFLT*0.5; trpa[3] = -beta*kRaddeg; trpa[4] = 0.; trpa[5] = 0.; gMC->Gsvolu("FWZ2","PARA", idtmed[503], trpa, 6); // fibre glass AliMatrix (idrotm[3], alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.); AliMatrix (idrotm[6],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90., 0.); xcoor = 0.; ycoor = 0.; zcoor = (kInterCentrModBorder2 + kInterCentrModBorder1)*0.5; gMC->Gspos("FWZ2", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[3],"ONLY"); gMC->Gspos("FWZ2", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[6],"ONLY"); // Definition and positioning // of the fibre glass walls between intermediate and lateral modules (FWZ3 and FWZ4) tgal = (yFLT - 2.*kLengthExInModBorder)/(kExterInterModBorder2 - kExterInterModBorder1); alpha = TMath::ATan(tgal); beta = (kPi*0.5 - alpha)*0.5; tgbe = TMath::Tan(beta); trpa[0] = xFLT*0.5; trpa[1] = 0.; trpa[2] = 0.; trpa[3] = kModuleWallThickness; trpa[4] = (kLengthExInModBorder - kModuleWallThickness*tgbe)*0.5; trpa[5] = (kLengthExInModBorder + kModuleWallThickness*tgbe)*0.5; trpa[6] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; trpa[7] = kModuleWallThickness; trpa[8] = (kLengthExInModBorder - kModuleWallThickness*tgbe)*0.5; trpa[9] = (kLengthExInModBorder + kModuleWallThickness*tgbe)*0.5; trpa[10] = TMath::ATan(tgbe*0.5)*kRaddeg; //TMath::ATan((trpa[5] - trpa[4])/(2.*trpa[3]))*kRaddeg; gMC->Gsvolu("FWZ3","TRAP", idtmed[503], trpa, 11); // fibre glass xcoor = 0.; ycoor = (yFLT - kLengthExInModBorder)*0.5; zcoor = kExterInterModBorder1; gMC->Gspos("FWZ3", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[5],"ONLY"); gMC->Gspos("FWZ3", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[2],"ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = (yFLT - kLengthExInModBorder)*0.5; zcoor = -kExterInterModBorder1 + (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5; gMC->Gspos("FWZ3", 5,"FLTB", xcoor, ycoor, zcoor,idrotm[2],"ONLY"); gMC->Gspos("FWZ3", 6,"FLTC", xcoor, ycoor,-zcoor,idrotm[5],"ONLY"); } //xcoor = 0.; ycoor = -(yFLT - kLengthExInModBorder)*0.5; zcoor = kExterInterModBorder2; gMC->Gspos("FWZ3", 3,"FLTA", xcoor, ycoor, zcoor,idrotm[4],"ONLY"); gMC->Gspos("FWZ3", 4,"FLTA", xcoor, ycoor,-zcoor,idrotm[1],"ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = -(yFLT - kLengthExInModBorder)*0.5; zcoor = -kExterInterModBorder2 + (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5; gMC->Gspos("FWZ3", 7,"FLTB", xcoor, ycoor, zcoor,idrotm[1],"ONLY"); gMC->Gspos("FWZ3", 8,"FLTC", xcoor, ycoor,-zcoor,idrotm[4],"ONLY"); } trpa[0] = 0.5*(kExterInterModBorder2 - kExterInterModBorder1)/TMath::Cos(alpha); trpa[1] = kModuleWallThickness; trpa[2] = xFLT*0.5; trpa[3] = -beta*kRaddeg; trpa[4] = 0.; trpa[5] = 0.; gMC->Gsvolu("FWZ4","PARA", idtmed[503], trpa, 6); // fibre glass AliMatrix (idrotm[13],alpha*kRaddeg,90.,90.+alpha*kRaddeg,90.,90.,180.); AliMatrix (idrotm[16],180.-alpha*kRaddeg,90.,90.-alpha*kRaddeg,90.,90.,0.); //xcoor = 0.; ycoor = 0.; zcoor = (kExterInterModBorder2 + kExterInterModBorder1)*0.5; gMC->Gspos("FWZ4", 1,"FLTA", xcoor, ycoor, zcoor,idrotm[16],"ONLY"); gMC->Gspos("FWZ4", 2,"FLTA", xcoor, ycoor,-zcoor,idrotm[13],"ONLY"); if (fTOFHoles) { //xcoor = 0.; //ycoor = 0.; zcoor = -(kExterInterModBorder2 + kExterInterModBorder1)*0.5 + (zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5; gMC->Gspos("FWZ4", 3,"FLTB", xcoor, ycoor, zcoor,idrotm[13],"ONLY"); gMC->Gspos("FWZ4", 4,"FLTC", xcoor, ycoor,-zcoor,idrotm[16],"ONLY"); } ///////////////// Detector itself ////////////////////// const Int_t knx = fTOFGeometry->NpadX(); // number of pads along x const Int_t knz = fTOFGeometry->NpadZ(); // number of pads along z const Float_t kPadX = fTOFGeometry->XPad(); // pad length along x const Float_t kPadZ = fTOFGeometry->ZPad(); // pad length along z // new description for strip volume -double stack strip- // -- all constants are expressed in cm // heigth of different layers const Float_t khhony = 1.0; // heigth of HONY Layer const Float_t khpcby = 0.08; // heigth of PCB Layer const Float_t khrgly = 0.055; // heigth of RED GLASS Layer const Float_t khfiliy = 0.125; // heigth of FISHLINE Layer const Float_t khglassy = 0.160*0.5; // heigth of GLASS Layer const Float_t khglfy = khfiliy+2.*khglassy; // heigth of GLASS+FISHLINE Layer const Float_t khcpcby = 0.16; // heigth of PCB Central Layer const Float_t kwhonz = 8.1; // z dimension of HONEY Layer const Float_t kwpcbz1 = 10.6; // z dimension of PCB Lower Layer const Float_t kwpcbz2 = 11.6; // z dimension of PCB Upper Layer const Float_t kwcpcbz = 13.; // z dimension of PCB Central Layer const Float_t kwrglz = 8.; // z dimension of RED GLASS Layer const Float_t kwglfz = 7.; // z dimension of GLASS+FISHLN Layer const Float_t klsensmx = knx*kPadX; // length of Sensitive Layer const Float_t khsensmy = 0.05; // heigth of Sensitive Layer const Float_t kwsensmz = knz*kPadZ; // width of Sensitive Layer // heigth of the FSTR Volume (the strip volume) const Float_t khstripy = 2.*khhony+2.*khpcby+4.*khrgly+2.*khglfy+khcpcby; // width of the FSTR Volume (the strip volume) const Float_t kwstripz = kwcpcbz; // length of the FSTR Volume (the strip volume) const Float_t klstripx = fTOFGeometry->StripLength(); Float_t parfp[3]={klstripx*0.5, khstripy*0.5, kwstripz*0.5}; // Coordinates of the strip center in the strip reference frame; // used for positioning internal strip volumes Float_t posfp[3]={0.,0.,0.}; // FSTR volume definition-filling this volume with non sensitive Gas Mixture gMC->Gsvolu("FSTR","BOX",idtmed[507],parfp,3); // Freon mix //-- HONY Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khhony*0.5; parfp[2] = kwhonz*0.5; gMC->Gsvolu("FHON","BOX",idtmed[501],parfp,3); // honeycomb (Nomex) // positioning 2 HONY Layers on FSTR volume //posfp[0] = 0.; posfp[1] =-khstripy*0.5+parfp[1]; //posfp[2] = 0.; gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //-- PCB Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khpcby*0.5; parfp[2] = kwpcbz1*0.5; gMC->Gsvolu("FPC1","BOX",idtmed[502],parfp,3); // G10 //parfp[0] = klstripx*0.5; //parfp[1] = khpcby*0.5; parfp[2] = kwpcbz2*0.5; gMC->Gsvolu("FPC2","BOX",idtmed[502],parfp,3); // G10 // positioning 2 PCB Layers on FSTR volume //posfp[0] = 0.; posfp[1] =-khstripy*0.5+khhony+parfp[1]; //posfp[2] = 0.; gMC->Gspos("FPC1",1,"FSTR",0.,-posfp[1],0.,0,"ONLY"); gMC->Gspos("FPC2",1,"FSTR",0., posfp[1],0.,0,"ONLY"); //-- central PCB layer definition //parfp[0] = klstripx*0.5; parfp[1] = khcpcby*0.5; parfp[2] = kwcpcbz*0.5; gMC->Gsvolu("FPCB","BOX",idtmed[502],parfp,3); // G10 // positioning the central PCB layer gMC->Gspos("FPCB",1,"FSTR",0.,0.,0.,0,"ONLY"); // Sensitive volume Float_t parfs[3] = {klsensmx*0.5, khsensmy*0.5, kwsensmz*0.5}; gMC->Gsvolu("FSEN","BOX",idtmed[508],parfs,3); // sensitive // dividing FSEN along z in knz=2 and along x in knx=48 gMC->Gsdvn("FSEZ","FSEN",knz,3); gMC->Gsdvn("FPAD","FSEZ",knx,1); // positioning a Sensitive layer inside FPCB gMC->Gspos("FSEN",1,"FPCB",0.,0.,0.,0,"ONLY"); //-- RED GLASS Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khrgly*0.5; parfp[2] = kwrglz*0.5; gMC->Gsvolu("FRGL","BOX",idtmed[509],parfp,3); // glass // positioning 4 RED GLASS Layers on FSTR volume //posfp[0] = 0.; posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1]; //posfp[2] = 0.; gMC->Gspos("FRGL",1,"FSTR",0., posfp[1],0.,0,"ONLY"); gMC->Gspos("FRGL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY"); //posfp[0] = 0.; posfp[1] = (khcpcby+khrgly)*0.5; //posfp[2] = 0.; gMC->Gspos("FRGL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY"); gMC->Gspos("FRGL",3,"FSTR",0., posfp[1],0.,0,"ONLY"); //-- GLASS+FISHLINE Layer definition //parfp[0] = klstripx*0.5; parfp[1] = khglfy*0.5; parfp[2] = kwglfz*0.5; gMC->Gsvolu("FGLF","BOX",idtmed[504],parfp,3); // positioning 2 GLASS+FISHLINE Layers on FSTR volume //posfp[0] = 0.; posfp[1] = (khcpcby + khglfy)*0.5 + khrgly; //posfp[2] = 0.; gMC->Gspos("FGLF",1,"FSTR",0.,-posfp[1],0.,0,"ONLY"); gMC->Gspos("FGLF",2,"FSTR",0., posfp[1],0.,0,"ONLY"); // Positioning the Strips (FSTR volumes) in the FLT volumes Int_t maxStripNumbers [5] ={fTOFGeometry->NStripC(), fTOFGeometry->NStripB(), fTOFGeometry->NStripA(), fTOFGeometry->NStripB(), fTOFGeometry->NStripC()}; Int_t totalStrip = 0; Float_t xpos, zpos, ypos, ang; for(Int_t iplate = 0; iplate < fTOFGeometry->NPlates(); iplate++){ if (iplate>0) totalStrip += maxStripNumbers[iplate-1]; for(Int_t istrip = 0; istrip < maxStripNumbers[iplate]; istrip++){ ang = fTOFGeometry->GetAngles(iplate,istrip); AliDebug(1, Form(" iplate = %1i, istrip = %2i ---> ang = %f", iplate, istrip, ang)); if (ang>0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.+ang,90., ang, 90.); else if (ang==0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.,90., 0., 0.); else if (ang<0.) AliMatrix (idrotm[istrip+totalStrip+1],90.,0.,90.+ang,90.,-ang,270.); xpos = 0.; zpos = fTOFGeometry->GetDistances(iplate,istrip); ypos = fTOFGeometry->GetHeights(iplate,istrip) + yFLT*0.5; gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTA", xpos, ypos,-zpos,idrotm[istrip+totalStrip+1], "ONLY"); if (fTOFHoles) { if (istrip+totalStrip+1>53) gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTC", xpos, ypos,-zpos-(zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5,idrotm[istrip+totalStrip+1],"ONLY"); if (istrip+totalStrip+1<39) gMC->Gspos("FSTR",istrip+totalStrip+1,"FLTB", xpos, ypos,-zpos+(zlenA*0.5 + kInterCentrModBorder1 - kModuleWallThickness)*0.5,idrotm[istrip+totalStrip+1],"ONLY"); } } } // Definition of the cards, cooling tubes and layer for thermal dispersion // (3 volumes) // card volume definition //Float_t carpar[3] = {9.5, 5.75, 0.5}; Float_t carpar[3] = {9.5, 5.6, 0.55}; //gMC->Gsvolu("FCA1", "BOX ", idtmed[514], carpar, 3); // PCB+Alu small Card gMC->Gsvolu("FCA1", "BOX ", idtmed[500], carpar, 3); // air carpar[0] = 19.25; //carpar[1] = 5.6;//5.75; //carpar[2] = 0.55;//0.5; //gMC->Gsvolu("FCA2", "BOX ", idtmed[514], carpar, 3); // PCB+Alu long Card gMC->Gsvolu("FCA2", "BOX ", idtmed[500], carpar, 3); // air Float_t feaParam1[3] = {9.5, 5.6, 0.1}; gMC->Gsvolu("FFEA", "BOX ", idtmed[502], feaParam1, 3); // G10 Float_t al1[3] = {9.5, 0.5, 0.25}; gMC->Gsvolu("FAL1", "BOX ", idtmed[505], al1, 3); // Aluminium Float_t al2[3] = {7.2, 0.8, 0.25}; gMC->Gsvolu("FAL2", "BOX ", idtmed[505], al2, 3); // Aluminium Float_t al3[3] = {3.35, 3.7, 0.1}; gMC->Gsvolu("FAL3", "BOX ", idtmed[505], al3, 3); // Aluminium gMC->Gspos("FFEA", 1, "FCA1", 0., 0., -carpar[2]+feaParam1[2], 0, "ONLY"); gMC->Gspos("FAL1", 1, "FCA1", 0., carpar[1]-al1[1], -carpar[2]+2.*feaParam1[2]+al1[2], 0, "ONLY"); gMC->Gspos("FAL3", 1, "FCA1", 0., carpar[1]-al3[1], carpar[2]-al3[2], 0, "ONLY"); gMC->Gspos("FAL2", 1, "FCA1", 0., carpar[1]-2.*al3[1], carpar[2]-2.*al3[2]-al2[2], 0, "ONLY"); gMC->Gspos("FFEA", 2, "FCA2", -(feaParam1[0]+0.25), 0., -carpar[2]+feaParam1[2], 0, "ONLY"); gMC->Gspos("FAL1", 2, "FCA2", -(feaParam1[0]+0.25), carpar[1]-al1[1], -carpar[2]+2.*feaParam1[2]+al1[2], 0, "ONLY"); gMC->Gspos("FAL3", 2, "FCA2", -(feaParam1[0]+0.25), carpar[1]-al3[1], carpar[2]-al3[2], 0, "ONLY"); gMC->Gspos("FAL2", 2, "FCA2", -(feaParam1[0]+0.25), carpar[1]-2.*al3[1], carpar[2]-2.*al3[2]-al2[2], 0, "ONLY"); gMC->Gspos("FFEA", 3, "FCA2", (feaParam1[0]+0.25), 0., -carpar[2]+feaParam1[2], 0, "ONLY"); gMC->Gspos("FAL1", 3, "FCA2", (feaParam1[0]+0.25), carpar[1]-al1[1], -carpar[2]+2.*feaParam1[2]+al1[2], 0, "ONLY"); gMC->Gspos("FAL3", 3, "FCA2", (feaParam1[0]+0.25), carpar[1]-al3[1], carpar[2]-al3[2], 0, "ONLY"); gMC->Gspos("FAL2", 3, "FCA2", (feaParam1[0]+0.25), carpar[1]-2.*al3[1], carpar[2]-2.*al3[2]-al2[2], 0, "ONLY"); Float_t feaRoof1[3] = {9.5, 0.25, 1.7}; gMC->Gsvolu("FRO1", "BOX ", idtmed[505], feaRoof1, 3); // Aluminium Float_t feaRoof2[3] = {3.35, 0.05, 1.5}; gMC->Gsvolu("FRO2", "BOX ", idtmed[505], feaRoof2, 3); // Aluminium Float_t feaRoof3[3] = {3.35, feaRoof1[1]+feaRoof2[1], 0.1}; gMC->Gsvolu("FRO3", "BOX ", idtmed[505], feaRoof3, 3); // Aluminium Float_t feaRoof4[3] = {3.35, 0.05, carpar[2]-feaParam1[2]-al1[2]-al3[2]}; gMC->Gsvolu("FRO4", "BOX ", idtmed[505], feaRoof4, 3); // Aluminium Float_t bar[3] = {8.575, 0.6, 0.15}; gMC->Gsvolu("FBAR", "BOX ", idtmed[505], bar, 3); // Aluminium // tube volume definition Float_t tubepar[3] = {0., 0.4, xFLT*0.5-15.}; gMC->Gsvolu("FTUB", "TUBE", idtmed[513], tubepar, 3); // copper cooling tubes //tubepar[0]= 0.; tubepar[1]= 0.3; //tubepar[2]= xFLT*0.5 - 15.; gMC->Gsvolu("FITU", "TUBE", idtmed[510], tubepar, 3); // cooling water // Positioning of the water tube into the steel one gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY"); // cable Float_t cbpar[3] = {0., 0.5, tubepar[2]}; gMC->Gsvolu("FCAB", "TUBE", idtmed[511], cbpar, 3); // copper+alu // Alluminium components Float_t lonpar[3] = {tubepar[2], 6.15, 0.7}; gMC->Gsvolu("FTLN", "BOX ", idtmed[505], lonpar, 3); // alluminium lonpar[0] = 2.; lonpar[1] = 1.; lonpar[2] = zlenA*0.5; gMC->Gsvolu("FLON", "BOX ", idtmed[505], lonpar, 3); // alluminium // rotation matrix AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.); AliMatrix(idrotm[98], 90.,180., 90., 90.,180., 0.); // cards, tubes, cables positioning Float_t carpos[3], rowstep = 6.66, ytub= 3.65, ycab= ytub-3.; Float_t rowgap[5] = {13.5, 22.9, 16.94, 23.8, 20.4}; Int_t row, rowb[5] = {6, 7, 6, 19, 7}, nrow; carpos[0] = 25. - xtof*0.5; carpos[1] = (11.5 - (ytof*0.5 - kHoneycombLayerThickness))*0.5; row = 1; for (Int_t sg= -1; sg< 2; sg+= 2) { carpos[2] = sg*zlenA*0.5; for (Int_t nb=0; nb<5; ++nb) { carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep); nrow = row + rowb[nb]; for ( ; row < nrow ; ++row) { carpos[2] -= sg*rowstep; if (nb==4) { gMC->Gspos("FCA1",2*row, "FAIA", carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA1",2*row-1,"FAIA",-carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA2", row, "FAIA", 0., carpos[1], carpos[2], 0, "ONLY"); //gMC->Gspos("FTUB", row, "FAIA", 0., ytub, carpos[2]-sg, idrotm[99], "ONLY"); gMC->Gspos("FTUB", row, "FAIA", 0., carpos[1]+carpar[1]-bar[1], carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-bar[1]), idrotm[99], "ONLY"); gMC->Gspos("FCAB", row, "FAIA", 0., ycab, carpos[2]-1.1, idrotm[99], "ONLY"); gMC->Gspos("FRO1",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row, "FAIA", carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-3,"FAIA",-carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FBAR",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); } else { switch (sg) { case 1: gMC->Gspos("FCA1",2*row, "FAIA", carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA1",2*row-1,"FAIA",-carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA2", row, "FAIA", 0., carpos[1], carpos[2], 0, "ONLY"); break; case -1: gMC->Gspos("FCA1",2*row, "FAIA", carpos[0],carpos[1],carpos[2], idrotm[98],"ONLY"); gMC->Gspos("FCA1",2*row-1,"FAIA",-carpos[0],carpos[1],carpos[2], idrotm[98],"ONLY"); gMC->Gspos("FCA2", row, "FAIA", 0., carpos[1], carpos[2], idrotm[98], "ONLY"); break; } //gMC->Gspos("FTUB", row, "FAIA", 0., ytub, carpos[2]-sg, idrotm[99], "ONLY"); gMC->Gspos("FTUB", row, "FAIA", 0., carpos[1]+carpar[1]-bar[1], carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-bar[1]), idrotm[99], "ONLY"); gMC->Gspos("FCAB", row, "FAIA", 0., ycab, carpos[2]-sg*1.1, idrotm[99], "ONLY"); gMC->Gspos("FRO1",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row, "FAIA", carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-3,"FAIA",-carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FBAR",4*row, "FAIA", carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-1,"FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-2,"FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-3,"FAIA",-carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); } } } gMC->Gspos("FTLN", 5+4*sg, "FAIA", 0., -0.1, 369.9*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+3*sg, "FAIA", 0., -0.1, 366.9*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+2*sg, "FAIA", 0., -0.1, 198.8*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+sg, "FAIA", 0., -0.1, 56.82*sg, 0, "ONLY"); } gMC->Gspos("FCA1", 182, "FAIA", carpos[0],carpos[1],0., 0,"ONLY"); gMC->Gspos("FCA1", 181, "FAIA",-carpos[0],carpos[1],0., 0,"ONLY"); gMC->Gspos("FCA2", 91, "FAIA", 0., carpos[1], 0., 0, "ONLY"); //gMC->Gspos("FTUB", 91, "FAIA", 0., ytub, -1., idrotm[99], "ONLY"); gMC->Gspos("FTUB", 91, "FAIA", 0., carpos[1]+carpar[1]-bar[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-bar[1]), idrotm[99], "ONLY"); gMC->Gspos("FCAB", 91, "FAIA", 0., ycab, -1.1, idrotm[99], "ONLY"); gMC->Gspos("FRO1",364, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof1[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",363, "FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",362, "FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",361, "FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof1[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO2",364, "FAIA", carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",363, "FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",362, "FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",361, "FAIA",-carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO3",364, "FAIA", carpos[0],carpos[1]+carpar[1]+feaRoof3[1],(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",363, "FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",362, "FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",361, "FAIA",-carpos[0],carpos[1]+carpar[1]+feaRoof3[1],(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO4",364, "FAIA", carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",363, "FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",362, "FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",361, "FAIA",-carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FBAR",364, "FAIA", carpos[0],carpos[1]+carpar[1]-bar[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",363, "FAIA", (feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",362, "FAIA",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",361, "FAIA",-carpos[0],carpos[1]+carpar[1]-bar[1],-(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FLON", 2, "FAIA",-24., ytub+1.4, 0., 0, "MANY"); gMC->Gspos("FLON", 1, "FAIA", 24., ytub+1.4, 0., 0, "MANY"); if (fTOFHoles) { row = 1; for (Int_t sg= -1; sg< 2; sg+= 2) { carpos[2] = sg*zlenA*0.5; for (Int_t nb=0; nb<4; ++nb) { carpos[2] = carpos[2] - sg*(rowgap[nb] - rowstep); nrow = row + rowb[nb]; for ( ; row < nrow ; ++row) { carpos[2] -= sg*rowstep; switch (sg) { case 1: gMC->Gspos("FCA1",2*row, "FAIB", carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA1",2*row-1,"FAIB",-carpos[0],carpos[1],carpos[2], 0,"ONLY"); gMC->Gspos("FCA2", row, "FAIB", 0., carpos[1], carpos[2], 0, "ONLY"); break; case -1: gMC->Gspos("FCA1",2*row, "FAIB", carpos[0],carpos[1],carpos[2], idrotm[98],"ONLY"); gMC->Gspos("FCA1",2*row-1,"FAIB",-carpos[0],carpos[1],carpos[2], idrotm[98],"ONLY"); gMC->Gspos("FCA2", row, "FAIB", 0., carpos[1], carpos[2], idrotm[98], "ONLY"); break; } //gMC->Gspos("FTUB", row, "FAIB", 0., ytub,carpos[2]-sg, idrotm[99], "ONLY"); gMC->Gspos("FTUB", row, "FAIB", 0., carpos[1]+carpar[1]-bar[1], carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-bar[1]), idrotm[99], "ONLY"); gMC->Gspos("FCAB", row, "FAIB", 0., ycab,carpos[2]-sg*1.1, idrotm[99], "ONLY"); gMC->Gspos("FRO1",4*row, "FAIB", carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-1,"FAIB", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-2,"FAIB",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO1",4*row-3,"FAIB",-carpos[0],carpos[1]+carpar[1]+feaRoof1[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+feaRoof1[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row, "FAIB", carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-1,"FAIB", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-2,"FAIB",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO2",4*row-3,"FAIB",-carpos[0],carpos[1]+carpar[1]+2.*feaRoof1[1]+feaRoof2[1],carpos[2]+sg*(carpar[2]-2.*feaRoof3[2]-feaRoof2[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row, "FAIB", carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-1,"FAIB", (feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-2,"FAIB",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO3",4*row-3,"FAIB",-carpos[0],carpos[1]+carpar[1]+feaRoof3[1],carpos[2]+sg*(carpar[2]-feaRoof3[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row, "FAIB", carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-1,"FAIB", (feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-2,"FAIB",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FRO4",4*row-3,"FAIB",-carpos[0], carpos[1]+carpar[1]+2.*feaRoof1[1]-feaRoof4[1],carpos[2]+sg*(carpar[2]-2.*al3[2]-feaRoof4[2]), 0,"ONLY"); gMC->Gspos("FBAR",4*row, "FAIB", carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-1,"FAIB", (feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-2,"FAIB",-(feaParam1[0]+0.25),carpos[1]+carpar[1]+-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); gMC->Gspos("FBAR",4*row-3,"FAIB",-carpos[0],carpos[1]+carpar[1]-bar[1],carpos[2]-sg*(carpar[2]-2.*feaParam1[2]-2.*al1[2]+2.*feaRoof1[2]-2.*bar[1]), 0,"ONLY"); } } gMC->Gspos("FTLN", 5+4*sg, "FAIB", 0., -0.1, 369.9*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+3*sg, "FAIB", 0., -0.1, 366.9*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+2*sg, "FAIB", 0., -0.1, 198.8*sg, 0, "ONLY"); gMC->Gspos("FTLN", 5+sg, "FAIB", 0., -0.1, 56.82*sg, 0, "ONLY"); } gMC->Gspos("FLON", 2, "FAIB",-24., ytub+1.4, 0., 0, "MANY"); gMC->Gspos("FLON", 1, "FAIB", 24., ytub+1.4, 0., 0, "MANY"); } // Cables and tubes on the side blocks const Float_t kcbll = zlenA*0.5; // length of block const Float_t kcbllh = zlenA*0.5 - kInterCentrModBorder2; // length of block in case of hole const Float_t kcblw = 13.5; // width of block const Float_t kcblh1 = 2.; // min. heigth of block const Float_t kcblh2 = 12.3; // max. heigth of block // volume definition Float_t cblpar[11]; tgal = (kcblh2 - kcblh1)/(2.*kcbll); cblpar[0] = kcblw *0.5; cblpar[1] = 0.; cblpar[2] = 0.; cblpar[3] = kcbll *0.5; cblpar[4] = kcblh1 *0.5; cblpar[5] = kcblh2 *0.5; cblpar[6] = TMath::ATan(tgal)*kRaddeg; cblpar[7] = kcbll *0.5; cblpar[8] = kcblh1 *0.5; cblpar[9] = kcblh2 *0.5; cblpar[10]= cblpar[6]; gMC->Gsvolu("FCBL", "TRAP", idtmed[512], cblpar, 11); // cables & tubes mix Float_t sawpar[3] = {0.5, kcblh2*0.5, kcbll}; gMC->Gsvolu("FSAW", "BOX ", idtmed[505], sawpar, 3); // Side Al walls // volume positioning AliMatrix(idrotm[7], 90., 90., 180., 0., 90., 180.); AliMatrix(idrotm[8], 90., 90., 0., 0., 90., 0.); xcoor = (xtof-kcblw)*0.5 - 2.*sawpar[0]; ycoor = (kcblh1+kcblh2)*0.25 - (ytof*0.5 - kHoneycombLayerThickness)*0.5; zcoor = kcbll*0.5; gMC->Gspos("FCBL", 1, "FAIA", -xcoor, ycoor, -zcoor, idrotm[7], "ONLY"); gMC->Gspos("FCBL", 2, "FAIA", xcoor, ycoor, -zcoor, idrotm[7], "ONLY"); gMC->Gspos("FCBL", 3, "FAIA", -xcoor, ycoor, zcoor, idrotm[8], "ONLY"); gMC->Gspos("FCBL", 4, "FAIA", xcoor, ycoor, zcoor, idrotm[8], "ONLY"); xcoor = xtof*0.5-sawpar[0]; ycoor = (kcblh2 - ytof*0.5 + kHoneycombLayerThickness)*0.5; gMC->Gspos("FSAW", 1, "FAIA", -xcoor, ycoor, 0., 0, "ONLY"); gMC->Gspos("FSAW", 2, "FAIA", xcoor, ycoor, 0., 0, "ONLY"); if (fTOFHoles) { cblpar[3] = kcbllh *0.5; cblpar[5] = kcblh1*0.5 + kcbllh*tgal; cblpar[7] = kcbllh *0.5; cblpar[9] = cblpar[5]; gMC->Gsvolu("FCBB", "TRAP", idtmed[512], cblpar, 11); // cables & tubes mix xcoor = (xtof - kcblw)*0.5 - 2.*sawpar[0]; ycoor = (kcblh1 + 2.*cblpar[5])*0.25 - (ytof*0.5 - kHoneycombLayerThickness)*0.5; zcoor = kcbll-kcbllh*0.5; gMC->Gspos("FCBB", 1, "FAIB", -xcoor, ycoor, -zcoor, idrotm[7], "ONLY"); gMC->Gspos("FCBB", 2, "FAIB", xcoor, ycoor, -zcoor, idrotm[7], "ONLY"); gMC->Gspos("FCBB", 3, "FAIB", -xcoor, ycoor, zcoor, idrotm[8], "ONLY"); gMC->Gspos("FCBB", 4, "FAIB", xcoor, ycoor, zcoor, idrotm[8], "ONLY"); xcoor = xtof*0.5 - sawpar[0]; ycoor = (kcblh2 - ytof*0.5 + kHoneycombLayerThickness)*0.5; gMC->Gspos("FSAW", 1, "FAIB", -xcoor, ycoor, 0., 0, "ONLY"); gMC->Gspos("FSAW", 2, "FAIB", xcoor, ycoor, 0., 0, "ONLY"); } // TOF Supermodule cover definition and positioning Float_t covpar[3] = {xtof*0.5, 0.1, zlenA*0.5}; gMC->Gsvolu("FCOV", "BOX ", idtmed[505], covpar, 3); // Al cover xcoor = 0.; ycoor = 12.5*0.5 - 0.1; zcoor = 0.; gMC->Gspos("FCOV", 0, "FAIA", xcoor, ycoor, zcoor, 0, "ONLY"); if (fTOFHoles) gMC->Gspos("FCOV", 0, "FAIB", xcoor, ycoor, zcoor, 0, "ONLY"); // Services Volumes // Empty crate weight: 50 Kg, electronics cards + cables ~ 52 Kg. // Per each side (A and C) the total weight is: 2x102 ~ 204 Kg. // ... + weight of the connection pannel for the steel cooling system (Cr 18%, Ni 12%, Fe 70%) // + other remaining elements + various supports // Each FEA card weight + all supports // (including all bolts and not including the cable connectors) // 353.1 g. // Per each strip there are 4 FEA cards, then // the total weight of the front-end electonics section is: 353.1 g x 4 = 1412.4 g. Float_t serpar[3] = {29.*0.5, 121.*0.5, 90.*0.5}; gMC->Gsvolu("FTOS", "BOX ", idtmed[515], serpar, 3); // Al + Cu + steel zcoor = (118.-90.)*0.5; Float_t phi = -10., ra = fTOFGeometry->Rmin() + ytof*0.5; for (Int_t i = 0; i < fTOFGeometry->NSectors(); i++) { phi += 20.; xcoor = ra * TMath::Cos(phi * kDegrad); ycoor = ra * TMath::Sin(phi * kDegrad); AliMatrix(idrotm[20+i], 90., phi, 90., phi + 270., 0., 0.); gMC->Gspos("FTOS", i, "BFMO", xcoor, ycoor, zcoor, idrotm[20+i], "ONLY"); } zcoor = (90. - 223.)*0.5; gMC->Gspos("FTOS", 1, "BBCE", ra, 0., zcoor, 0, "ONLY"); } //_____________________________________________________________________________ void AliTOFv6T0::DrawModule() const { // // Draw a shaded view of the Time Of Flight version 5 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // //Set volumes visible // //Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN", 0); //=====> Level 1 // Level 1 for TOF volumes gMC->Gsatt("B077","seen", 0); //=====> Level 2 // Level 2 for TOF volumes gMC->Gsatt("B071","seen", 0); gMC->Gsatt("B074","seen", 0); gMC->Gsatt("B075","seen", 0); gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped - gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level // Level 2 of B071 gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels - gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped - gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped - gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped - gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped - char name[16]; for (Int_t isec=0; isecNSectors(); isec++) { sprintf(name, "BREF%d",isec); gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped - sprintf(name, "BTRD%d",isec); gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped - sprintf(name, "BTOF%d",isec); gMC->Gsatt(name,"seen",-2); // all BTOF%d sub-levels skipped - } gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 100, 1000, 100, 1000, 100, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018); gMC->Gdhead(1111, "Time Of Flight"); gMC->Gdman(18, 3, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv6T0::DrawDetectorModules() const { // // Draw a shaded view of the TOF detector SuperModules version 5 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // //Set volumes visible // //Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN", 0); //=====> Level 1 // Level 1 for TOF volumes gMC->Gsatt("B077","seen", 0); //=====> Level 2 // Level 2 for TOF volumes gMC->Gsatt("B071","seen", 0); gMC->Gsatt("B074","seen", 0); gMC->Gsatt("B075","seen", 0); gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped - gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level // Level 2 of B071 gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels - gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped - gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped - gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped - gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped - char name[16]; for (Int_t isec=0; isecNSectors(); isec++) { sprintf(name, "BREF%d",isec); gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped - sprintf(name, "BTRD%d",isec); gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped - sprintf(name, "BTOF%d",isec); gMC->Gsatt(name,"seen", 0); // all BTOF%d sub-levels skipped - } // Level 3 of B071, B075 and B074 gMC->Gsatt("FTOA","seen",-2); // all FTOA sub-levels skipped - if (fTOFHoles) gMC->Gsatt("FTOB","seen",-2); // all FTOB sub-levels skipped - if (fTOFHoles) gMC->Gsatt("FTOC","seen",-2); // all FTOC sub-levels skipped - // Level 3 of B071, B075 and B074 gMC->Gsatt("FAIA","seen",-1); // all FAIA sub-levels skipped - if (fTOFHoles) gMC->Gsatt("FAIB","seen",-1); // all FAIB sub-levels skipped - // Level 3 of B071, B075 and B074 gMC->Gsatt("FPEA","seen",1); // all FPEA sub-levels skipped - if (fTOFHoles) gMC->Gsatt("FPEB","seen",1); // all FPEB sub-levels skipped - gMC->Gdopt("hide","on"); gMC->Gdopt("shad","on"); gMC->Gsatt("*", "fill", 5); gMC->SetClipBox("."); gMC->SetClipBox("*", 100, 1000, 100, 1000, 0, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018); gMC->Gdhead(1111,"TOF detector"); gMC->Gdman(18, 3, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv6T0::DrawDetectorStrips() const { // // Draw a shaded view of the TOF strips for version 5 // // Set everything unseen gMC->Gsatt("*", "seen", -1); // //Set volumes visible // //Set ALIC mother transparent gMC->Gsatt("ALIC","SEEN", 0); //=====> Level 1 // Level 1 for TOF volumes gMC->Gsatt("B077","seen", 0); //=====> Level 2 // Level 2 for TOF volumes gMC->Gsatt("B071","seen", 0); gMC->Gsatt("B074","seen", 0); gMC->Gsatt("B075","seen", 0); gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped - gMC->Gsatt("B080","seen", 0); // B080 does not has sub-level // Level 2 of B071 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped - gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped - gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped - gMC->Gsatt("B056","seen", 0); // B056 does not has sub-levels - gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped - char name[16]; for (Int_t isec=0; isecNSectors(); isec++) { sprintf(name, "BREF%d",isec); gMC->Gsatt(name,"seen", 0); // all BREF%d sub-levels skipped - sprintf(name, "BTRD%d",isec); gMC->Gsatt(name,"seen", 0); // all BTRD%d sub-levels skipped - sprintf(name, "BTOF%d",isec); gMC->Gsatt(name,"seen", 0); // all BTOF%d sub-levels skipped - } // Level 3 of B071, B074 and B075 gMC->Gsatt("FTOA","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FTOB","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FTOC","SEEN", 0); // Level 4 of B071, B074 and B075 gMC->Gsatt("FLTA","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FLTB","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FLTC","SEEN", 0); // Level 5 of B071, B074 and B075 gMC->Gsatt("FAIA","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FAIB","SEEN", 0); gMC->Gsatt("FPEA","SEEN", 1); if (fTOFHoles) gMC->Gsatt("FPEB","SEEN", 1); gMC->Gsatt("FSTR","SEEN",-2); // all FSTR sub-levels skipped - gMC->Gsatt("FWZ1","SEEN", 1); gMC->Gsatt("FWZ2","SEEN", 1); gMC->Gsatt("FWZ3","SEEN", 1); gMC->Gsatt("FWZ4","SEEN", 1); // Level 2 of FAIA // Level 2 of FAIB gMC->Gsatt("FCA1","SEEN", 0); gMC->Gsatt("FCA2","SEEN", 0); gMC->Gsatt("FCAB","SEEN", 0); gMC->Gsatt("FTUB","SEEN",-1); // all FTUB sub-levels skipped - gMC->Gsatt("FTLN","SEEN", 0); gMC->Gsatt("FLTN","SEEN", 0); gMC->Gsatt("FCBL","SEEN", 0); gMC->Gsatt("FSAW","SEEN", 0); gMC->Gsatt("FCOV","SEEN", 0); if (fTOFHoles) gMC->Gsatt("FCBB","SEEN", 0); // Level 2 of FTUB gMC->Gsatt("FITU","SEEN", 0); // Level 2 of FSTR gMC->Gsatt("FHON","SEEN", 1); gMC->Gsatt("FPC1","SEEN", 1); gMC->Gsatt("FPC2","SEEN", 1); gMC->Gsatt("FPCB","SEEN", 1); gMC->Gsatt("FRGL","SEEN", 1); gMC->Gsatt("FGLF","SEEN", 1); // Level 2 of FPCB => Level 3 of FSTR gMC->Gsatt("FSEN","SEEN", 0); gMC->Gsatt("FSEZ","SEEN", 0); gMC->Gsatt("FPAD","SEEN", 1); gMC->Gdopt("hide","on"); gMC->Gdopt("shad","on"); gMC->Gsatt("*", "fill", 5); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .018, .018); gMC->Gdhead(1111,"TOF Strips"); gMC->Gdman(18, 3, "MAN"); gMC->Gdopt("hide","off"); } //_____________________________________________________________________________ void AliTOFv6T0::CreateMaterials() { // // Define materials for the Time Of Flight // //AliTOF::CreateMaterials(); AliMagF *magneticField = (AliMagF*)gAlice->Field(); Int_t isxfld = magneticField->Integ(); Float_t sxmgmx = magneticField->Max(); Float_t we[7], na[7]; //--- Quartz (SiO2) to simulate float glass // density tuned to have correct float glass // radiation length Float_t aq[2] = { 28.09,16. }; Float_t zq[2] = { 14.,8. }; Float_t wq[2] = { 1.,2. }; //Float_t dq = 2.55; // std value: 2.2 Float_t dq = 2.7; // (+5.9%) Int_t nq = -2; // --- Nomex Float_t anox[4] = {12.01,1.01,16.00,14.01}; Float_t znox[4] = { 6., 1., 8., 7.}; Float_t wnox[4] = {14., 22., 2., 2.}; //Float_t dnox = 0.048; //old value Float_t dnox = 0.22; // (x 4.6) Int_t nnox = -4; // --- glass+freon { Si, O, C, F, H, S } Float_t agfr[6]= {28.09,16.00,12.01,19.00,1.01,32.065}; Float_t zgfr[6]= {14., 8., 6., 9., 1., 16.}; Float_t wgfr[6]= {0.465, 0.530, 0.000484, 0.00383, 4.0e-05, 0.000646}; Int_t ngfr = 6; AliDebug(1,Form("wgfr: %d %d %d %d %d %d", wgfr[0], wgfr[1], wgfr[2], wgfr[3], wgfr[4], wgfr[5])); //Float_t dgfr = 1.35; // + FISHLINE (old value) Float_t dgfr = 1.6; // + FISHLINE(+18.5 %) // --- G10 {Si, O, C, H, O} Float_t ag10[5] = {28.09,16.00,12.01,1.01,16.00}; Float_t zg10[5] = {14., 8., 6., 1., 8.}; Float_t wmatg10[5]; Int_t nlmatg10 = 5; na[0]= 1. , na[1]= 2. , na[2]= 0. , na[3]= 0. , na[4]= 0.; MaterialMixer(we,ag10,na,5); wmatg10[0]= we[0]*0.6; wmatg10[1]= we[1]*0.6; na[0]= 0. , na[1]= 0. , na[2]= 14. , na[3]= 20. , na[4]= 3.; MaterialMixer(we,ag10,na,5); wmatg10[2]= we[2]*0.4; wmatg10[3]= we[3]*0.4; wmatg10[4]= we[4]*0.4; AliDebug(1,Form("wg10 %d %d %d %d %d", wmatg10[0], wmatg10[1], wmatg10[2], wmatg10[3], wmatg10[4])); // Float_t densg10 = 1.7; //old value Float_t densg10 = 2.0; // (+17.8%) // -- Water Float_t awa[2] = { 1., 16. }; Float_t zwa[2] = { 1., 8. }; Float_t wwa[2] = { 2., 1. }; Float_t dwa = 1.0; Int_t nwa = -2; // AIR Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; // --- fibre glass Float_t afg[4] = {28.09,16.00,12.01,1.01}; Float_t zfg[4] = {14., 8., 6., 1.}; Float_t wfg[4] = {0.12906,0.29405,0.51502,0.06187}; //Float_t dfg = 1.111; Float_t dfg = 2.; // (+1.8%) Int_t nfg = 4; // --- Freon C2F4H2 + SF6 Float_t afre[4]= {12.01,1.01,19.00,32.07}; Float_t zfre[4]= { 6., 1., 9., 16.}; Float_t wfre[4]= {0.21250,0.01787,0.74827,0.021355}; Float_t densfre= 0.00375; Int_t nfre = 4; // --- Al + Cu + G10 {Al, Cu, Si, O, C, H, O} Float_t acar[10]= {26.98, /*63.55,*/ ag10[0], ag10[1], ag10[2], ag10[3], ag10[4], aAir[0], aAir[1], aAir[2], aAir[3]}; Float_t zcar[10]= {13., /*29.,*/ zg10[0], zg10[1], zg10[2], zg10[3], zg10[4], zAir[0], zAir[1], zAir[2], zAir[3]}; Float_t wcar[10]; wcar[0]= 0.4732;//0.7; //wcar[1]= 0.04;//0.05; wcar[1]= 0.2854*wmatg10[0];//0.25*wmatg10[0]; wcar[2]= 0.2854*wmatg10[1];//0.25*wmatg10[1]; wcar[3]= 0.2854*wmatg10[2];//0.25*wmatg10[2]; wcar[4]= 0.2854*wmatg10[3];//0.25*wmatg10[3]; wcar[5]= 0.2854*wmatg10[4];//0.25*wmatg10[4]; wcar[6]= 0.2414*wAir[0]; wcar[7]= 0.2414*wAir[1]; wcar[8]= 0.2414*wAir[2]; wcar[9]= 0.2414*wAir[3]; AliDebug(1,Form("wcar %f %f %f %f %f %f %f %f %f %f", wcar[0], wcar[1], wcar[2], wcar[3], wcar[4], wcar[5], wcar[6], wcar[7], wcar[8], wcar[9])); Float_t dcar = 1.85;//1.9; // --- Cables, tubes {Al, Cu} --- Float_t acbt[2]= {26.98,63.55}; Float_t zcbt[2]= {13., 29.}; //Float_t wcbt[2]= {0.541,0.459}; Float_t wcbt[2]= {0.407,0.593}; //Float_t decbt = 0.95; Float_t decbt = 0.68; // --- Cable {Al, Cu} Float_t wcb[2] = {0.165,0.835}; Float_t decb = 0.962; // --- Honeycomb layer {Al, Cu} Float_t whon[2]= {0.9,0.1}; //Float_t dhon = 0.44; Float_t dhon = 1.095; // (x 2.56) // --- Crates boxes {Al, Cu, Fe, Cr, Ni} Float_t acra[5]= {26.98,63.55,55.845,52.00,58.69}; Float_t zcra[5]= {13., 29., 26., 24., 28.}; Float_t wcra[5]= {0.7,0.2,0.07,0.018,0.012}; Float_t dcra = 0.77; AliMixture ( 0, "Air$", aAir, zAir, dAir, 4, wAir); AliMixture ( 1, "Nomex$", anox, znox, dnox, nnox, wnox); AliMixture ( 2, "G10$", ag10, zg10, densg10, nlmatg10, wmatg10); AliMixture ( 3, "fibre glass$", afg, zfg, dfg, nfg, wfg); AliMaterial( 4, "Al $", 26.98, 13., 2.7, 8.9, 37.2); AliMixture ( 5, "Al+Cu honeycomb$", acbt, zcbt, dhon, 2, whon); AliMixture ( 6, "Freon$", afre, zfre, densfre, nfre, wfre); AliMixture ( 7, "Glass$", aq, zq, dq, nq, wq); AliMixture ( 8, "glass-freon$", agfr, zgfr, dgfr, ngfr, wgfr); AliMixture ( 9, "Water$", awa, zwa, dwa, nwa, wwa); AliMixture (10, "Al+Cu$", acbt, zcbt, decbt, 2, wcbt); AliMaterial(11, "Cu $", 63.54, 29., 8.96, 1.43, 10.); AliMixture (12, "Al+Cu (cable)$", acbt, zcbt, decb, 2, wcb); AliMixture (13, "Al+Cu+G10$", acar, zcar, dcar, 10/*7*/, wcar); AliMixture (14, "Al+Cu+steel$", acra, zcra, dcra, 5, wcra); AliMaterial(15, "Cu_sensitive$", 63.54, 29., 3.392, 1.43, 10.); Float_t epsil, stmin, deemax, stemax; // STD data // EPSIL = 0.1 ! Tracking precision, // STEMAX = 0.1 ! Maximum displacement for multiple scattering // DEEMAX = 0.1 ! Maximum fractional energy loss, DLS // STMIN = 0.1 // TOF data epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scattering deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; AliMedium( 1, "Air$", 0, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 2,"Nomex$", 1, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 3,"G10$", 2, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 4,"fibre glass$", 3, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 5,"glass-freon$", 8, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 6,"Al Frame$", 4, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 7,"honeycomb$", 5, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 8,"Fre$", 6, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium( 9,"Cu-S$", 15, 1, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(10,"Glass$", 7, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(11,"Water$", 9, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(12,"Cable$", 12, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(13,"Al+Cables$", 10, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(14,"Copper$", 11, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(15,"Cards$", 13, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); AliMedium(16,"Crates$", 14, 0, isxfld, sxmgmx, 10., stemax, deemax, epsil, stmin); } //_____________________________________________________________________________ void AliTOFv6T0::Init() { // // Initialise the detector after the geometry has been defined // AliDebug(1, "**************************************" " TOF " "**************************************"); AliDebug(1, " Version 4 of TOF initialing, " "symmetric TOF - Full Coverage version"); AliTOF::Init(); fIdFTOA = gMC->VolId("FTOA"); if (fTOFHoles) { fIdFTOB = gMC->VolId("FTOB"); fIdFTOC = gMC->VolId("FTOC"); } fIdFLTA = gMC->VolId("FLTA"); if (fTOFHoles) { fIdFLTB = gMC->VolId("FLTB"); fIdFLTC = gMC->VolId("FLTC"); } AliDebug(1, "**************************************" " TOF " "**************************************"); } //_____________________________________________________________________________ void AliTOFv6T0::StepManager() { // // Procedure called at each step in the Time Of Flight // TLorentzVector mom, pos; Float_t xm[3],pm[3],xpad[3],ppad[3]; Float_t hits[14]; Int_t vol[5]; Int_t sector, plate, padx, padz, strip; Int_t copy, padzid, padxid, stripid, i; Int_t *idtmed = fIdtmed->GetArray()-499; Float_t incidenceAngle; const char* volpath; Int_t index = 0; if( gMC->IsTrackEntering() && gMC->TrackCharge() //&& gMC->GetMedium()==idtmed[508] && gMC->CurrentMedium()==idtmed[508] && gMC->CurrentVolID(copy)==fIdSens ) { AliMC *mcApplication = (AliMC*)gAlice->GetMCApp(); AddTrackReference(mcApplication->GetCurrentTrackNumber(), AliTrackReference::kTOF); //AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber()); // getting information about hit volumes padzid=gMC->CurrentVolOffID(1,copy); padz=copy; padz--; padxid=gMC->CurrentVolOffID(0,copy); padx=copy; padx--; stripid=gMC->CurrentVolOffID(4,copy); strip=copy; strip--; gMC->TrackPosition(pos); gMC->TrackMomentum(mom); Double_t normMom=1./mom.Rho(); // getting the coordinates in pad ref system xm[0] = (Float_t)pos.X(); xm[1] = (Float_t)pos.Y(); xm[2] = (Float_t)pos.Z(); pm[0] = (Float_t)mom.X()*normMom; pm[1] = (Float_t)mom.Y()*normMom; pm[2] = (Float_t)mom.Z()*normMom; gMC->Gmtod(xm,xpad,1); // from MRS to DRS: coordinates convertion gMC->Gmtod(pm,ppad,2); // from MRS to DRS: direction cosinus convertion if (TMath::Abs(ppad[1])>1) { AliWarning("Abs(ppad) > 1"); ppad[1]=TMath::Sign((Float_t)1,ppad[1]); } incidenceAngle = TMath::ACos(ppad[1])*kRaddeg; plate = -1; if (strip < fTOFGeometry->NStripC()) { plate = 0; //strip = strip; } else if (strip >= fTOFGeometry->NStripC() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB()) { plate = 1; strip = strip - fTOFGeometry->NStripC(); } else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA()) { plate = 2; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB(); } else if (strip >= fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() && strip < fTOFGeometry->NStripC() + fTOFGeometry->NStripB() + fTOFGeometry->NStripA() + fTOFGeometry->NStripB()) { plate = 3; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA(); } else { plate = 4; strip = strip - fTOFGeometry->NStripC() - fTOFGeometry->NStripB() - fTOFGeometry->NStripA() - fTOFGeometry->NStripB(); } volpath=gMC->CurrentVolOffName(7); index=atoi(&volpath[4]); sector=-1; sector=index; //Old 6h convention // if(index<5){ // sector=index+13; // } // else{ // sector=index-5; // } for(i=0;i<3;++i) { hits[i] = pos[i]; hits[i+3] = pm[i]; } hits[6] = mom.Rho(); hits[7] = pos[3]; hits[8] = xpad[0]; hits[9] = xpad[1]; hits[10]= xpad[2]; hits[11]= incidenceAngle; hits[12]= gMC->Edep(); hits[13]= gMC->TrackLength(); vol[0]= sector; vol[1]= plate; vol[2]= strip; vol[3]= padx; vol[4]= padz; AddT0Hit(mcApplication->GetCurrentTrackNumber(),vol, hits); //AddT0Hit(gAlice->GetMCApp()->GetCurrentTrackNumber(),vol, hits); } } //------------------------------------------------------------------- void AliTOFv6T0::MaterialMixer(Float_t* p,Float_t* a,Float_t* m,Int_t n) const { // a[] atomic weights vector (in) // (atoms present in more compound appear separately) // m[] number of corresponding atoms in the compound (in) Float_t t = 0.; for (Int_t i = 0; i < n; ++i) { p[i] = a[i]*m[i]; t += p[i]; } for (Int_t i = 0; i < n; ++i) { p[i] = p[i]/t; //AliDebug(1,Form((\n weight[%i] = %f (,i,p[i])); } }