#ifndef ALITPCRECOPARAM_H #define ALITPCRECOPARAM_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /////////////////////////////////////////////////////////////////////////////// // // // Class with TPC reconstruction parameters // // // /////////////////////////////////////////////////////////////////////////////// #include "AliDetectorRecoParam.h" class AliTPCRecoParam : public AliDetectorRecoParam { public: AliTPCRecoParam(); virtual ~AliTPCRecoParam(); virtual void Print(const Option_t* option="") const; static Bool_t GetUseTimeCalibration(); static void SetUseTimeCalibration(Bool_t useTimeCalibration); void SetUseHLTClusters(Int_t useHLTClusters){fUseHLTClusters=useHLTClusters;} Int_t GetUseHLTClusters() const {return fUseHLTClusters;} void SetClusterSharing(Bool_t sharing){fBClusterSharing=sharing;} Bool_t GetClusterSharing() const {return fBClusterSharing;} Double_t GetCtgRange() const { return fCtgRange;} Double_t GetMaxSnpTracker() const{ return fMaxSnpTracker;} Double_t GetMaxSnpTrack() const { return fMaxSnpTrack;} Bool_t GetUseOuterDetectors() const { return fUseOuterDetectors;} void SetUseOuterDetectors(Bool_t flag) { fUseOuterDetectors=flag;} Double_t GetCutSharedClusters(Int_t index)const { return fCutSharedClusters[index];} void SetCutSharedClusters(Int_t index, Float_t value){ fCutSharedClusters[index]=value;} Int_t GetClusterMaxRange(Int_t index)const { return fClusterMaxRange[index];} void SetClusterMaxRange(Int_t index, Int_t value){ fClusterMaxRange[index]=value;} // Bool_t DumpSignal() const { return fDumpSignal;} void SetTimeInterval(Int_t first, Int_t last) { fFirstBin=first, fLastBin =last;} Int_t GetFirstBin() const { return fFirstBin;} Int_t GetLastBin() const { return fLastBin;} void SetTimeBinRange(Int_t first, Int_t last){ fFirstBin = first; fLastBin = last;} Bool_t GetCalcPedestal() const { return fBCalcPedestal;} Bool_t GetDoUnfold() const { return fBDoUnfold;} void SetDoUnfold(Bool_t unfold) { fBDoUnfold = unfold;} Float_t GetDumpAmplitudeMin() const { return fDumpAmplitudeMin;} Float_t GetMaxNoise() const { return fMaxNoise;} // Int_t GetUseOnePadCluster() const { return fUseOnePadCluster;} Bool_t GetUseHLTOnePadCluster()const { return fUseHLTOnePadCluster;} Float_t GetMinMaxCutAbs() const { return fMinMaxCutAbs; } Float_t GetMinLeftRightCutAbs() const { return fMinLeftRightCutAbs;} // minimal amplitude left right - PRF Float_t GetMinUpDownCutAbs() const { return fMinUpDownCutAbs;} // minimal amplitude up-down - TRF Float_t GetMinMaxCutSigma() const { return fMinMaxCutSigma; } Float_t GetMinLeftRightCutSigma() const { return fMinLeftRightCutSigma;} // minimal amplitude left right - PRF Float_t GetMinUpDownCutSigma() const { return fMinUpDownCutSigma;} // minimal amplitude up-down - TRF // void SetUseOnePadCluster(Int_t use) { fUseOnePadCluster = use;} void SetUseHLTOnePadCluster(Bool_t use) { fUseHLTOnePadCluster = use;} void SetMinMaxCutAbs(Float_t th) { fMinMaxCutAbs=th; } void SetMinLeftRightCutAbs(Float_t th) { fMinLeftRightCutAbs=th;} // minimal amplitude left right - PRF void SetMinUpDownCutAbs(Float_t th) { fMinUpDownCutAbs=th;} // minimal amplitude up-down - TRF void SetMinMaxCutSigma(Float_t th) { fMinMaxCutSigma=th; } void SetMinLeftRightCutSigma(Float_t th) { fMinLeftRightCutSigma=th;} // minimal amplitude left right - PRF void SetMinUpDownCutSigma(Float_t th) { fMinUpDownCutSigma=th;} // minimal amplitude up-down - TRF void SetUseTotCharge(Bool_t flag) {fUseTotCharge = flag;} void SetCtgRange(Double_t ctgRange) {fCtgRange = ctgRange;} void SetUseMultiplicityCorrectionDedx(Bool_t flag) {fUseMultiplicityCorrectionDedx = flag;} void SetUseAlignmentTime(Bool_t flag) {fUseAlignmentTime = flag;} void SetNeighborRowsDedx(Int_t nRows) {fNeighborRowsDedx = nRows;} // Int_t GetLastSeedRowSec() const { return fLastSeedRowSec;} Int_t GetSeedGapPrim() const { return fSeedGapPrim;} Int_t GetSeedGapSec() const { return fSeedGapSec;} void SetDoKinks(Bool_t on) { fBKinkFinder=on; } Bool_t GetDoKinks() const { return fBKinkFinder;} Double_t GetKinkAngleCutChi2(Int_t index) const {return fKinkAngleCutChi2[index];} void SetKinkAngleCutChi2(Int_t index,Double_t value) {fKinkAngleCutChi2[index]=value;} void SetSeedGapPrim(Int_t seedGapPrim) { fSeedGapPrim = seedGapPrim;} void SetSeedGapSec(Int_t seedGapSec) { fSeedGapSec = seedGapSec;} Float_t GetMaxC() const { return fMaxC;} Bool_t GetSpecialSeeding() const { return fBSpecialSeeding;} // // // // Correction setup // void SetUseFieldCorrection(Int_t flag){fUseFieldCorrection=flag;} void SetUseComposedCorrection(Bool_t flag){fUseComposedCorrection=flag;} void SetUseRPHICorrection(Int_t flag){fUseRPHICorrection=flag;} void SetUseRadialCorrection(Int_t flag){fUseRadialCorrection=flag;} void SetUseQuadrantAlignment(Int_t flag){fUseQuadrantAlignment=flag;} void SetUseSectorAlignment(Int_t flag){fUseSectorAlignment=flag;} void SetUseDriftCorrectionTime(Int_t flag){fUseDriftCorrectionTime=flag;} void SetUseDriftCorrectionGY(Int_t flag){fUseDriftCorrectionGY=flag;} void SetUseGainCorrectionTime(Int_t flag){fUseGainCorrectionTime=flag;} void SetUseExBCorrection(Int_t flag){fUseExBCorrection=flag;} void SetUseTOFCorrection(Bool_t flag) {fUseTOFCorrection = flag;} // Int_t GetUseFieldCorrection() const {return fUseFieldCorrection;} Int_t GetUseComposedCorrection() const {return fUseComposedCorrection;} Int_t GetUseRPHICorrection() const {return fUseRPHICorrection;} Int_t GetUseRadialCorrection() const {return fUseRadialCorrection;} Int_t GetUseQuadrantAlignment() const {return fUseQuadrantAlignment;} Int_t GetUseSectorAlignment() const {return fUseSectorAlignment;} Int_t GetUseDriftCorrectionTime() const {return fUseDriftCorrectionTime;} Int_t GetUseDriftCorrectionGY() const {return fUseDriftCorrectionGY;} Int_t GetUseGainCorrectionTime() const {return fUseGainCorrectionTime;} Int_t GetUseExBCorrection() const {return fUseExBCorrection;} Bool_t GetUseMultiplicityCorrectionDedx() const {return fUseMultiplicityCorrectionDedx;} Bool_t GetUseAlignmentTime() const {return fUseAlignmentTime;} // Bool_t GetUseTotCharge() const {return fUseTotCharge;} // switch use total or max charge Float_t GetMinFraction() const {return fMinFraction;} // truncated mean - lower threshold Float_t GetMaxFraction() const {return fMaxFaction;} // truncated mean - upper threshold Int_t GetNeighborRowsDedx() const {return fNeighborRowsDedx;} Bool_t GetUseTOFCorrection() {return fUseTOFCorrection;} // void SetSystematicError(Double_t *systematic){ for (Int_t i=0; i<5;i++) fSystematicErrors[i]=systematic[i];} const Double_t * GetSystematicError() const { return fSystematicErrors;} void SetUseSystematicCorrelation(Bool_t useCorrelation) {fUseSystematicCorrelation=useCorrelation;} Bool_t GetUseSystematicCorrelation() const { return fUseSystematicCorrelation;} static AliTPCRecoParam *GetLowFluxParam(); // make reco parameters for low flux env. static AliTPCRecoParam *GetHighFluxParam(); // make reco parameters for high flux env. static AliTPCRecoParam *GetHLTParam(); // special setting for HLT static AliTPCRecoParam *GetLaserTestParam(Bool_t bPedestal); // special setting for laser static AliTPCRecoParam *GetCosmicTestParam(Bool_t bPedestal); // special setting for cosmic // protected: Int_t fUseHLTClusters; // allows usage of HLT clusters instead of RAW data Bool_t fBClusterSharing; // allows or disable cluster sharing during tracking Double_t fCtgRange; // +-fCtgRange is the ctg(Theta) window used for clusterization and tracking (MI) Double_t fMaxSnpTracker; // max sin of local angle - for TPC tracker Double_t fMaxSnpTrack; // max sin of local angle - for track Bool_t fUseOuterDetectors; // switch - to use the outer detectors // // Double_t fCutSharedClusters[2]; // cut value - maximal amount of shared clusters Int_t fClusterMaxRange[2]; // neighborhood - to define local maxima for cluster // // clusterer parameters // Bool_t fDumpSignal; // Dump Signal information flag Int_t fFirstBin; // first time bin used by cluster finder Int_t fLastBin; // last time bin used by cluster finder Bool_t fBCalcPedestal; // calculate Pedestal Bool_t fBDoUnfold; // do unfolding of clusters Float_t fDumpAmplitudeMin; // minimal amplitude of signal to be dumped Float_t fMaxNoise; // maximal noise sigma on pad to be used in cluster finder Int_t fUseOnePadCluster; // flag - use one pad cluster -0 not use >0 use Bool_t fUseHLTOnePadCluster; // flag - use one HLT pad cluster for tracking Float_t fMinMaxCutAbs; // minimal amplitude at cluster maxima Float_t fMinLeftRightCutAbs; // minimal amplitude left right - PRF Float_t fMinUpDownCutAbs; // minimal amplitude up-down - TRF Float_t fMinMaxCutSigma; // minimal amplitude at cluster maxima Float_t fMinLeftRightCutSigma; // minimal amplitude left right - PRF Float_t fMinUpDownCutSigma; // minimal amplitude up-down - TRF // // Float_t fMaxC; // maximal curvature for tracking Bool_t fBSpecialSeeding; // special seeding with big inclination angles allowed (for Cosmic and laser) Bool_t fBKinkFinder; // do kink finder reconstruction Double_t fKinkAngleCutChi2[2]; // angular cut for kinks Int_t fLastSeedRowSec; // Most Inner Row to make seeding for secondaries Int_t fSeedGapPrim; // seeding gap for primary tracks Int_t fSeedGapSec; // seeding gap for secondary tracks // // Correction switches // Int_t fUseFieldCorrection; // use field correction Bool_t fUseComposedCorrection; // flag to use composed correction Int_t fUseRPHICorrection; // use rphi correction Int_t fUseRadialCorrection; // use radial correction Int_t fUseQuadrantAlignment; // use quadrant alignment Int_t fUseSectorAlignment; // use sector alignment Int_t fUseDriftCorrectionTime; // use drift correction time Int_t fUseDriftCorrectionGY; // use drif correction global y Int_t fUseGainCorrectionTime; // use gain correction time Int_t fUseExBCorrection; // use ExB correction Bool_t fUseMultiplicityCorrectionDedx; // use Dedx multiplicity correction Bool_t fUseAlignmentTime; // use time dependent alignment correction // // dEdx switches // Bool_t fUseTotCharge; // switch use total or max charge Float_t fMinFraction; // truncated mean - lower threshold Float_t fMaxFaction; // truncated mean - upper threshold Int_t fNeighborRowsDedx; // number of neighboring rows to identify cluster below thres in dEdx calculation 0 -> switch off Bool_t fUseTOFCorrection; // switch - kTRUE use TOF correction kFALSE - do not use // // misscalibration // Double_t fSystematicErrors[5]; //systematic errors in the track parameters - to be added to TPC covariance matrix Bool_t fUseSystematicCorrelation; // switch to use the correlation for the sys public: static Bool_t fgUseTimeCalibration; // flag usage the time dependent calibration // to be switched off for pass 0 reconstruction // Use static function, other option will be to use // additional specific storage ? ClassDef(AliTPCRecoParam, 16) }; #endif