#ifndef ALITPCCALIBCE_H #define ALITPCCALIBCE_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ //////////////////////////////////////////////////////////////////////////////////////// // // // Implementation of the TPC Central Electrode calibration // // // //////////////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTPCCalibRawBase.h" class TH1S; #include "TObjArray.h" class TH2S; class TH1F; class TTreeSRedirector; class AliTPCCalPad; class AliTPCROC; class AliTPCCalROC; class AliTPCParam; class AliRawReader; class AliTPCRawStream; class TGraph; class TMap; class TCollection; struct eventHeaderStruct; class AliTPCCalibCE : public AliTPCCalibRawBase { public: AliTPCCalibCE(); AliTPCCalibCE(const AliTPCCalibCE &sig); AliTPCCalibCE(const TMap *config); virtual ~AliTPCCalibCE(); AliTPCCalibCE& operator = (const AliTPCCalibCE &source); virtual Int_t Update(const Int_t isector, const Int_t iRow, const Int_t iPad, const Int_t iTimeBin, const Float_t signal); virtual void ProcessBunch(const Int_t sector, const Int_t row, const Int_t pad, const Int_t length, const UInt_t startTimeBin, const UShort_t* signal); virtual void Analyse(); void AnalyseTrack(); // AliTPCCalROC* GetCalRocT0 (Int_t sector, Bool_t force=kFALSE); // get calibration object - sector AliTPCCalROC* GetCalRocT0Err(Int_t sector, Bool_t force=kFALSE); // get calibration object - sector AliTPCCalROC* GetCalRocQ (Int_t sector, Bool_t force=kFALSE); // get calibration object - sector AliTPCCalROC* GetCalRocRMS(Int_t sector, Bool_t force=kFALSE); // get calibration object - sector AliTPCCalROC* GetCalRocOutliers(Int_t sector, Bool_t force=kFALSE); // get calibration object - sector const TObjArray* GetCalPadT0() const { return &fCalRocArrayT0; } // get calibration object const TObjArray* GetCalPadT0Err() const { return &fCalRocArrayT0Err; } // get calibration object const TObjArray* GetCalPadQ() const { return &fCalRocArrayQ; } // get calibration object const TObjArray* GetCalPadRMS() const { return &fCalRocArrayRMS;} // get calibration object const TObjArray* GetCalPadOutliers() const { return &fCalRocArrayOutliers;} // get calibration object TH2S* GetHistoQ (Int_t sector, Bool_t force=kFALSE); // get refernce histogram TH2S* GetHistoT0 (Int_t sector, Bool_t force=kFALSE); // get refernce histogram TH2S* GetHistoRMS(Int_t sector, Bool_t force=kFALSE); // get refernce histogram Float_t GetMeanT0rms() const {return fMeanT0rms;} Float_t GetMeanQrms() const {return fMeanQrms;} Float_t GetMeanRMSrms() const {return fMeanRMSrms;} Int_t GetPeakDetectionMinus() const {return fPeakDetMinus;} Int_t GetPeakDetectionPlus() const {return fPeakDetPlus;} Int_t GetPeakIntRangeMinus() const {return fPeakIntMinus;} Int_t GetPeakIntRangePlus() const {return fPeakIntPlus;} Float_t GetNnoiseThresholdMax() const {return fNoiseThresholdMax;} Float_t GetNnoiseThresholdSum() const {return fNoiseThresholdSum;} TH1S* GetHistoTmean(Int_t sector, Bool_t force=kFALSE); // get refernce histogram //needed here to merge ClibCE objects TObjArray* GetParamArrayPol1(Int_t sector, Bool_t force=kFALSE); TObjArray* GetParamArrayPol2(Int_t sector, Bool_t force=kFALSE); // TObjArray* GetTMeanArrayEvent(){ return &fTMeanArrayEvent; } // TObjArray* GetQMeanArrayEvent(){ return &fQMeanArrayEvent; } TVectorF* GetTMeanEvents(Int_t sector, Bool_t force=kFALSE); TVectorF* GetQMeanEvents(Int_t sector, Bool_t force=kFALSE); const TVectorD* GetEventTimes() const { return &fVEventTime; } const TVectorD* GetEventIds() const { return &fVEventNumber; } // void SetRangeRefQ (Int_t nBins, Float_t xMin, Float_t xMax){ fNbinsQ = nBins; fXminQ = xMin; fXmaxQ = xMax; } //Set range for Q reference histograms void SetRangeRefT0 (Int_t nBins, Float_t xMin, Float_t xMax){ fNbinsT0 = nBins; fXminT0 = xMin; fXmaxT0 = xMax; } //Set range for T0 reference histograms void SetRangeRefRMS(Int_t nBins, Float_t xMin, Float_t xMax){ fNbinsRMS = nBins; fXminRMS = xMin; fXmaxRMS = xMax; } //Set range for T0 reference histograms // void SetRangePeakDetection(Int_t minus, Int_t plus) { fPeakDetMinus=minus; fPeakDetPlus=plus;} void SetRangePeakIntegral(Int_t minus, Int_t plus) { fPeakIntMinus=minus; fPeakIntPlus=plus;} void SetNnoiseThresholdMax(Float_t n) {fNoiseThresholdMax=n;} void SetNnoiseThresholdSum(Float_t n) {fNoiseThresholdSum=n;} // void SetEventInfo(UInt_t runNumber,UInt_t timestamp, UInt_t eventId){ fRunNumber=runNumber; fTimeStamp=timestamp; fEventId=eventId;} // void SetPedestalDatabase(AliTPCCalPad * const pedestalTPC, AliTPCCalPad * const padNoiseTPC) {fPedestalTPC = pedestalTPC; fPadNoiseTPC = padNoiseTPC;} void SetIsZeroSuppressed(Bool_t zs=kTRUE) { fIsZeroSuppressed=zs; } void SetSecRejectRatio(Float_t ratio) { fSecRejectRatio=ratio; } void SetProcessOld(Bool_t process=kTRUE) {fProcessOld=process;} void SetProcessNew(Bool_t process=kTRUE) {fProcessNew=process; if (process&&!fHnDrift) CreateDVhist(); } //Getters Int_t GetNeventsProcessed() const { return fNevents; } Bool_t GetIsZeroSuppressed() const { return fIsZeroSuppressed; } Float_t GetSecRejectRatio() const { return fSecRejectRatio; } const TVectorF *GetTime0Side(Int_t side=0) const {return (side==0)?&fVTime0SideA:&fVTime0SideC;} Float_t GetPeakIntegralMinus() const {return fPeakIntMinus;} Float_t GetPeakIntegralPlus() const {return fPeakIntPlus;} void Merge(AliTPCCalibCE * const ce); virtual Long64_t Merge(TCollection * const list); TGraph *MakeGraphTimeCE(Int_t sector, Int_t xVariable=0, Int_t fitType=0, Int_t fitParameter=0); // // New functions using also the laser tracks // Bool_t IsEdgePad(Int_t sector, Int_t row, Int_t pad) const; void FindLocalMaxima(TObjArray * const arrObj, Double_t timestamp, Int_t burst); Int_t FindLaserTrackID(Int_t sector,Int_t row, const Double_t *peakpos,Double_t &mindist, const Double_t *peakposloc, Int_t &itrackMin2); const THnSparseI *GetHnDrift() const {return fHnDrift;} const TObjArray& GetArrHnDrift() const {return fArrHnDrift;} const TVectorD& GetTimeBursts() const {return fTimeBursts;} const TObjArray *GetArrFitGraphs() const {return fArrFitGraphs;} virtual void DumpToFile(const Char_t *filename, const Char_t *dir="", Bool_t append=kFALSE); static AliTPCCalibCE *ReadFromFile(const Char_t *filename); protected: virtual void EndEvent(); virtual void ResetEvent(); private: // reference histogram ranges Int_t fNbinsT0; // Number of bins for T0 reference histogram Float_t fXminT0; // xmin of T0 reference histogram Float_t fXmaxT0; // xmax of T0 reference histogram Int_t fNbinsQ; // Number of bins for T0 reference histogram Float_t fXminQ; // xmin of T0 reference histogram Float_t fXmaxQ; // xmax of T0 reference histogram Int_t fNbinsRMS; // Number of bins for T0 reference histogram Float_t fXminRMS; // xmin of T0 reference histogram Float_t fXmaxRMS; // xmax of T0 reference histogram Int_t fPeakDetMinus; // Consecutive timebins on rising edge to be regarded as a signal Int_t fPeakDetPlus; // Consecutive timebins on falling edge to be regarded as a signal Int_t fPeakIntMinus; // Peak integral range for COG determination. Bins used before max bin Int_t fPeakIntPlus; // Peak integral range for COG determination. Bins used after max bin Float_t fNoiseThresholdMax; // Analysis Treshold for signal finding: Max>fNoiseThresholdMax*PadNoise Float_t fNoiseThresholdSum; // Analysis Treshold for signal finding: Sum>fNoiseThresholdSum*PadNoise Bool_t fIsZeroSuppressed; // If data is Zero Suppressed -> Don't subtrakt pedestals! Int_t fLastSector; //! Last sector processed Float_t fSecRejectRatio; //! Needed percentage of signals in one chamber. Below it will be rejected // This is neede if we do not process a laser event AliTPCParam *fParam; //! TPC information AliTPCCalPad *fPedestalTPC; //! Pedestal Information whole TPC AliTPCCalPad *fPadNoiseTPC; //! Pad noise Information whole TPC AliTPCCalROC *fPedestalROC; //! Pedestal Information for current ROC AliTPCCalROC *fPadNoiseROC; //! Pad noise Information for current ROC TObjArray fCalRocArrayT0; // Array of AliTPCCalROC class for Time0 calibration TObjArray fCalRocArrayT0Err; // Array of AliTPCCalROC class for the error (rms) of Time0 calibration TObjArray fCalRocArrayQ; // Array of AliTPCCalROC class for Charge calibration TObjArray fCalRocArrayRMS; // Array of AliTPCCalROC class for signal width calibration TObjArray fCalRocArrayOutliers; // Array of AliTPCCalROC class for signal outliers TObjArray fHistoQArray; // Calibration histograms for Charge distribution TObjArray fHistoT0Array; // Calibration histograms for Time0 distribution TObjArray fHistoRMSArray; // Calibration histograms for signal width distribution Float_t fMeanT0rms; // mean of the rms of all pad T0 fits, used as error estimation of T0 results Float_t fMeanQrms; // mean of the rms of all pad Q fits, used as error estimation of Q results Float_t fMeanRMSrms; // mean of the rms of all pad TMS fits, used as error estimation of RMS results TObjArray fHistoTmean; //! Calibration histograms of the mean CE position for all sectors TObjArray fParamArrayEventPol1; // Store mean arrival time parameters for each sector event by event from global plane fit TObjArray fParamArrayEventPol2; // Store mean arrival time parameters for each sector event by event from global parabola fit TObjArray fTMeanArrayEvent; // Store mean arrival time for each sector event by event TObjArray fQMeanArrayEvent; // Store mean arrival Charge for each sector event by event TVectorD fVEventTime; // Timestamps of the events TVectorD fVEventNumber; // Eventnumbers of the events TVectorF fVTime0SideA; // Mean Time0 for side A for all events TVectorF fVTime0SideC; // Mean Time0 for side C for all events Double_t fEventId; //! Event Id of the current event UInt_t fOldRunNumber; //! Old Run Number TObjArray fPadTimesArrayEvent; //! Pad Times for the event, before mean Time0 corrections TObjArray fPadQArrayEvent; //! Charge for the event, only needed for debugging streamer TObjArray fPadRMSArrayEvent; //! Signal width for the event, only needed for debugging streamer TObjArray fPadPedestalArrayEvent; //! Signal width for the event, only needed for debugging streamer Int_t fCurrentChannel; //! current channel processed Int_t fCurrentSector; //! current sector processed Int_t fCurrentRow; //! current row processed Float_t fMaxPadSignal; //! maximum bin of current pad Int_t fMaxTimeBin; //! time bin with maximum value Float_t fPadSignal[1024]; //! signal of current Pad Float_t fPadPedestal; //! Pedestal Value of current pad Float_t fPadNoise; //! Noise Value of current pad TVectorD fVTime0Offset; //! Time0 Offset for each sector; TVectorD fVTime0OffsetCounter; //! Time0 Offset counter for each sector; TVectorD fVMeanQ; //! Mean Q for each sector; TVectorD fVMeanQCounter; //! Mean Q counter for each sector; Float_t fCurrentCETimeRef; //! Time refernce of the current sector // new part of the algorithm Bool_t fProcessOld; // Whether to use the old algorithm Bool_t fProcessNew; // Whether to use the new algorithm Bool_t fAnalyseNew; //! Whether to analyse the new part of the algorithm. //In the DA this needs to be switched off, in the Preprocessor on... enum {kHnBinsDV=5}; THnSparseI *fHnDrift; //! Histogram digits for each pad and timebin for several timestamps TObjArray fArrHnDrift; // array of sparse histograms for each burst TVectorD fTimeBursts; // time stamps of bursts UInt_t fBinsLastAna[100]; // number of bin in the THnSparse during the last analysis UShort_t fPeaks[5]; //! Peak position: 4 laser layers and CE UShort_t fPeakWidths[5]; //! Peak window widths TObjArray *fArrFitGraphs; // Fit resut graphs for each parameter // void FindPedestal(Float_t part=.6); void UpdateCETimeRef(); //Get the time reference of the last valid measurement in sector void FindCESignal(TVectorD ¶m, Float_t &qSum, const TVectorF maxima); void FindLocalMaxima(TVectorF &maxima); Bool_t IsPeak(Int_t pos, Int_t tminus, Int_t tplus) const; TH2S* GetHisto(Int_t sector, TObjArray *arr, Int_t nbinsY, Float_t ymin, Float_t ymax, const Char_t *type, Bool_t force); TH1S* GetHisto(Int_t sector, TObjArray *arr, const Char_t *type, Bool_t force); AliTPCCalROC* GetCalRoc(Int_t sector, TObjArray* arr, Bool_t force) const; TVectorF* GetVectSector(Int_t sector, TObjArray *arr, UInt_t size, Bool_t force=kFALSE) const; TVectorF* GetPadTimesEvent(Int_t sector, Bool_t force=kFALSE); TObjArray* GetParamArray(Int_t sector, TObjArray *arr, Bool_t force=kFALSE) const; void ResetPad(); void ProcessPad(); // new part of the algorithm void CreateDVhist(); void FindLaserLayers(); Bool_t IsPeakInRange(UShort_t timebin) const; TObjArray *SetupMeasured(); void ResetMeasured(TObjArray * const arr); void AddCEtoIdeal(TObjArray *arr); void CalculateDV(TObjArray * const arrIdeal, TObjArray * const arrMeasured, Int_t burst); Double_t SetBurstHnDrift(); //debug TVectorF* GetPadQEvent(Int_t sector, Bool_t force=kFALSE); TVectorF* GetPadRMSEvent(Int_t sector, Bool_t force=kFALSE); TVectorF* GetPadPedestalEvent(Int_t sector, Bool_t force=kFALSE); ClassDef(AliTPCCalibCE,9) //Implementation of the TPC Central Electrode calibration }; //Inline functions //_____________________________________________________________________ inline Bool_t AliTPCCalibCE::IsPeakInRange(UShort_t timebin) const { // // Check whether timebin is in the range of a laser layer // // return kTRUE; if (fPeaks[4]<2) return kTRUE; //not determined yet for (Int_t i=0; i<5; ++i){ if (TMath::Abs((Short_t)timebin-(Short_t)fPeaks[i])<(Short_t)fPeakWidths[i]) return kTRUE; } return kFALSE; } #endif