/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.54.4.3 2002/10/11 08:34:48 hristov Updating VirtualMC to v3-09-02 Revision 1.62 2002/09/23 09:22:56 hristov The address of the TrackReferences is set (M.Ivanov) Revision 1.61 2002/09/10 07:06:42 kowal2 Corrected for the memory leak. Thanks to J. Chudoba and M. Ivanov Revision 1.60 2002/06/12 14:56:56 kowal2 Added track length to the reference hits Revision 1.59 2002/06/05 15:37:31 kowal2 Added cross-talk from the wires beyond the first and the last rows Revision 1.58 2002/05/27 14:33:14 hristov The new class AliTrackReference used (M.Ivanov) Revision 1.57 2002/05/07 17:23:11 kowal2 Linear gain inefficiency instead of the step one at the wire edges. Revision 1.56 2002/04/04 16:26:33 kowal2 Digits (Sdigits) go to separate files now. Revision 1.55 2002/03/29 06:57:45 kowal2 Restored backward compatibility to use the hits from Dec. 2000 production. Revision 1.54 2002/03/18 17:59:13 kowal2 Chnges in the pad geometry - 3 pad lengths introduced. Revision 1.53 2002/02/25 11:02:56 kowal2 Changes towards speeding up the code. Thanks to Marian Ivanov. Revision 1.52 2002/02/18 09:26:09 kowal2 Removed compiler warning Revision 1.51 2002/01/21 17:13:21 kowal2 New track hits using root containers. Setting active sectors added. Revision 1.50 2001/12/06 14:16:19 kowal2 meaningfull printouts Revision 1.49 2001/11/30 11:55:37 hristov Noise table created in Hits2SDigits (M.Ivanov) Revision 1.48 2001/11/24 16:10:21 kowal2 Faster algorithms. Revision 1.47 2001/11/19 10:25:34 kowal2 Nearest integer instead of integer when converting to ADC counts Revision 1.46 2001/11/07 06:47:12 kowal2 Removed printouts Revision 1.45 2001/11/03 13:33:48 kowal2 Updated algorithms in Hits2SDigits, SDigits2Digits, Hits2ExactClusters. Added method Merge Revision 1.44 2001/08/30 09:28:48 hristov TTree names are explicitly set via SetName(name) and then Write() is called Revision 1.43 2001/07/28 12:02:54 hristov Branch split level set to 99 Revision 1.42 2001/07/28 11:38:52 hristov Loop variable declared once Revision 1.41 2001/07/28 10:53:50 hristov Digitisation done according to the general scheme (M.Ivanov) Revision 1.40 2001/07/27 13:03:14 hristov Default Branch split level set to 99 Revision 1.39 2001/07/26 09:09:34 kowal2 Hits2Reco method added Revision 1.38 2001/07/20 14:32:43 kowal2 Processing of many events possible now Revision 1.37 2001/06/12 07:17:18 kowal2 Hits2SDigits method implemented (summable digits) Revision 1.36 2001/05/16 14:57:25 alibrary New files for folders and Stack Revision 1.35 2001/05/08 16:02:22 kowal2 Updated material specifications Revision 1.34 2001/05/08 15:00:15 hristov Corrections for tracking in arbitrary magnenetic field. Changes towards a concept of global Alice track. Back propagation of reconstructed tracks (Yu.Belikov) Revision 1.33 2001/04/03 12:40:43 kowal2 Removed printouts Revision 1.32 2001/03/12 17:47:36 hristov Changes needed on Sun with CC 5.0 Revision 1.31 2001/03/12 08:21:50 kowal2 Corrected C++ bug in the material definitions Revision 1.30 2001/03/01 17:34:47 kowal2 Correction due to the accuracy problem Revision 1.29 2001/02/28 16:34:40 kowal2 Protection against nonphysical values of the avalanche size, 10**6 is the maximum Revision 1.28 2001/01/26 19:57:19 hristov Major upgrade of AliRoot code Revision 1.27 2001/01/13 17:29:33 kowal2 Sun compiler correction Revision 1.26 2001/01/10 07:59:43 kowal2 Corrections to load points from the noncompressed hits. Revision 1.25 2000/11/02 07:25:31 kowal2 Changes due to the new hit structure. Memory leak removed. Revision 1.24 2000/10/05 16:06:09 kowal2 Forward declarations. Changes due to a new class AliComplexCluster. Revision 1.23 2000/10/02 21:28:18 fca Removal of useless dependecies via forward declarations Revision 1.22 2000/07/10 20:57:39 hristov Update of TPC code and macros by M.Kowalski Revision 1.19.2.4 2000/06/26 07:39:42 kowal2 Changes to obey the coding rules Revision 1.19.2.3 2000/06/25 08:38:41 kowal2 Splitted from AliTPCtracking Revision 1.19.2.2 2000/06/16 12:59:28 kowal2 Changed parameter settings Revision 1.19.2.1 2000/06/09 07:15:07 kowal2 Defaults loaded automatically (hard-wired) Optional parameters can be set via macro called in the constructor Revision 1.19 2000/04/18 19:00:59 fca Small bug fixes to TPC files Revision 1.18 2000/04/17 09:37:33 kowal2 removed obsolete AliTPCDigitsDisplay.C Revision 1.17.2.2 2000/04/10 08:15:12 kowal2 New, experimental data structure from M. Ivanov New tracking algorithm Different pad geometry for different sectors Digitization rewritten Revision 1.17.2.1 2000/04/10 07:56:53 kowal2 Not used anymore - removed Revision 1.17 2000/01/19 17:17:30 fca Introducing a list of lists of hits -- more hits allowed for detector now Revision 1.16 1999/11/05 09:29:23 fca Accept only signals > 0 Revision 1.15 1999/10/08 06:26:53 fca Removed ClustersIndex - not used anymore Revision 1.14 1999/09/29 09:24:33 fca Introduction of the Copyright and cvs Log */ /////////////////////////////////////////////////////////////////////////////// // // // Time Projection Chamber // // This class contains the basic functions for the Time Projection Chamber // // detector. Functions specific to one particular geometry are // // contained in the derived classes // // // //Begin_Html /* */ //End_Html // // // // /////////////////////////////////////////////////////////////////////////////// // #include #include #include #include #include #include #include #include #include "TParticle.h" #include "AliTPC.h" #include #include #include #include "AliRun.h" #include #include #include #include "AliMC.h" #include "AliMagF.h" #include "AliTrackReference.h" #include "AliTPCParamSR.h" #include "AliTPCPRF2D.h" #include "AliTPCRF1D.h" #include "AliDigits.h" #include "AliSimDigits.h" #include "AliTPCTrackHits.h" #include "AliTPCTrackHitsV2.h" #include "AliPoints.h" #include "AliArrayBranch.h" #include "AliTPCDigitsArray.h" #include "AliComplexCluster.h" #include "AliClusters.h" #include "AliTPCClustersRow.h" #include "AliTPCClustersArray.h" #include "AliTPCcluster.h" #include "AliTPCclusterer.h" #include "AliTPCtracker.h" #include #include ClassImp(AliTPC) //_____________________________________________________________________________ // helper class for fast matrix and vector manipulation - no range checking // origin - Marian Ivanov class AliTPCFastMatrix : public TMatrix { public : AliTPCFastMatrix(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb); inline Float_t & UncheckedAt(Int_t rown, Int_t coln) const {return (fIndex[coln])[rown];} //fast acces inline Float_t UncheckedAtFast(Int_t rown, Int_t coln) const {return (fIndex[coln])[rown];} //fast acces }; AliTPCFastMatrix::AliTPCFastMatrix(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb): TMatrix(row_lwb, row_upb,col_lwb,col_upb) { }; //_____________________________________________________________________________ class AliTPCFastVector : public TVector { public : AliTPCFastVector(Int_t size); virtual ~AliTPCFastVector(){;} inline Float_t & UncheckedAt(Int_t index) const {return fElements[index];} //fast acces }; AliTPCFastVector::AliTPCFastVector(Int_t size):TVector(size){ }; //_____________________________________________________________________________ AliTPC::AliTPC() { // // Default constructor // fIshunt = 0; fHits = 0; fDigits = 0; fNsectors = 0; fDigitsArray = 0; fClustersArray = 0; fDefaults = 0; fTrackHits = 0; fTrackHitsOld = 0; fHitType = 2; //default CONTAINERS - based on ROOT structure fTPCParam = 0; fNoiseTable = 0; fActiveSectors =0; } //_____________________________________________________________________________ AliTPC::AliTPC(const char *name, const char *title) : AliDetector(name,title) { // // Standard constructor // // // Initialise arrays of hits and digits fHits = new TClonesArray("AliTPChit", 176); gAlice->AddHitList(fHits); fDigitsArray = 0; fClustersArray= 0; fDefaults = 0; // fTrackHits = new AliTPCTrackHitsV2; fTrackHits->SetHitPrecision(0.002); fTrackHits->SetStepPrecision(0.003); fTrackHits->SetMaxDistance(100); fTrackHitsOld = new AliTPCTrackHits; //MI - 13.09.2000 fTrackHitsOld->SetHitPrecision(0.002); fTrackHitsOld->SetStepPrecision(0.003); fTrackHitsOld->SetMaxDistance(100); fNoiseTable =0; fHitType = 2; fActiveSectors = 0; // // Initialise counters fNsectors = 0; // fIshunt = 0; // // Initialise color attributes SetMarkerColor(kYellow); // // Set TPC parameters // if (!strcmp(title,"Default")) { fTPCParam = new AliTPCParamSR; } else { cerr<<"AliTPC warning: in Config.C you must set non-default parameters\n"; fTPCParam=0; } } //_____________________________________________________________________________ AliTPC::~AliTPC() { // // TPC destructor // fIshunt = 0; delete fHits; delete fDigits; delete fTPCParam; delete fTrackHits; //MI 15.09.2000 delete fTrackHitsOld; //MI 10.12.2001 if (fNoiseTable) delete [] fNoiseTable; } //_____________________________________________________________________________ void AliTPC::AddHit(Int_t track, Int_t *vol, Float_t *hits) { // // Add a hit to the list // // TClonesArray &lhits = *fHits; // new(lhits[fNhits++]) AliTPChit(fIshunt,track,vol,hits); if (fHitType&1){ TClonesArray &lhits = *fHits; new(lhits[fNhits++]) AliTPChit(fIshunt,track,vol,hits); } if (fHitType>1) AddHit2(track,vol,hits); } void AliTPC::AddTrackReference(Int_t lab, TLorentzVector p, TLorentzVector x, Float_t length){ // // add a trackrefernce to the list if (!fTrackReferences) { cerr<<"Container trackrefernce not active\n"; return; } Int_t nref = fTrackReferences->GetEntriesFast(); TClonesArray &lref = *fTrackReferences; AliTrackReference * ref = new(lref[nref]) AliTrackReference; ref->SetMomentum(p[0],p[1],p[2]); ref->SetPosition(x[0],x[1],x[2]); ref->SetTrack(lab); ref->SetLength(length); } //_____________________________________________________________________________ void AliTPC::BuildGeometry() { // // Build TPC ROOT TNode geometry for the event display // TNode *nNode, *nTop; TTUBS *tubs; Int_t i; const int kColorTPC=19; char name[5], title[25]; const Double_t kDegrad=TMath::Pi()/180; const Double_t kRaddeg=180./TMath::Pi(); Float_t innerOpenAngle = fTPCParam->GetInnerAngle(); Float_t outerOpenAngle = fTPCParam->GetOuterAngle(); Float_t innerAngleShift = fTPCParam->GetInnerAngleShift(); Float_t outerAngleShift = fTPCParam->GetOuterAngleShift(); Int_t nLo = fTPCParam->GetNInnerSector()/2; Int_t nHi = fTPCParam->GetNOuterSector()/2; const Double_t kloAng = (Double_t)TMath::Nint(innerOpenAngle*kRaddeg); const Double_t khiAng = (Double_t)TMath::Nint(outerOpenAngle*kRaddeg); const Double_t kloAngSh = (Double_t)TMath::Nint(innerAngleShift*kRaddeg); const Double_t khiAngSh = (Double_t)TMath::Nint(outerAngleShift*kRaddeg); const Double_t kloCorr = 1/TMath::Cos(0.5*kloAng*kDegrad); const Double_t khiCorr = 1/TMath::Cos(0.5*khiAng*kDegrad); Double_t rl,ru; // // Get ALICE top node // nTop=gAlice->GetGeometry()->GetNode("alice"); // inner sectors rl = fTPCParam->GetInnerRadiusLow(); ru = fTPCParam->GetInnerRadiusUp(); for(i=0;iSetNumberOfDivisions(1); nTop->cd(); nNode = new TNode(name,title,name,0,0,0,""); nNode->SetLineColor(kColorTPC); fNodes->Add(nNode); } // Outer sectors rl = fTPCParam->GetOuterRadiusLow(); ru = fTPCParam->GetOuterRadiusUp(); for(i=0;iSetNumberOfDivisions(1); nTop->cd(); nNode = new TNode(name,title,name,0,0,0,""); nNode->SetLineColor(kColorTPC); fNodes->Add(nNode); } } //_____________________________________________________________________________ Int_t AliTPC::DistancetoPrimitive(Int_t , Int_t ) { // // Calculate distance from TPC to mouse on the display // Dummy procedure // return 9999; } void AliTPC::Clusters2Tracks(TFile *of) { //----------------------------------------------------------------- // This is a track finder. //----------------------------------------------------------------- AliTPCtracker tracker(fTPCParam); tracker.Clusters2Tracks(gFile,of); } //_____________________________________________________________________________ void AliTPC::CreateMaterials() { //----------------------------------------------- // Create Materials for for TPC simulations //----------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- Int_t iSXFLD=gAlice->Field()->Integ(); Float_t sXMGMX=gAlice->Field()->Max(); Float_t amat[5]; // atomic numbers Float_t zmat[5]; // z Float_t wmat[5]; // proportions Float_t density; Float_t apure[2]; //***************** Gases ************************* //------------------------------------------------- // pure gases //------------------------------------------------- // Neon amat[0]= 20.18; zmat[0]= 10.; density = 0.0009; apure[0]=amat[0]; AliMaterial(20,"Ne",amat[0],zmat[0],density,999.,999.); // Argon amat[0]= 39.948; zmat[0]= 18.; density = 0.001782; apure[1]=amat[0]; AliMaterial(21,"Ar",amat[0],zmat[0],density,999.,999.); //-------------------------------------------------------------- // gases - compounds //-------------------------------------------------------------- Float_t amol[3]; // CO2 amat[0]=12.011; amat[1]=15.9994; zmat[0]=6.; zmat[1]=8.; wmat[0]=1.; wmat[1]=2.; density=0.001977; amol[0] = amat[0]*wmat[0]+amat[1]*wmat[1]; AliMixture(10,"CO2",amat,zmat,density,-2,wmat); // CF4 amat[0]=12.011; amat[1]=18.998; zmat[0]=6.; zmat[1]=9.; wmat[0]=1.; wmat[1]=4.; density=0.003034; amol[1] = amat[0]*wmat[0]+amat[1]*wmat[1]; AliMixture(11,"CF4",amat,zmat,density,-2,wmat); // CH4 amat[0]=12.011; amat[1]=1.; zmat[0]=6.; zmat[1]=1.; wmat[0]=1.; wmat[1]=4.; density=0.000717; amol[2] = amat[0]*wmat[0]+amat[1]*wmat[1]; AliMixture(12,"CH4",amat,zmat,density,-2,wmat); //---------------------------------------------------------------- // gases - mixtures, ID >= 20 pure gases, <= 10 ID < 20 -compounds //---------------------------------------------------------------- char namate[21]; density = 0.; Float_t am=0; Int_t nc; Float_t rho,absl,X0,buf[1]; Int_t nbuf; Float_t a,z; for(nc = 0;ncGfmate((*fIdmate)[fMixtComp[nc]],namate,a,z,rho,X0,absl,buf,nbuf); amat[nc] = a; zmat[nc] = z; Int_t nnc = (fMixtComp[nc]>=20) ? fMixtComp[nc]%20 : fMixtComp[nc]%10; am += fMixtProp[nc]*((fMixtComp[nc]>=20) ? apure[nnc] : amol[nnc]); density += fMixtProp[nc]*rho; // density of the mixture } // mixture proportions by weight! for(nc = 0;nc=20) ? fMixtComp[nc]%20 : fMixtComp[nc]%10; wmat[nc] = fMixtProp[nc]*((fMixtComp[nc]>=20) ? apure[nnc] : amol[nnc])/am; } // Drift gases 1 - nonsensitive, 2 - sensitive AliMixture(31,"Drift gas 1",amat,zmat,density,fNoComp,wmat); AliMixture(32,"Drift gas 2",amat,zmat,density,fNoComp,wmat); // Air amat[0] = 14.61; zmat[0] = 7.3; density = 0.001205; AliMaterial(24,"Air",amat[0],zmat[0],density,999.,999.); //---------------------------------------------------------------------- // solid materials //---------------------------------------------------------------------- // Kevlar C14H22O2N2 amat[0] = 12.011; amat[1] = 1.; amat[2] = 15.999; amat[3] = 14.006; zmat[0] = 6.; zmat[1] = 1.; zmat[2] = 8.; zmat[3] = 7.; wmat[0] = 14.; wmat[1] = 22.; wmat[2] = 2.; wmat[3] = 2.; density = 1.45; AliMixture(34,"Kevlar",amat,zmat,density,-4,wmat); // NOMEX amat[0] = 12.011; amat[1] = 1.; amat[2] = 15.999; amat[3] = 14.006; zmat[0] = 6.; zmat[1] = 1.; zmat[2] = 8.; zmat[3] = 7.; wmat[0] = 14.; wmat[1] = 22.; wmat[2] = 2.; wmat[3] = 2.; density = 0.03; AliMixture(35,"NOMEX",amat,zmat,density,-4,wmat); // Makrolon C16H18O3 amat[0] = 12.011; amat[1] = 1.; amat[2] = 15.999; zmat[0] = 6.; zmat[1] = 1.; zmat[2] = 8.; wmat[0] = 16.; wmat[1] = 18.; wmat[2] = 3.; density = 1.2; AliMixture(36,"Makrolon",amat,zmat,density,-3,wmat); // Mylar C5H4O2 amat[0]=12.011; amat[1]=1.; amat[2]=15.9994; zmat[0]=6.; zmat[1]=1.; zmat[2]=8.; wmat[0]=5.; wmat[1]=4.; wmat[2]=2.; density = 1.39; AliMixture(37, "Mylar",amat,zmat,density,-3,wmat); // SiO2 - used later for the glass fiber amat[0]=28.086; amat[1]=15.9994; zmat[0]=14.; zmat[1]=8.; wmat[0]=1.; wmat[1]=2.; AliMixture(38,"SiO2",amat,zmat,2.2,-2,wmat); //SiO2 - quartz (rho=2.2) // Al amat[0] = 26.98; zmat[0] = 13.; density = 2.7; AliMaterial(40,"Al",amat[0],zmat[0],density,999.,999.); // Si amat[0] = 28.086; zmat[0] = 14.; density = 2.33; AliMaterial(41,"Si",amat[0],zmat[0],density,999.,999.); // Cu amat[0] = 63.546; zmat[0] = 29.; density = 8.96; AliMaterial(42,"Cu",amat[0],zmat[0],density,999.,999.); // Tedlar C2H3F amat[0] = 12.011; amat[1] = 1.; amat[2] = 18.998; zmat[0] = 6.; zmat[1] = 1.; zmat[2] = 9.; wmat[0] = 2.; wmat[1] = 3.; wmat[2] = 1.; density = 1.71; AliMixture(43, "Tedlar",amat,zmat,density,-3,wmat); // Plexiglas C5H8O2 amat[0]=12.011; amat[1]=1.; amat[2]=15.9994; zmat[0]=6.; zmat[1]=1.; zmat[2]=8.; wmat[0]=5.; wmat[1]=8.; wmat[2]=2.; density=1.18; AliMixture(44,"Plexiglas",amat,zmat,density,-3,wmat); // Epoxy - C14 H20 O3 amat[0]=12.011; amat[1]=1.; amat[2]=15.9994; zmat[0]=6.; zmat[1]=1.; zmat[2]=8.; wmat[0]=14.; wmat[1]=20.; wmat[2]=3.; density=1.25; AliMixture(45,"Epoxy",amat,zmat,density,-3,wmat); // Carbon amat[0]=12.011; zmat[0]=6.; density= 2.265; AliMaterial(46,"C",amat[0],zmat[0],density,999.,999.); // get epoxy gMC->Gfmate((*fIdmate)[45],namate,amat[1],zmat[1],rho,X0,absl,buf,nbuf); // Carbon fiber wmat[0]=0.644; // by weight! wmat[1]=0.356; density=0.5*(1.25+2.265); AliMixture(47,"Cfiber",amat,zmat,density,2,wmat); // get SiO2 gMC->Gfmate((*fIdmate)[38],namate,amat[0],zmat[0],rho,X0,absl,buf,nbuf); wmat[0]=0.725; // by weight! wmat[1]=0.275; density=1.7; AliMixture(39,"G10",amat,zmat,density,2,wmat); //---------------------------------------------------------- // tracking media for gases //---------------------------------------------------------- AliMedium(0, "Air", 24, 0, iSXFLD, sXMGMX, 10., 999., .1, .01, .1); AliMedium(1, "Drift gas 1", 31, 0, iSXFLD, sXMGMX, 10., 999.,.1,.001, .001); AliMedium(2, "Drift gas 2", 32, 1, iSXFLD, sXMGMX, 10., 999.,.1,.001, .001); AliMedium(3,"CO2",10,0, iSXFLD, sXMGMX, 10., 999.,.1, .001, .001); //----------------------------------------------------------- // tracking media for solids //----------------------------------------------------------- AliMedium(4,"Al",40,0, iSXFLD, sXMGMX, 10., 999., .1, .0005, .001); AliMedium(5,"Kevlar",34,0, iSXFLD, sXMGMX, 10., 999., .1, .0005, .001); AliMedium(6,"Nomex",35,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(7,"Makrolon",36,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(8,"Mylar",37,0, iSXFLD, sXMGMX, 10., 999., .1, .0005, .001); AliMedium(9,"Tedlar",43,0, iSXFLD, sXMGMX, 10., 999., .1, .0005, .001); AliMedium(10,"Cu",42,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(11,"Si",41,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(12,"G10",39,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(13,"Plexiglas",44,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); AliMedium(14,"Epoxy",45,0, iSXFLD, sXMGMX, 10., 999., .1, .0005, .001); AliMedium(15,"Cfiber",47,0, iSXFLD, sXMGMX, 10., 999., .1, .001, .001); } void AliTPC::GenerNoise(Int_t tablesize) { // //Generate table with noise // if (fTPCParam==0) { // error message fNoiseDepth=0; return; } if (fNoiseTable) delete[] fNoiseTable; fNoiseTable = new Float_t[tablesize]; fNoiseDepth = tablesize; fCurrentNoise =0; //!index of the noise in the noise table Float_t norm = fTPCParam->GetNoise()*fTPCParam->GetNoiseNormFac(); for (Int_t i=0;iGaus(0,norm); } Float_t AliTPC::GetNoise() { // get noise from table // if ((fCurrentNoise%10)==0) // fCurrentNoise= gRandom->Rndm()*fNoiseDepth; if (fCurrentNoise>=fNoiseDepth) fCurrentNoise=0; return fNoiseTable[fCurrentNoise++]; //gRandom->Gaus(0, fTPCParam->GetNoise()*fTPCParam->GetNoiseNormFac()); } Bool_t AliTPC::IsSectorActive(Int_t sec) { // // check if the sector is active if (!fActiveSectors) return kTRUE; else return fActiveSectors[sec]; } void AliTPC::SetActiveSectors(Int_t * sectors, Int_t n) { // activate interesting sectors if (fActiveSectors) delete [] fActiveSectors; fActiveSectors = new Bool_t[fTPCParam->GetNSector()]; for (Int_t i=0;iGetNSector();i++) fActiveSectors[i]=kFALSE; for (Int_t i=0;i=0) && sectors[i]GetNSector()) fActiveSectors[sectors[i]]=kTRUE; } void AliTPC::SetActiveSectors(Int_t flag) { // // activate sectors which were hitted by tracks //loop over tracks if (fHitType==0) return; // if Clones hit - not short volume ID information if (fActiveSectors) delete [] fActiveSectors; fActiveSectors = new Bool_t[fTPCParam->GetNSector()]; if (flag) { for (Int_t i=0;iGetNSector();i++) fActiveSectors[i]=kTRUE; return; } for (Int_t i=0;iGetNSector();i++) fActiveSectors[i]=kFALSE; TBranch * branch=0; if (fHitType>1) branch = gAlice->TreeH()->GetBranch("TPC2"); else branch = gAlice->TreeH()->GetBranch("TPC"); Stat_t ntracks = gAlice->TreeH()->GetEntries(); // loop over all hits for(Int_t track=0;trackTreeH()->GetBranch("fVolumes"); TBranch * br2 = gAlice->TreeH()->GetBranch("fNVolumes"); br1->GetEvent(track); br2->GetEvent(track); Int_t *volumes = fTrackHits->GetVolumes(); for (Int_t j=0;jGetNVolumes(); j++) fActiveSectors[volumes[j]]=kTRUE; } // if (fTrackHitsOld && fHitType&2) { TBranch * br = gAlice->TreeH()->GetBranch("fTrackHitsInfo"); br->GetEvent(track); AliObjectArray * ar = fTrackHitsOld->fTrackHitsInfo; for (UInt_t j=0;jGetSize();j++){ fActiveSectors[((AliTrackHitsInfo*)ar->At(j))->fVolumeID] =kTRUE; } } } } void AliTPC::Digits2Clusters(TFile *of, Int_t eventnumber) { //----------------------------------------------------------------- // This is a simple cluster finder. //----------------------------------------------------------------- AliTPCclusterer::Digits2Clusters(fTPCParam,of,eventnumber); } extern Double_t SigmaY2(Double_t, Double_t, Double_t); extern Double_t SigmaZ2(Double_t, Double_t); //_____________________________________________________________________________ void AliTPC::Hits2Clusters(TFile *of, Int_t eventn) { //-------------------------------------------------------- // TPC simple cluster generator from hits // obtained from the TPC Fast Simulator // The point errors are taken from the parametrization //-------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- // Adopted to Marian's cluster data structure by I.Belikov, CERN, // Jouri.Belikov@cern.ch //---------------------------------------------------------------- ///////////////////////////////////////////////////////////////////////////// // //--------------------------------------------------------------------- // ALICE TPC Cluster Parameters //-------------------------------------------------------------------- // Cluster width in rphi const Float_t kACrphi=0.18322; const Float_t kBCrphi=0.59551e-3; const Float_t kCCrphi=0.60952e-1; // Cluster width in z const Float_t kACz=0.19081; const Float_t kBCz=0.55938e-3; const Float_t kCCz=0.30428; TDirectory *savedir=gDirectory; if (!of->IsOpen()) { cerr<<"AliTPC::Hits2Clusters(): output file not open !\n"; return; } //if(fDefaults == 0) SetDefaults(); Float_t sigmaRphi,sigmaZ,clRphi,clZ; // TParticle *particle; // pointer to a given particle AliTPChit *tpcHit; // pointer to a sigle TPC hit Int_t sector; Int_t ipart; Float_t xyz[5]; Float_t pl,pt,tanth,rpad,ratio; Float_t cph,sph; //--------------------------------------------------------------- // Get the access to the tracks //--------------------------------------------------------------- TTree *tH = gAlice->TreeH(); Stat_t ntracks = tH->GetEntries(); //Switch to the output file of->cd(); char cname[100]; sprintf(cname,"TreeC_TPC_%d",eventn); fTPCParam->Write(fTPCParam->GetTitle()); AliTPCClustersArray carray; carray.Setup(fTPCParam); carray.SetClusterType("AliTPCcluster"); carray.MakeTree(); Int_t nclusters=0; //cluster counter //------------------------------------------------------------ // Loop over all sectors (72 sectors for 20 deg // segmentation for both lower and upper sectors) // Sectors 0-35 are lower sectors, 0-17 z>0, 17-35 z<0 // Sectors 36-71 are upper sectors, 36-53 z>0, 54-71 z<0 // // First cluster for sector 0 starts at "0" //------------------------------------------------------------ for(Int_t isec=0;isecGetNSector();isec++){ //MI change fTPCParam->AdjustCosSin(isec,cph,sph); //------------------------------------------------------------ // Loop over tracks //------------------------------------------------------------ for(Int_t track=0;trackGetEvent(track); // // Get number of the TPC hits // tpcHit = (AliTPChit*)FirstHit(-1); // Loop over hits // while(tpcHit){ if (tpcHit->fQ == 0.) { tpcHit = (AliTPChit*) NextHit(); continue; //information about track (I.Belikov) } sector=tpcHit->fSector; // sector number if(sector != isec){ tpcHit = (AliTPChit*) NextHit(); continue; } ipart=tpcHit->Track(); particle=gAlice->Particle(ipart); pl=particle->Pz(); pt=particle->Pt(); if(pt < 1.e-9) pt=1.e-9; tanth=pl/pt; tanth = TMath::Abs(tanth); rpad=TMath::Sqrt(tpcHit->X()*tpcHit->X() + tpcHit->Y()*tpcHit->Y()); ratio=0.001*rpad/pt; // pt must be in MeV/c - historical reason // space-point resolutions sigmaRphi=SigmaY2(rpad,tanth,pt); sigmaZ =SigmaZ2(rpad,tanth ); // cluster widths clRphi=kACrphi-kBCrphi*rpad*tanth+kCCrphi*ratio*ratio; clZ=kACz-kBCz*rpad*tanth+kCCz*tanth*tanth; // temporary protection if(sigmaRphi < 0.) sigmaRphi=0.4e-3; if(sigmaZ < 0.) sigmaZ=0.4e-3; if(clRphi < 0.) clRphi=2.5e-3; if(clZ < 0.) clZ=2.5e-5; // // // smearing --> rotate to the 1 (13) or to the 25 (49) sector, // then the inaccuracy in a X-Y plane is only along Y (pad row)! // Float_t xprim= tpcHit->X()*cph + tpcHit->Y()*sph; Float_t yprim=-tpcHit->X()*sph + tpcHit->Y()*cph; xyz[0]=gRandom->Gaus(yprim,TMath::Sqrt(sigmaRphi)); // y Float_t alpha=(isec < fTPCParam->GetNInnerSector()) ? fTPCParam->GetInnerAngle() : fTPCParam->GetOuterAngle(); Float_t ymax=xprim*TMath::Tan(0.5*alpha); if (TMath::Abs(xyz[0])>ymax) xyz[0]=yprim; xyz[1]=gRandom->Gaus(tpcHit->Z(),TMath::Sqrt(sigmaZ)); // z if (TMath::Abs(xyz[1])>fTPCParam->GetZLength()) xyz[1]=tpcHit->Z(); xyz[2]=sigmaRphi; // fSigmaY2 xyz[3]=sigmaZ; // fSigmaZ2 xyz[4]=tpcHit->fQ; // q AliTPCClustersRow *clrow=carray.GetRow(sector,tpcHit->fPadRow); if (!clrow) clrow=carray.CreateRow(sector,tpcHit->fPadRow); Int_t tracks[3]={tpcHit->Track(), -1, -1}; AliTPCcluster cluster(tracks,xyz); clrow->InsertCluster(&cluster); nclusters++; tpcHit = (AliTPChit*)NextHit(); } // end of loop over hits } // end of loop over tracks Int_t nrows=fTPCParam->GetNRow(isec); for (Int_t irow=0; irowSetName(cname); carray.GetTree()->Write(); savedir->cd(); //switch back to the input file } // end of function //_________________________________________________________________ void AliTPC::Hits2ExactClustersSector(Int_t isec) { //-------------------------------------------------------- //calculate exact cross point of track and given pad row //resulting values are expressed in "digit" coordinata //-------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marian Ivanov GSI Darmstadt, m.ivanov@gsi.de //----------------------------------------------------------------- // if (fClustersArray==0){ return; } // TParticle *particle; // pointer to a given particle AliTPChit *tpcHit; // pointer to a sigle TPC hit // Int_t sector,nhits; Int_t ipart; const Int_t kcmaxhits=30000; AliTPCFastVector * xxxx = new AliTPCFastVector(kcmaxhits*4); AliTPCFastVector & xxx = *xxxx; Int_t maxhits = kcmaxhits; //construct array for each padrow for (Int_t i=0; iGetNRow(isec);i++) fClustersArray->CreateRow(isec,i); //--------------------------------------------------------------- // Get the access to the tracks //--------------------------------------------------------------- TTree *tH = gAlice->TreeH(); Stat_t ntracks = tH->GetEntries(); Int_t npart = gAlice->GetNtrack(); //MI change TBranch * branch=0; if (fHitType>1) branch = tH->GetBranch("TPC2"); else branch = tH->GetBranch("TPC"); //------------------------------------------------------------ // Loop over tracks //------------------------------------------------------------ for(Int_t track=0;trackGetEntry(track); // get next track // // Get number of the TPC hits and a pointer // to the particles // Loop over hits // Int_t currentIndex=0; Int_t lastrow=-1; //last writen row //M.I. changes tpcHit = (AliTPChit*)FirstHit(-1); while(tpcHit){ Int_t sector=tpcHit->fSector; // sector number if(sector != isec){ tpcHit = (AliTPChit*) NextHit(); continue; } ipart=tpcHit->Track(); if (ipartParticle(ipart); //find row number Float_t x[3]={tpcHit->X(),tpcHit->Y(),tpcHit->Z()}; Int_t index[3]={1,isec,0}; Int_t currentrow = fTPCParam->GetPadRow(x,index) ; if (currentrow<0) {tpcHit = (AliTPChit*)NextHit(); continue;} if (lastrow<0) lastrow=currentrow; if (currentrow==lastrow){ if ( currentIndex>=maxhits){ maxhits+=kcmaxhits; xxx.ResizeTo(4*maxhits); } xxx(currentIndex*4)=x[0]; xxx(currentIndex*4+1)=x[1]; xxx(currentIndex*4+2)=x[2]; xxx(currentIndex*4+3)=tpcHit->fQ; currentIndex++; } else if (currentIndex>2){ Float_t sumx=0; Float_t sumx2=0; Float_t sumx3=0; Float_t sumx4=0; Float_t sumy=0; Float_t sumxy=0; Float_t sumx2y=0; Float_t sumz=0; Float_t sumxz=0; Float_t sumx2z=0; Float_t sumq=0; for (Int_t index=0;indexGetNPads(isec,lastrow)-1)/2; Float_t det=currentIndex*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx3-sumx2*sumx2); Float_t detay=sumy*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumxy*sumx4-sumx2y*sumx3)+ sumx2*(sumxy*sumx3-sumx2y*sumx2); Float_t detaz=sumz*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumxz*sumx4-sumx2z*sumx3)+ sumx2*(sumxz*sumx3-sumx2z*sumx2); Float_t detby=currentIndex*(sumxy*sumx4-sumx2y*sumx3)-sumy*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx2y-sumx2*sumxy); Float_t detbz=currentIndex*(sumxz*sumx4-sumx2z*sumx3)-sumz*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx2z-sumx2*sumxz); if (TMath::Abs(det)<0.00001){ tpcHit = (AliTPChit*)NextHit(); continue; } Float_t y=detay/det+centralPad; Float_t z=detaz/det; Float_t by=detby/det; //y angle Float_t bz=detbz/det; //z angle sumy/=Float_t(currentIndex); sumz/=Float_t(currentIndex); AliTPCClustersRow * row = (fClustersArray->GetRow(isec,lastrow)); if (row!=0) { AliComplexCluster* cl = new((AliComplexCluster*)row->Append()) AliComplexCluster ; // AliComplexCluster cl; cl->fX=z; cl->fY=y; cl->fQ=sumq; cl->fSigmaX2=bz; cl->fSigmaY2=by; cl->fTracks[0]=ipart; } currentIndex=0; lastrow=currentrow; } //end of calculating cluster for given row tpcHit = (AliTPChit*)NextHit(); } // end of loop over hits } // end of loop over tracks //write padrows to tree for (Int_t ii=0; iiGetNRow(isec);ii++) { fClustersArray->StoreRow(isec,ii); fClustersArray->ClearRow(isec,ii); } xxxx->Delete(); } //__ void AliTPC::SDigits2Digits2(Int_t eventnumber) { //create digits from summable digits GenerNoise(500000); //create teble with noise char sname[100]; char dname[100]; sprintf(sname,"TreeS_%s_%d",fTPCParam->GetTitle(),eventnumber); sprintf(dname,"TreeD_%s_%d",fTPCParam->GetTitle(),eventnumber); //conect tree with sSDigits TTree *t; if (gAlice->GetTreeDFile()) { t = (TTree *)gAlice->GetTreeDFile()->Get(sname); } else { t = (TTree *)gDirectory->Get(sname); } if (!t) { cerr<<"TPC tree with sdigits not found"<GetBranch("Segment")->SetAddress(&dummy); Stat_t nentries = t->GetEntries(); // set zero suppression fTPCParam->SetZeroSup(2); // get zero suppression Int_t zerosup = fTPCParam->GetZeroSup(); //make tree with digits AliTPCDigitsArray *arr = new AliTPCDigitsArray; arr->SetClass("AliSimDigits"); arr->Setup(fTPCParam); // Note that methods arr->MakeTree have different signatures if (gAlice->GetTreeDFile()) { arr->MakeTree(gAlice->GetTreeDFile()); } else { arr->MakeTree(fDigitsFile); } AliTPCParam * par =fTPCParam; //Loop over segments of the TPC for (Int_t n=0; nGetEvent(n); Int_t sec, row; if (!par->AdjustSectorRow(digarr.GetID(),sec,row)) { cerr<<"AliTPC warning: invalid segment ID ! "<CreateRow(sec,row); Int_t nrows = digrow->GetNRows(); Int_t ncols = digrow->GetNCols(); digrow->ExpandBuffer(); digarr.ExpandBuffer(); digrow->ExpandTrackBuffer(); digarr.ExpandTrackBuffer(); Short_t * pamp0 = digarr.GetDigits(); Int_t * ptracks0 = digarr.GetTracks(); Short_t * pamp1 = digrow->GetDigits(); Int_t * ptracks1 = digrow->GetTracks(); Int_t nelems =nrows*ncols; Int_t saturation = fTPCParam->GetADCSat(); //use internal structure of the AliDigits - for speed reason //if you cahnge implementation //of the Alidigits - it must be rewriten - for (Int_t i= 0; izerosup){ if (q>saturation) q=saturation; *pamp1=(Short_t)q; //if (ptracks0[0]==0) // ptracks1[0]=1; //else ptracks1[0]=ptracks0[0]; ptracks1[nelems]=ptracks0[nelems]; ptracks1[2*nelems]=ptracks0[2*nelems]; } pamp0++; pamp1++; ptracks0++; ptracks1++; } arr->StoreRow(sec,row); arr->ClearRow(sec,row); // cerr<GetTree()->SetName(dname); arr->GetTree()->AutoSave(); delete arr; } //_________________________________________ void AliTPC::Merge(TTree * intree, Int_t *mask, Int_t nin, Int_t outid) { //intree - pointer to array of trees with s digits //mask - mask for each //nin - number of inputs //outid - event number of the output event //create digits from summable digits //conect tree with sSDigits AliSimDigits ** digarr = new AliSimDigits*[nin]; for (Int_t i1=0;i1SetAddress(&digarr[i1]); } Stat_t nentries = intree[0].GetEntries(); //make tree with digits char dname[100]; sprintf(dname,"TreeD_%s_%d",fTPCParam->GetTitle(),outid); AliTPCDigitsArray *arr = new AliTPCDigitsArray; arr->SetClass("AliSimDigits"); arr->Setup(fTPCParam); arr->MakeTree(fDigitsFile); // set zero suppression fTPCParam->SetZeroSup(2); // get zero suppression Int_t zerosup = fTPCParam->GetZeroSup(); AliTPCParam * par =fTPCParam; //Loop over segments of the TPC for (Int_t n=0; nExpandBuffer(); digarr[i]->ExpandTrackBuffer(); } Int_t sec, row; if (!par->AdjustSectorRow(digarr[0]->GetID(),sec,row)) { cerr<<"AliTPC warning: invalid segment ID ! "<GetID()<CreateRow(sec,row); Int_t nrows = digrow->GetNRows(); Int_t ncols = digrow->GetNCols(); digrow->ExpandBuffer(); digrow->ExpandTrackBuffer(); for (Int_t rows=0;rowsGetDigitFast(rows,col); for (Int_t tr=0;tr<3;tr++) { Int_t lab = digarr[i]->GetTrackIDFast(rows,col,tr); if ( lab > 1) { label[labptr]=lab+mask[i]-2; labptr++; } } } //add noise q = gRandom->Gaus(q,fTPCParam->GetNoise()*fTPCParam->GetNoiseNormFac()*16); q/=16; //conversion faktor q=(Short_t)q; if (q> zerosup){ if(q > fTPCParam->GetADCSat()) q = fTPCParam->GetADCSat(); digrow->SetDigitFast((Short_t)q,rows,col); for (Int_t tr=0;tr<3;tr++){ if (trSetTrackIDFast(label[tr],rows,col,tr); else ((AliSimDigits*)digrow)->SetTrackIDFast(-1,rows,col,tr); } } } } arr->StoreRow(sec,row); arr->ClearRow(sec,row); } delete digarr; arr->GetTree()->SetName(dname); arr->GetTree()->Write(); delete arr; } /*_________________________________________ void AliTPC::SDigits2Digits(Int_t eventnumber) { cerr<<"Digitizing TPC...\n"; Hits2Digits(eventnumber); //write results // char treeName[100]; // sprintf(treeName,"TreeD_%s_%d",fTPCParam->GetTitle(),eventnumber); // GetDigitsArray()->GetTree()->Write(treeName); } */ //__________________________________________________________________ void AliTPC::SetDefaults(){ cerr<<"Setting default parameters...\n"; // Set response functions AliTPCParamSR *param=(AliTPCParamSR*)gDirectory->Get("75x40_100x60"); if(param){ printf("You are using 2 pad-length geom hits with 3 pad-lenght geom digits...\n"); delete param; param = new AliTPCParamSR(); } else { param=(AliTPCParamSR*)gDirectory->Get("75x40_100x60_150x60"); } if(!param){ printf("No TPC parameters found\n"); exit(4); } AliTPCPRF2D * prfinner = new AliTPCPRF2D; AliTPCPRF2D * prfouter1 = new AliTPCPRF2D; AliTPCPRF2D * prfouter2 = new AliTPCPRF2D; AliTPCRF1D * rf = new AliTPCRF1D(kTRUE); rf->SetGauss(param->GetZSigma(),param->GetZWidth(),1.); rf->SetOffset(3*param->GetZSigma()); rf->Update(); TDirectory *savedir=gDirectory; TFile *f=TFile::Open("$ALICE_ROOT/TPC/AliTPCprf2d.root"); if (!f->IsOpen()) { cerr<<"Can't open $ALICE_ROOT/TPC/AliTPCprf2d.root !\n" ; exit(3); } prfinner->Read("prf_07504_Gati_056068_d02"); prfouter1->Read("prf_10006_Gati_047051_d03"); prfouter2->Read("prf_15006_Gati_047051_d03"); f->Close(); savedir->cd(); param->SetInnerPRF(prfinner); param->SetOuter1PRF(prfouter1); param->SetOuter2PRF(prfouter2); param->SetTimeRF(rf); // set fTPCParam SetParam(param); fDefaults = 1; } //__________________________________________________________________ void AliTPC::Hits2Digits(Int_t eventnumber) { //---------------------------------------------------- // Loop over all sectors for a single event //---------------------------------------------------- if(fDefaults == 0) SetDefaults(); // check if the parameters are set GenerNoise(500000); //create teble with noise //setup TPCDigitsArray if(GetDigitsArray()) delete GetDigitsArray(); AliTPCDigitsArray *arr = new AliTPCDigitsArray; arr->SetClass("AliSimDigits"); arr->Setup(fTPCParam); // Note that methods arr->MakeTree have different signatures if (gAlice->GetTreeDFile()) { arr->MakeTree(gAlice->GetTreeDFile()); } else { arr->MakeTree(fDigitsFile); } SetDigitsArray(arr); fDigitsSwitch=0; // standard digits cerr<<"Digitizing TPC -- normal digits...\n"; for(Int_t isec=0;isecGetNSector();isec++) if (IsSectorActive(isec)) Hits2DigitsSector(isec); // write results char treeName[100]; sprintf(treeName,"TreeD_%s_%d",fTPCParam->GetTitle(),eventnumber); GetDigitsArray()->GetTree()->SetName(treeName); GetDigitsArray()->GetTree()->AutoSave(); } //__________________________________________________________________ void AliTPC::Hits2SDigits2(Int_t eventnumber) { //----------------------------------------------------------- // summable digits - 16 bit "ADC", no noise, no saturation //----------------------------------------------------------- //---------------------------------------------------- // Loop over all sectors for a single event //---------------------------------------------------- if(fDefaults == 0) SetDefaults(); GenerNoise(500000); //create table with noise //setup TPCDigitsArray if(GetDigitsArray()) delete GetDigitsArray(); AliTPCDigitsArray *arr = new AliTPCDigitsArray; arr->SetClass("AliSimDigits"); arr->Setup(fTPCParam); // Note that methods arr->MakeTree have different signatures if (gAlice->GetTreeSFile()) { arr->MakeTree(gAlice->GetTreeSFile()); } else { arr->MakeTree(fDigitsFile); } SetDigitsArray(arr); cerr<<"Digitizing TPC -- summable digits...\n"; fDigitsSwitch=1; // summable digits // set zero suppression to "0" fTPCParam->SetZeroSup(0); for(Int_t isec=0;isecGetNSector();isec++) if (IsSectorActive(isec)) Hits2DigitsSector(isec); // write results char treeName[100]; sprintf(treeName,"TreeS_%s_%d",fTPCParam->GetTitle(),eventnumber); GetDigitsArray()->GetTree()->SetName(treeName); GetDigitsArray()->GetTree()->AutoSave(); } //__________________________________________________________________ void AliTPC::Hits2SDigits() { //----------------------------------------------------------- // summable digits - 16 bit "ADC", no noise, no saturation //----------------------------------------------------------- //---------------------------------------------------- // Loop over all sectors for a single event //---------------------------------------------------- //MI change - for pp run Int_t eventnumber = gAlice->GetEvNumber(); if(fDefaults == 0) SetDefaults(); GenerNoise(500000); //create table with noise //setup TPCDigitsArray if(GetDigitsArray()) delete GetDigitsArray(); AliTPCDigitsArray *arr = new AliTPCDigitsArray; arr->SetClass("AliSimDigits"); arr->Setup(fTPCParam); // Note that methods arr->MakeTree have different signatures if (gAlice->GetTreeSFile()) { arr->MakeTree(gAlice->GetTreeSFile()); } else { arr->MakeTree(fDigitsFile); } SetDigitsArray(arr); cerr<<"Digitizing TPC -- summable digits...\n"; // fDigitsSwitch=1; // summable digits -for the moment direct for(Int_t isec=0;isecGetNSector();isec++) if (IsSectorActive(isec)) Hits2DigitsSector(isec); // write results char treeName[100]; sprintf(treeName,"TreeD_%s_%d",fTPCParam->GetTitle(),eventnumber); GetDigitsArray()->GetTree()->SetName(treeName); GetDigitsArray()->GetTree()->AutoSave(); } //_____________________________________________________________________________ void AliTPC::Hits2DigitsSector(Int_t isec) { //------------------------------------------------------------------- // TPC conversion from hits to digits. //------------------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- //------------------------------------------------------- // Get the access to the track hits //------------------------------------------------------- // check if the parameters are set - important if one calls this method // directly, not from the Hits2Digits if(fDefaults == 0) SetDefaults(); TTree *tH = gAlice->TreeH(); // pointer to the hits tree Stat_t ntracks = tH->GetEntries(); if( ntracks > 0){ //------------------------------------------- // Only if there are any tracks... //------------------------------------------- TObjArray **row; //printf("*** Processing sector number %d ***\n",isec); Int_t nrows =fTPCParam->GetNRow(isec); row= new TObjArray* [nrows+2]; // 2 extra rows for cross talk MakeSector(isec,nrows,tH,ntracks,row); //-------------------------------------------------------- // Digitize this sector, row by row // row[i] is the pointer to the TObjArray of AliTPCFastVectors, // each one containing electrons accepted on this // row, assigned into tracks //-------------------------------------------------------- Int_t i; if (fDigitsArray->GetTree()==0) fDigitsArray->MakeTree(fDigitsFile); for (i=0;iCreateRow(isec,i); DigitizeRow(i,isec,row); fDigitsArray->StoreRow(isec,i); Int_t ndig = dig->GetDigitSize(); if (gDebug > 10) printf("*** Sector, row, compressed digits %d %d %d ***\n",isec,i,ndig); fDigitsArray->ClearRow(isec,i); } // end of the sector digitization for(i=0;iDelete(); delete row[i]; } delete [] row; // delete the array of pointers to TObjArray-s } // ntracks >0 } // end of Hits2DigitsSector //_____________________________________________________________________________ void AliTPC::DigitizeRow(Int_t irow,Int_t isec,TObjArray **rows) { //----------------------------------------------------------- // Single row digitization, coupling from the neighbouring // rows taken into account //----------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl // Modified: Marian Ivanov GSI Darmstadt, m.ivanov@gsi.de //----------------------------------------------------------------- Float_t zerosup = fTPCParam->GetZeroSup(); // Int_t nrows =fTPCParam->GetNRow(isec); fCurrentIndex[1]= isec; Int_t nofPads = fTPCParam->GetNPads(isec,irow); Int_t nofTbins = fTPCParam->GetMaxTBin(); Int_t indexRange[4]; // // Integrated signal for this row // and a single track signal // AliTPCFastMatrix *m1 = new AliTPCFastMatrix(0,nofPads,0,nofTbins); // integrated AliTPCFastMatrix *m2 = new AliTPCFastMatrix(0,nofPads,0,nofTbins); // single // AliTPCFastMatrix &total = *m1; // Array of pointers to the label-signal list Int_t nofDigits = nofPads*nofTbins; // number of digits for this row Float_t **pList = new Float_t* [nofDigits]; Int_t lp; Int_t i1; for(lp=0;lpGetNCrossRows(),0); //Int_t row2 = TMath::Min(irow+fTPCParam->GetNCrossRows(),nrows-1); Int_t row1=irow; Int_t row2=irow+2; for (Int_t row= row1;row<=row2;row++){ Int_t nTracks= rows[row]->GetEntries(); for (i1=0;i1Zero(); // clear single track signal matrix Float_t trackLabel = GetSignal(rows[row],i1,m2,m1,indexRange); GetList(trackLabel,nofPads,m2,indexRange,pList); } else GetSignal(rows[row],i1,0,m1,indexRange); } } Int_t tracks[3]; AliDigits *dig = fDigitsArray->GetRow(isec,irow); Int_t gi=-1; Float_t fzerosup = zerosup+0.5; for(Int_t it=0;it fTPCParam->GetADCSat()) q = fTPCParam->GetADCSat(); // saturation } else { if(q <= 0.) continue; // do not fill zeros if(q>2000.) q=2000.; q *= 16.; q = TMath::Nint(q); } // // "real" signal or electronic noise (list = -1)? // for(Int_t j1=0;j1<3;j1++){ tracks[j1] = (pList[gi]) ?(Int_t)(*(pList[gi]+j1)) : -2; } //Begin_Html /* using of AliDigits object */ //End_Html dig->SetDigitFast((Short_t)q,it,ip); if (fDigitsArray->IsSimulated()) { ((AliSimDigits*)dig)->SetTrackIDFast(tracks[0],it,ip,0); ((AliSimDigits*)dig)->SetTrackIDFast(tracks[1],it,ip,1); ((AliSimDigits*)dig)->SetTrackIDFast(tracks[2],it,ip,2); } } // end of loop over time buckets } // end of lop over pads // // This row has been digitized, delete nonused stuff // for(lp=0;lpAt(ntr); // pointer to a track AliTPCFastVector &v = *tv; Float_t label = v(0); Int_t centralPad = (fTPCParam->GetNPads(fCurrentIndex[1],fCurrentIndex[3]-1)-1)/2; Int_t nElectrons = (tv->GetNrows()-1)/4; indexRange[0]=9999; // min pad indexRange[1]=-1; // max pad indexRange[2]=9999; //min time indexRange[3]=-1; // max time AliTPCFastMatrix &signal = *m1; AliTPCFastMatrix &total = *m2; // // Loop over all electrons // for(Int_t nel=0; nelGetTotalNormFac(); Float_t xyz[3]={v(idx+1),v(idx+2),v(idx+3)}; Int_t n = ((AliTPCParamSR*)fTPCParam)->CalcResponseFast(xyz,fCurrentIndex,fCurrentIndex[3]); Int_t *index = fTPCParam->GetResBin(0); Float_t *weight = & (fTPCParam->GetResWeight(0)); if (n>0) for (Int_t i =0; i=0){ Int_t time=index[2]; Float_t qweight = *(weight)*eltoadcfac; if (m1!=0) signal.UncheckedAt(pad,time)+=qweight; total.UncheckedAt(pad,time)+=qweight; if (indexRange[0]>pad) indexRange[0]=pad; if (indexRange[1]time) indexRange[2]=time; if (indexRange[3]highest){ *(pList[globalIndex]+5) = middle; *(pList[globalIndex]+4) = highest; *(pList[globalIndex]+3) = signal(ip,it); *(pList[globalIndex]+2) = *(pList[globalIndex]+1); *(pList[globalIndex]+1) = *pList[globalIndex]; *pList[globalIndex] = label; } else if (signal(ip,it)>middle){ *(pList[globalIndex]+5) = middle; *(pList[globalIndex]+4) = signal(ip,it); *(pList[globalIndex]+2) = *(pList[globalIndex]+1); *(pList[globalIndex]+1) = label; } else{ *(pList[globalIndex]+5) = signal(ip,it); *(pList[globalIndex]+2) = label; } } } // end of loop over pads } // end of loop over time bins }//end of GetList //___________________________________________________________________ void AliTPC::MakeSector(Int_t isec,Int_t nrows,TTree *TH, Stat_t ntracks,TObjArray **row) { //----------------------------------------------------------------- // Prepares the sector digitization, creates the vectors of // tracks for each row of this sector. The track vector // contains the track label and the position of electrons. //----------------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- Float_t gasgain = fTPCParam->GetGasGain(); Int_t i; Float_t xyz[4]; AliTPChit *tpcHit; // pointer to a sigle TPC hit //MI change TBranch * branch=0; if (fHitType>1) branch = TH->GetBranch("TPC2"); else branch = TH->GetBranch("TPC"); //---------------------------------------------- // Create TObjArray-s, one for each row, // each TObjArray will store the AliTPCFastVectors // of electrons, one AliTPCFastVectors per each track. //---------------------------------------------- Int_t *nofElectrons = new Int_t [nrows+2]; // electron counter for each row AliTPCFastVector **tracks = new AliTPCFastVector* [nrows+2]; //pointers to the track vectors for(i=0; iGetEntry(track); // get next track //M.I. changes tpcHit = (AliTPChit*)FirstHit(-1); //-------------------------------------------------------------- // Loop over hits //-------------------------------------------------------------- while(tpcHit){ Int_t sector=tpcHit->fSector; // sector number if(sector != isec){ tpcHit = (AliTPChit*) NextHit(); continue; } currentTrack = tpcHit->Track(); // track number if(currentTrack != previousTrack){ // store already filled fTrack for(i=0;i0){ AliTPCFastVector &v = *tracks[i]; v(0) = previousTrack; tracks[i]->ResizeTo(4*nofElectrons[i]+1); // shrink if necessary row[i]->Add(tracks[i]); } else{ delete tracks[i]; // delete empty AliTPCFastVector tracks[i]=0; } } nofElectrons[i]=0; tracks[i] = new AliTPCFastVector(481); // AliTPCFastVectors for the next fTrack } // end of loop over rows previousTrack=currentTrack; // update track label } Int_t qI = (Int_t) (tpcHit->fQ); // energy loss (number of electrons) //--------------------------------------------------- // Calculate the electron attachment probability //--------------------------------------------------- Float_t time = 1.e6*(fTPCParam->GetZLength()-TMath::Abs(tpcHit->Z())) /fTPCParam->GetDriftV(); // in microseconds! Float_t attProb = fTPCParam->GetAttCoef()* fTPCParam->GetOxyCont()*time; // fraction! //----------------------------------------------- // Loop over electrons //----------------------------------------------- Int_t index[3]; index[1]=isec; for(Int_t nel=0;nelRndm(0)) < attProb) continue; // electron lost! xyz[0]=tpcHit->X(); xyz[1]=tpcHit->Y(); xyz[2]=tpcHit->Z(); // // protection for the nonphysical avalanche size (10**6 maximum) // Double_t rn=TMath::Max(gRandom->Rndm(0),1.93e-22); xyz[3]= (Float_t) (-gasgain*TMath::Log(rn)); index[0]=1; TransportElectron(xyz,index); Int_t rowNumber; fTPCParam->GetPadRow(xyz,index); // row 0 - cross talk from the innermost row // row fNRow+1 cross talk from the outermost row rowNumber = index[2]+1; //transform position to local digit coordinates //relative to nearest pad row if ((rowNumber<0)||rowNumber>fTPCParam->GetNRow(isec)+1) continue; Float_t x1,y1; if (isec GetNInnerSector()) { x1 = xyz[1]*fTPCParam->GetInnerPadPitchWidth(); y1 = fTPCParam->GetYInner(rowNumber); } else{ x1=xyz[1]*fTPCParam->GetOuterPadPitchWidth(); y1 = fTPCParam->GetYOuter(rowNumber); } // gain inefficiency at the wires edges - linear x1=TMath::Abs(x1); y1-=1.; if(x1>y1) xyz[3]*=TMath::Max(1.e-6,(y1-x1+1.)); nofElectrons[rowNumber]++; //---------------------------------- // Expand vector if necessary //---------------------------------- if(nofElectrons[rowNumber]>120){ Int_t range = tracks[rowNumber]->GetNrows(); if((nofElectrons[rowNumber])>(range-1)/4){ tracks[rowNumber]->ResizeTo(range+400); // Add 100 electrons } } AliTPCFastVector &v = *tracks[rowNumber]; Int_t idx = 4*nofElectrons[rowNumber]-3; Real_t * position = &(((AliTPCFastVector&)v).UncheckedAt(idx)); //make code faster memcpy(position,xyz,4*sizeof(Float_t)); } // end of loop over electrons tpcHit = (AliTPChit*)NextHit(); } // end of loop over hits } // end of loop over tracks // // store remaining track (the last one) if not empty // for(i=0;i0){ AliTPCFastVector &v = *tracks[i]; v(0) = previousTrack; tracks[i]->ResizeTo(4*nofElectrons[i]+1); // shrink if necessary row[i]->Add(tracks[i]); } else{ delete tracks[i]; tracks[i]=0; } } delete [] tracks; delete [] nofElectrons; } // end of MakeSector //_____________________________________________________________________________ void AliTPC::Init() { // // Initialise TPC detector after definition of geometry // Int_t i; // if(fDebug) { printf("\n%s: ",ClassName()); for(i=0;i<35;i++) printf("*"); printf(" TPC_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n%s: ",ClassName()); // for(i=0;i<80;i++) printf("*"); printf("\n"); } } //_____________________________________________________________________________ void AliTPC::MakeBranch(Option_t* option, const char *file) { // // Create Tree branches for the TPC. // Int_t buffersize = 4000; char branchname[10]; sprintf(branchname,"%s",GetName()); AliDetector::MakeBranch(option,file); const char *d = strstr(option,"D"); if (fDigits && gAlice->TreeD() && d) { MakeBranchInTree(gAlice->TreeD(), branchname, &fDigits, buffersize, file); } if (fHitType>1) MakeBranch2(option,file); // MI change 14.09.2000 } //_____________________________________________________________________________ void AliTPC::ResetDigits() { // // Reset number of digits and the digits array for this detector // fNdigits = 0; if (fDigits) fDigits->Clear(); } //_____________________________________________________________________________ void AliTPC::SetSecAL(Int_t sec) { //--------------------------------------------------- // Activate/deactivate selection for lower sectors //--------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- fSecAL = sec; } //_____________________________________________________________________________ void AliTPC::SetSecAU(Int_t sec) { //---------------------------------------------------- // Activate/deactivate selection for upper sectors //--------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- fSecAU = sec; } //_____________________________________________________________________________ void AliTPC::SetSecLows(Int_t s1,Int_t s2,Int_t s3,Int_t s4,Int_t s5, Int_t s6) { //---------------------------------------- // Select active lower sectors //---------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- fSecLows[0] = s1; fSecLows[1] = s2; fSecLows[2] = s3; fSecLows[3] = s4; fSecLows[4] = s5; fSecLows[5] = s6; } //_____________________________________________________________________________ void AliTPC::SetSecUps(Int_t s1,Int_t s2,Int_t s3,Int_t s4,Int_t s5, Int_t s6, Int_t s7, Int_t s8 ,Int_t s9 ,Int_t s10, Int_t s11 , Int_t s12) { //-------------------------------- // Select active upper sectors //-------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- fSecUps[0] = s1; fSecUps[1] = s2; fSecUps[2] = s3; fSecUps[3] = s4; fSecUps[4] = s5; fSecUps[5] = s6; fSecUps[6] = s7; fSecUps[7] = s8; fSecUps[8] = s9; fSecUps[9] = s10; fSecUps[10] = s11; fSecUps[11] = s12; } //_____________________________________________________________________________ void AliTPC::SetSens(Int_t sens) { //------------------------------------------------------------- // Activates/deactivates the sensitive strips at the center of // the pad row -- this is for the space-point resolution calculations //------------------------------------------------------------- //----------------------------------------------------------------- // Origin: Marek Kowalski IFJ, Krakow, Marek.Kowalski@ifj.edu.pl //----------------------------------------------------------------- fSens = sens; } void AliTPC::SetSide(Float_t side=0.) { // choice of the TPC side fSide = side; } //____________________________________________________________________________ void AliTPC::SetGasMixt(Int_t nc,Int_t c1,Int_t c2,Int_t c3,Float_t p1, Float_t p2,Float_t p3) { // gax mixture definition fNoComp = nc; fMixtComp[0]=c1; fMixtComp[1]=c2; fMixtComp[2]=c3; fMixtProp[0]=p1; fMixtProp[1]=p2; fMixtProp[2]=p3; } //_____________________________________________________________________________ void AliTPC::TransportElectron(Float_t *xyz, Int_t *index) { // // electron transport taking into account: // 1. diffusion, // 2.ExB at the wires // 3. nonisochronity // // xyz and index must be already transformed to system 1 // fTPCParam->Transform1to2(xyz,index); //add diffusion Float_t driftl=xyz[2]; if(driftl<0.01) driftl=0.01; driftl=TMath::Sqrt(driftl); Float_t sigT = driftl*(fTPCParam->GetDiffT()); Float_t sigL = driftl*(fTPCParam->GetDiffL()); xyz[0]=gRandom->Gaus(xyz[0],sigT); xyz[1]=gRandom->Gaus(xyz[1],sigT); xyz[2]=gRandom->Gaus(xyz[2],sigL); // ExB if (fTPCParam->GetMWPCReadout()==kTRUE){ Float_t dx = fTPCParam->Transform2to2NearestWire(xyz,index); xyz[1]+=dx*(fTPCParam->GetOmegaTau()); } //add nonisochronity (not implemented yet) } ClassImp(AliTPCdigit) //_____________________________________________________________________________ AliTPCdigit::AliTPCdigit(Int_t *tracks, Int_t *digits): AliDigit(tracks) { // // Creates a TPC digit object // fSector = digits[0]; fPadRow = digits[1]; fPad = digits[2]; fTime = digits[3]; fSignal = digits[4]; } ClassImp(AliTPChit) //_____________________________________________________________________________ AliTPChit::AliTPChit(Int_t shunt, Int_t track, Int_t *vol, Float_t *hits): AliHit(shunt,track) { // // Creates a TPC hit object // fSector = vol[0]; fPadRow = vol[1]; fX = hits[0]; fY = hits[1]; fZ = hits[2]; fQ = hits[3]; } //________________________________________________________________________ // Additional code because of the AliTPCTrackHitsV2 void AliTPC::MakeBranch2(Option_t *option,const char *file) { // // Create a new branch in the current Root Tree // The branch of fHits is automatically split // MI change 14.09.2000 if (fHitType<2) return; char branchname[10]; sprintf(branchname,"%s2",GetName()); // // Get the pointer to the header const char *cH = strstr(option,"H"); // if (fTrackHits && gAlice->TreeH() && cH && fHitType&4) { // AliObjectBranch * branch = new AliObjectBranch(branchname,"AliTPCTrackHitsV2",&fTrackHits, // gAlice->TreeH(),fBufferSize,99); //TBranch * branch = gAlice->TreeH()->Branch(branchname,"AliTPCTrackHitsV2",&fTrackHits, fBufferSize,99); // gAlice->TreeH()->GetListOfBranches()->Add(branch); if (GetDebug()>1) printf("* AliDetector::MakeBranch * Making Branch %s for trackhits\n",branchname); const char folder [] = "RunMC/Event/Data"; if (GetDebug()) printf("%15s: Publishing %s to %s\n",ClassName(),branchname,folder); Publish(folder,&fTrackHits,branchname); if (file) { TBranch *b = gAlice->TreeH()->GetBranch(branchname); TDirectory *wd = gDirectory; b->SetFile(file); TIter next( b->GetListOfBranches()); while ((b=(TBranch*)next())) { b->SetFile(file); } wd->cd(); if (GetDebug()>1) cout << "Diverting branch " << branchname << " to file " << file << endl; } } if (fTrackHitsOld && gAlice->TreeH() && cH && fHitType&2) { AliObjectBranch * branch = new AliObjectBranch(branchname,"AliTPCTrackHits",&fTrackHitsOld, gAlice->TreeH(),fBufferSize,99); //TBranch * branch = gAlice->TreeH()->Branch(branchname,"AliTPCTrackHitsV2",&fTrackHits, // fBufferSize,99); gAlice->TreeH()->GetListOfBranches()->Add(branch); if (GetDebug()>1) printf("* AliDetector::MakeBranch * Making Branch %s for trackhits\n",branchname); const char folder [] = "RunMC/Event/Data"; if (GetDebug()) printf("%15s: Publishing %s to %s\n",ClassName(),branchname,folder); Publish(folder,&fTrackHitsOld,branchname); if (file) { TBranch *b = gAlice->TreeH()->GetBranch(branchname); TDirectory *wd = gDirectory; b->SetFile(file); TIter next( b->GetListOfBranches()); while ((b=(TBranch*)next())) { b->SetFile(file); } wd->cd(); if (GetDebug()>1) cout << "Diverting branch " << branchname << " to file " << file << endl; } } } void AliTPC::SetTreeAddress() { if (fHitType<=1) AliDetector::SetTreeAddress(); if (fHitType>1) SetTreeAddress2(); } void AliTPC::SetTreeAddress2() { // // Set branch address for the TrackHits Tree // TBranch *branch; char branchname[20]; sprintf(branchname,"%s2",GetName()); // // Branch address for hit tree TTree *treeH = gAlice->TreeH(); if ((treeH)&&(fHitType&4)) { branch = treeH->GetBranch(branchname); if (branch) branch->SetAddress(&fTrackHits); } if ((treeH)&&(fHitType&2)) { branch = treeH->GetBranch(branchname); if (branch) branch->SetAddress(&fTrackHitsOld); } //set address to TREETR TTree *treeTR = gAlice->TreeTR(); if (treeTR && fTrackReferences) { branch = treeTR->GetBranch(GetName()); if (branch) branch->SetAddress(&fTrackReferences); } } void AliTPC::FinishPrimary() { if (fTrackHits &&fHitType&4) fTrackHits->FlushHitStack(); if (fTrackHitsOld && fHitType&2) fTrackHitsOld->FlushHitStack(); } void AliTPC::AddHit2(Int_t track, Int_t *vol, Float_t *hits) { // // add hit to the list Int_t rtrack; if (fIshunt) { int primary = gAlice->GetPrimary(track); gAlice->Particle(primary)->SetBit(kKeepBit); rtrack=primary; } else { rtrack=track; gAlice->FlagTrack(track); } //AliTPChit *hit = (AliTPChit*)fHits->UncheckedAt(fNhits-1); //if (hit->fTrack!=rtrack) // cout<<"bad track number\n"; if (fTrackHits && fHitType&4) fTrackHits->AddHitKartez(vol[0],rtrack, hits[0], hits[1],hits[2],(Int_t)hits[3]); if (fTrackHitsOld &&fHitType&2 ) fTrackHitsOld->AddHitKartez(vol[0],rtrack, hits[0], hits[1],hits[2],(Int_t)hits[3]); } void AliTPC::ResetHits() { if (fHitType&1) AliDetector::ResetHits(); if (fHitType>1) ResetHits2(); } void AliTPC::ResetHits2() { // //reset hits if (fTrackHits && fHitType&4) fTrackHits->Clear(); if (fTrackHitsOld && fHitType&2) fTrackHitsOld->Clear(); } AliHit* AliTPC::FirstHit(Int_t track) { if (fHitType>1) return FirstHit2(track); return AliDetector::FirstHit(track); } AliHit* AliTPC::NextHit() { if (fHitType>1) return NextHit2(); return AliDetector::NextHit(); } AliHit* AliTPC::FirstHit2(Int_t track) { // // Initialise the hit iterator // Return the address of the first hit for track // If track>=0 the track is read from disk // while if track<0 the first hit of the current // track is returned // if(track>=0) { gAlice->ResetHits(); gAlice->TreeH()->GetEvent(track); } // if (fTrackHits && fHitType&4) { fTrackHits->First(); return fTrackHits->GetHit(); } if (fTrackHitsOld && fHitType&2) { fTrackHitsOld->First(); return fTrackHitsOld->GetHit(); } else return 0; } AliHit* AliTPC::NextHit2() { // //Return the next hit for the current track if (fTrackHitsOld && fHitType&2) { fTrackHitsOld->Next(); return fTrackHitsOld->GetHit(); } if (fTrackHits) { fTrackHits->Next(); return fTrackHits->GetHit(); } else return 0; } void AliTPC::LoadPoints(Int_t) { // Int_t a = 0; /* if(fHitType==1) return AliDetector::LoadPoints(a); LoadPoints2(a); */ if(fHitType==1) AliDetector::LoadPoints(a); else LoadPoints2(a); // LoadPoints3(a); } void AliTPC::RemapTrackHitIDs(Int_t *map) { if (!fTrackHits) return; if (fTrackHitsOld && fHitType&2){ AliObjectArray * arr = fTrackHitsOld->fTrackHitsInfo; for (UInt_t i=0;iGetSize();i++){ AliTrackHitsInfo * info = (AliTrackHitsInfo *)(arr->At(i)); info->fTrackID = map[info->fTrackID]; } } if (fTrackHitsOld && fHitType&4){ TClonesArray * arr = fTrackHits->GetArray();; for (Int_t i=0;iGetEntriesFast();i++){ AliTrackHitsParamV2 * info = (AliTrackHitsParamV2 *)(arr->At(i)); info->fTrackID = map[info->fTrackID]; } } } Bool_t AliTPC::TrackInVolume(Int_t id,Int_t track) { //return bool information - is track in given volume //load only part of the track information //return true if current track is in volume // // return kTRUE; if (fTrackHitsOld && fHitType&2) { TBranch * br = gAlice->TreeH()->GetBranch("fTrackHitsInfo"); br->GetEvent(track); AliObjectArray * ar = fTrackHitsOld->fTrackHitsInfo; for (UInt_t j=0;jGetSize();j++){ if ( ((AliTrackHitsInfo*)ar->At(j))->fVolumeID==id) return kTRUE; } } if (fTrackHits && fHitType&4) { TBranch * br1 = gAlice->TreeH()->GetBranch("fVolumes"); TBranch * br2 = gAlice->TreeH()->GetBranch("fNVolumes"); br2->GetEvent(track); br1->GetEvent(track); Int_t *volumes = fTrackHits->GetVolumes(); Int_t nvolumes = fTrackHits->GetNVolumes(); if (!volumes && nvolumes>0) { printf("Problematic track\t%d\t%d",track,nvolumes); return kFALSE; } for (Int_t j=0;jTreeH()->GetBranch("fSector"); br->GetEvent(track); for (Int_t j=0;jGetEntriesFast();j++){ if ( ((AliTPChit*)fHits->At(j))->fSector==id) return kTRUE; } } return kFALSE; } //_____________________________________________________________________________ void AliTPC::LoadPoints2(Int_t) { // // Store x, y, z of all hits in memory // if (fTrackHits == 0 && fTrackHitsOld==0) return; // Int_t nhits =0; if (fHitType&4) nhits = fTrackHits->GetEntriesFast(); if (fHitType&2) nhits = fTrackHitsOld->GetEntriesFast(); if (nhits == 0) return; Int_t tracks = gAlice->GetNtrack(); if (fPoints == 0) fPoints = new TObjArray(tracks); AliHit *ahit; // Int_t *ntrk=new Int_t[tracks]; Int_t *limi=new Int_t[tracks]; Float_t **coor=new Float_t*[tracks]; for(Int_t i=0;iGetTrack(); if(ntrk[trk]==limi[trk]) { // // Initialise a new track fp=new Float_t[3*(limi[trk]+chunk)]; if(coor[trk]) { memcpy(fp,coor[trk],sizeof(Float_t)*3*limi[trk]); delete [] coor[trk]; } limi[trk]+=chunk; coor[trk] = fp; } else { fp = coor[trk]; } fp[3*ntrk[trk] ] = ahit->X(); fp[3*ntrk[trk]+1] = ahit->Y(); fp[3*ntrk[trk]+2] = ahit->Z(); ntrk[trk]++; ahit = NextHit2(); } // for(trk=0; trkSetMarkerColor(GetMarkerColor()); points->SetMarkerSize(GetMarkerSize()); points->SetDetector(this); points->SetParticle(trk); points->SetPolyMarker(ntrk[trk],coor[trk],GetMarkerStyle()); fPoints->AddAt(points,trk); delete [] coor[trk]; coor[trk]=0; } } delete [] coor; delete [] ntrk; delete [] limi; } //_____________________________________________________________________________ void AliTPC::LoadPoints3(Int_t) { // // Store x, y, z of all hits in memory // - only intersection point with pad row if (fTrackHits == 0) return; // Int_t nhits = fTrackHits->GetEntriesFast(); if (nhits == 0) return; Int_t tracks = gAlice->GetNtrack(); if (fPoints == 0) fPoints = new TObjArray(2*tracks); fPoints->Expand(2*tracks); AliHit *ahit; // Int_t *ntrk=new Int_t[tracks]; Int_t *limi=new Int_t[tracks]; Float_t **coor=new Float_t*[tracks]; for(Int_t i=0;iUncheckedAt(hit); trk=ahit->GetTrack(); Float_t x[3]={ahit->X(),ahit->Y(),ahit->Z()}; Int_t index[3]={1,((AliTPChit*)ahit)->fSector,0}; Int_t currentrow = fTPCParam->GetPadRow(x,index) ; if (currentrow!=lastrow){ lastrow = currentrow; //later calculate intersection point if(ntrk[trk]==limi[trk]) { // // Initialise a new track fp=new Float_t[3*(limi[trk]+chunk)]; if(coor[trk]) { memcpy(fp,coor[trk],sizeof(Float_t)*3*limi[trk]); delete [] coor[trk]; } limi[trk]+=chunk; coor[trk] = fp; } else { fp = coor[trk]; } fp[3*ntrk[trk] ] = ahit->X(); fp[3*ntrk[trk]+1] = ahit->Y(); fp[3*ntrk[trk]+2] = ahit->Z(); ntrk[trk]++; } ahit = NextHit2(); } // for(trk=0; trkSetMarkerColor(GetMarkerColor()+1); points->SetMarkerStyle(5); points->SetMarkerSize(0.2); points->SetDetector(this); points->SetParticle(trk); // points->SetPolyMarker(ntrk[trk],coor[trk],GetMarkerStyle()20); points->SetPolyMarker(ntrk[trk],coor[trk],30); fPoints->AddAt(points,tracks+trk); delete [] coor[trk]; coor[trk]=0; } } delete [] coor; delete [] ntrk; delete [] limi; } void AliTPC::FindTrackHitsIntersection(TClonesArray * arr) { // //fill clones array with intersection of current point with the //middle of the row Int_t sector; Int_t ipart; const Int_t kcmaxhits=30000; AliTPCFastVector * xxxx = new AliTPCFastVector(kcmaxhits*4); AliTPCFastVector & xxx = *xxxx; Int_t maxhits = kcmaxhits; // AliTPChit * tpcHit=0; tpcHit = (AliTPChit*)FirstHit2(-1); Int_t currentIndex=0; Int_t lastrow=-1; //last writen row while (tpcHit){ if (tpcHit==0) continue; sector=tpcHit->fSector; // sector number ipart=tpcHit->Track(); //find row number Float_t x[3]={tpcHit->X(),tpcHit->Y(),tpcHit->Z()}; Int_t index[3]={1,sector,0}; Int_t currentrow = fTPCParam->GetPadRow(x,index) ; if (currentrow<0) continue; if (lastrow<0) lastrow=currentrow; if (currentrow==lastrow){ if ( currentIndex>=maxhits){ maxhits+=kcmaxhits; xxx.ResizeTo(4*maxhits); } xxx(currentIndex*4)=x[0]; xxx(currentIndex*4+1)=x[1]; xxx(currentIndex*4+2)=x[2]; xxx(currentIndex*4+3)=tpcHit->fQ; currentIndex++; } else if (currentIndex>2){ Float_t sumx=0; Float_t sumx2=0; Float_t sumx3=0; Float_t sumx4=0; Float_t sumy=0; Float_t sumxy=0; Float_t sumx2y=0; Float_t sumz=0; Float_t sumxz=0; Float_t sumx2z=0; Float_t sumq=0; for (Int_t index=0;indexGetNPads(sector,lastrow)-1)/2; Float_t det=currentIndex*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx3-sumx2*sumx2); Float_t detay=sumy*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumxy*sumx4-sumx2y*sumx3)+ sumx2*(sumxy*sumx3-sumx2y*sumx2); Float_t detaz=sumz*(sumx2*sumx4-sumx3*sumx3)-sumx*(sumxz*sumx4-sumx2z*sumx3)+ sumx2*(sumxz*sumx3-sumx2z*sumx2); Float_t detby=currentIndex*(sumxy*sumx4-sumx2y*sumx3)-sumy*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx2y-sumx2*sumxy); Float_t detbz=currentIndex*(sumxz*sumx4-sumx2z*sumx3)-sumz*(sumx*sumx4-sumx2*sumx3)+ sumx2*(sumx*sumx2z-sumx2*sumxz); Float_t y=detay/det+centralPad; Float_t z=detaz/det; Float_t by=detby/det; //y angle Float_t bz=detbz/det; //z angle sumy/=Float_t(currentIndex); sumz/=Float_t(currentIndex); AliComplexCluster cl; cl.fX=z; cl.fY=y; cl.fQ=sumq; cl.fSigmaX2=bz; cl.fSigmaY2=by; cl.fTracks[0]=ipart; AliTPCClustersRow * row = (fClustersArray->GetRow(sector,lastrow)); if (row!=0) row->InsertCluster(&cl); currentIndex=0; lastrow=currentrow; } //end of calculating cluster for given row } // end of loop over hits xxxx->Delete(); } //_______________________________________________________________________________ void AliTPC::Digits2Reco(Int_t firstevent,Int_t lastevent) { // produces rec points from digits and writes them on the root file // AliTPCclusters.root TDirectory *cwd = gDirectory; AliTPCParamSR *dig=(AliTPCParamSR *)gDirectory->Get("75x40_100x60"); if(dig){ printf("You are running 2 pad-length geom hits with 3 pad-length geom digits\n"); delete dig; dig = new AliTPCParamSR(); } else { dig=(AliTPCParamSR *)gDirectory->Get("75x40_100x60_150x60"); } if(!dig){ printf("No TPC parameters found\n"); exit(3); } SetParam(dig); cout<<"AliTPC::Digits2Reco: TPC parameteres have been set"<Getenv("CONFIG_FILE")){ out=TFile::Open("AliTPCclusters.root","recreate"); } else { const char *tmp1; const char *tmp2; char tmp3[80]; tmp1=gSystem->Getenv("CONFIG_FILE_PREFIX"); tmp2=gSystem->Getenv("CONFIG_OUTDIR"); sprintf(tmp3,"%s%s/AliTPCclusters.root",tmp1,tmp2); out=TFile::Open(tmp3,"recreate"); } TStopwatch timer; cout<<"AliTPC::Digits2Reco - determination of rec points begins"<cd(); for(Int_t iev=firstevent;ievClose(); cwd->cd(); }