/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //------------------------------------------------------- // Implementation of the TPC tracker // // Origin: Marian Ivanov Marian.Ivanov@cern.ch // // AliTPC parallel tracker // // The track fitting is based on Kalaman filtering approach // The track finding steps: // 1. Seeding - with and without vertex constraint // - seeding with vertex constain done at first n^2 proble // - seeding without vertex constraint n^3 problem // 2. Tracking - follow prolongation road - find cluster - update kalman track // The seeding and tracking is repeated several times, in different seeding region. // This approach enables to find the track which cannot be seeded in some region of TPC // This can happen because of low momenta (track do not reach outer radius), or track is currently in the ded region between sectors, or the track is for the moment overlapped with other track (seed quality is poor) ... // With this approach we reach almost 100 % efficiency also for high occupancy events. // (If the seeding efficiency in a region is about 90 % than with logical or of several // regions we will reach 100% (in theory - supposing independence) // Repeating several seeding - tracking procedures some of the tracks can be find // several times. // The procedures to remove multi find tacks are impremented: // RemoveUsed2 - fast procedure n problem - // Algorithm - Sorting tracks according quality // remove tracks with some shared fraction // Sharing in respect to all tacks // Signing clusters in gold region // FindSplitted - slower algorithm n^2 // Sort the tracks according quality // Loop over pair of tracks // If overlap with other track bigger than threshold - remove track // // FindCurling - Finds the pair of tracks which are curling // - About 10% of tracks can be find with this procedure // The combinatorial background is too big to be used in High // multiplicity environment // - n^2 problem - Slow procedure - currently it is disabled because of // low efficiency // // The number of splitted tracks can be reduced disabling the sharing of the cluster. // tpcRecoParam-> SetClusterSharing(kFALSE); // IT IS HIGHLY non recomended to use it in high flux enviroonment // Even using this switch some tracks can be found more than once // (because of multiple seeding and low quality tracks which will not cross full chamber) // // // The tracker itself can be debugged - the information about tracks can be stored in several // phases of the reconstruction // To enable storage of the TPC tracks in the ESD friend track // use AliTPCReconstructor::SetStreamLevel(n); where nis bigger 0 // // The debug level - different procedure produce tree for numerical debugging // To enable them set AliTPCReconstructor::SetStreamLevel(n); where nis bigger 1 // // // Adding systematic errors to the covariance: // // The systematic errors due to the misalignment and miscalibration are added to the covariance matrix // of the tracks (not to the clusters as they are dependent): // The parameters form AliTPCRecoParam are used AliTPCRecoParam::GetSystematicError // The systematic errors are expressed there in RMS - position (cm), angle (rad), curvature (1/cm) // The default values are 0. // // The sytematic errors are added to the covariance matrix in following places: // // 1. During fisrt itteration - AliTPCtrackerMI::FillESD // 2. Second iteration - // 2.a ITS->TPC - AliTPCtrackerMI::ReadSeeds // 2.b TPC->TRD - AliTPCtrackerMI::PropagateBack // 3. Third iteration - // 3.a TRD->TPC - AliTPCtrackerMI::ReadSeeds // 3.b TPC->ITS - AliTPCtrackerMI::RefitInward // // There are several places in the code which can be numerically debuged // This code is keeped in order to enable code development and to check the calibration implementtion // // 1. ErrParam stream (Log level 9) - dump information about // 1.a) cluster // 2.a) cluster error estimate // 3.a) cluster shape estimate // // //------------------------------------------------------- /* $Id$ */ #include "Riostream.h" #include #include #include #include #include "AliLog.h" #include "AliComplexCluster.h" #include "AliESDEvent.h" #include "AliESDtrack.h" #include "AliESDVertex.h" #include "AliKink.h" #include "AliV0.h" #include "AliHelix.h" #include "AliRunLoader.h" #include "AliTPCClustersRow.h" #include "AliTPCParam.h" #include "AliTPCReconstructor.h" #include "AliTPCpolyTrack.h" #include "AliTPCreco.h" #include "AliTPCseed.h" #include "AliTPCtrackerSector.h" #include "AliTPCtrackerMI.h" #include "TStopwatch.h" #include "AliTPCReconstructor.h" #include "AliPID.h" #include "TTreeStream.h" #include "AliAlignObj.h" #include "AliTrackPointArray.h" #include "TRandom.h" #include "AliTPCcalibDB.h" #include "AliTPCTransform.h" #include "AliTPCClusterParam.h" // ClassImp(AliTPCtrackerMI) class AliTPCFastMath { public: AliTPCFastMath(); static Double_t FastAsin(Double_t x); private: static Double_t fgFastAsin[20000]; //lookup table for fast asin computation }; Double_t AliTPCFastMath::fgFastAsin[20000]; AliTPCFastMath gAliTPCFastMath; // needed to fill the LUT AliTPCFastMath::AliTPCFastMath(){ // // initialized lookup table; for (Int_t i=0;i<10000;i++){ fgFastAsin[2*i] = TMath::ASin(i/10000.); fgFastAsin[2*i+1] = (TMath::ASin((i+1)/10000.)-fgFastAsin[2*i]); } } Double_t AliTPCFastMath::FastAsin(Double_t x){ // // return asin using lookup table if (x>0){ Int_t index = int(x*10000); return fgFastAsin[2*index]+(x*10000.-index)*fgFastAsin[2*index+1]; } x*=-1; Int_t index = int(x*10000); return -(fgFastAsin[2*index]+(x*10000.-index)*fgFastAsin[2*index+1]); } //__________________________________________________________________ AliTPCtrackerMI::AliTPCtrackerMI() :AliTracker(), fkNIS(0), fInnerSec(0), fkNOS(0), fOuterSec(0), fN(0), fSectors(0), fInput(0), fOutput(0), fSeedTree(0), fTreeDebug(0), fEvent(0), fDebug(0), fNewIO(kFALSE), fNtracks(0), fSeeds(0), fIteration(0), fParam(0), fDebugStreamer(0) { // // default constructor // } //_____________________________________________________________________ Int_t AliTPCtrackerMI::UpdateTrack(AliTPCseed * track, Int_t accept){ // //update track information using current cluster - track->fCurrentCluster AliTPCclusterMI* c =track->GetCurrentCluster(); if (accept>0) track->SetCurrentClusterIndex1(track->GetCurrentClusterIndex1() | 0x8000); //sign not accepted clusters UInt_t i = track->GetCurrentClusterIndex1(); Int_t sec=(i&0xff000000)>>24; //Int_t row = (i&0x00ff0000)>>16; track->SetRow((i&0x00ff0000)>>16); track->SetSector(sec); // Int_t index = i&0xFFFF; if (sec>=fParam->GetNInnerSector()) track->SetRow(track->GetRow()+fParam->GetNRowLow()); track->SetClusterIndex2(track->GetRow(), i); //track->fFirstPoint = row; //if ( track->fLastPointfLastPoint =row; // if (track->fRow<0 || track->fRow>160) { // printf("problem\n"); //} if (track->GetFirstPoint()>track->GetRow()) track->SetFirstPoint(track->GetRow()); if (track->GetLastPoint()GetRow()) track->SetLastPoint(track->GetRow()); track->SetClusterPointer(track->GetRow(),c); // Double_t angle2 = track->GetSnp()*track->GetSnp(); // //SET NEW Track Point // if (angle2<1) //PH sometimes angle2 is very big. To be investigated... { angle2 = TMath::Sqrt(angle2/(1-angle2)); AliTPCTrackerPoint &point =*(track->GetTrackPoint(track->GetRow())); // point.SetSigmaY(c->GetSigmaY2()/track->GetCurrentSigmaY2()); point.SetSigmaZ(c->GetSigmaZ2()/track->GetCurrentSigmaZ2()); point.SetErrY(sqrt(track->GetErrorY2())); point.SetErrZ(sqrt(track->GetErrorZ2())); // point.SetX(track->GetX()); point.SetY(track->GetY()); point.SetZ(track->GetZ()); point.SetAngleY(angle2); point.SetAngleZ(track->GetTgl()); if (point.IsShared()){ track->SetErrorY2(track->GetErrorY2()*4); track->SetErrorZ2(track->GetErrorZ2()*4); } } Double_t chi2 = track->GetPredictedChi2(track->GetCurrentCluster()); // // track->SetErrorY2(track->GetErrorY2()*1.3); // track->SetErrorY2(track->GetErrorY2()+0.01); // track->SetErrorZ2(track->GetErrorZ2()*1.3); // track->SetErrorZ2(track->GetErrorZ2()+0.005); //} if (accept>0) return 0; if (track->GetNumberOfClusters()%20==0){ // if (track->fHelixIn){ // TClonesArray & larr = *(track->fHelixIn); // Int_t ihelix = larr.GetEntriesFast(); // new(larr[ihelix]) AliHelix(*track) ; //} } track->SetNoCluster(0); return track->Update(c,chi2,i); } Int_t AliTPCtrackerMI::AcceptCluster(AliTPCseed * seed, AliTPCclusterMI * cluster) { // // decide according desired precision to accept given // cluster for tracking Double_t sy2=ErrY2(seed,cluster); Double_t sz2=ErrZ2(seed,cluster); Double_t sdistancey2 = sy2+seed->GetSigmaY2(); Double_t sdistancez2 = sz2+seed->GetSigmaZ2(); Double_t rdistancey2 = (seed->GetCurrentCluster()->GetY()-seed->GetY())* (seed->GetCurrentCluster()->GetY()-seed->GetY())/sdistancey2; Double_t rdistancez2 = (seed->GetCurrentCluster()->GetZ()-seed->GetZ())* (seed->GetCurrentCluster()->GetZ()-seed->GetZ())/sdistancez2; Double_t rdistance2 = rdistancey2+rdistancez2; //Int_t accept =0; if (AliTPCReconstructor::StreamLevel()>5 && seed->GetNumberOfClusters()>20) { Float_t rmsy2 = seed->GetCurrentSigmaY2(); Float_t rmsz2 = seed->GetCurrentSigmaZ2(); Float_t rmsy2p30 = seed->GetCMeanSigmaY2p30(); Float_t rmsz2p30 = seed->GetCMeanSigmaZ2p30(); Float_t rmsy2p30R = seed->GetCMeanSigmaY2p30R(); Float_t rmsz2p30R = seed->GetCMeanSigmaZ2p30R(); AliExternalTrackParam param(*seed); static TVectorD gcl(3),gtr(3); Float_t gclf[3]; param.GetXYZ(gcl.GetMatrixArray()); cluster->GetGlobalXYZ(gclf); gcl[0]=gclf[0]; gcl[1]=gclf[1]; gcl[2]=gclf[2]; if (AliTPCReconstructor::StreamLevel()>0) { (*fDebugStreamer)<<"ErrParam"<< "Cl.="<16) return 3; if ((rdistancey2>9. || rdistancez2>9.) && cluster->GetType()==0) return 2; //suspisiouce - will be changed if ((rdistancey2>6.25 || rdistancez2>6.25) && cluster->GetType()>0) // strict cut on overlaped cluster return 2; //suspisiouce - will be changed if ( (rdistancey2>1. || rdistancez2>6.25 ) && cluster->GetType()<0){ seed->SetNFoundable(seed->GetNFoundable()-1); return 2; } return 0; } //_____________________________________________________________________________ AliTPCtrackerMI::AliTPCtrackerMI(const AliTPCParam *par): AliTracker(), fkNIS(par->GetNInnerSector()/2), fInnerSec(0), fkNOS(par->GetNOuterSector()/2), fOuterSec(0), fN(0), fSectors(0), fInput(0), fOutput(0), fSeedTree(0), fTreeDebug(0), fEvent(0), fDebug(0), fNewIO(0), fNtracks(0), fSeeds(0), fIteration(0), fParam(0), fDebugStreamer(0) { //--------------------------------------------------------------------- // The main TPC tracker constructor //--------------------------------------------------------------------- fInnerSec=new AliTPCtrackerSector[fkNIS]; fOuterSec=new AliTPCtrackerSector[fkNOS]; Int_t i; for (i=0; iGetNRowLow(); Int_t nrowup = par->GetNRowUp(); for (Int_t i=0;iGetPadRowRadiiLow(i); fPadLength[i]= par->GetPadPitchLength(0,i); fYMax[i] = fXRow[i]*TMath::Tan(0.5*par->GetInnerAngle()); } for (Int_t i=0;iGetPadRowRadiiUp(i); fPadLength[i+nrowlow] = par->GetPadPitchLength(60,i); fYMax[i+nrowlow] = fXRow[i+nrowlow]*TMath::Tan(0.5*par->GetOuterAngle()); } if (AliTPCReconstructor::StreamLevel()>0) { fDebugStreamer = new TTreeSRedirector("TPCdebug.root"); } } //________________________________________________________________________ AliTPCtrackerMI::AliTPCtrackerMI(const AliTPCtrackerMI &t): AliTracker(t), fkNIS(t.fkNIS), fInnerSec(0), fkNOS(t.fkNOS), fOuterSec(0), fN(0), fSectors(0), fInput(0), fOutput(0), fSeedTree(0), fTreeDebug(0), fEvent(0), fDebug(0), fNewIO(kFALSE), fNtracks(0), fSeeds(0), fIteration(0), fParam(0), fDebugStreamer(0) { //------------------------------------ // dummy copy constructor //------------------------------------------------------------------ fOutput=t.fOutput; } AliTPCtrackerMI & AliTPCtrackerMI::operator=(const AliTPCtrackerMI& /*r*/){ //------------------------------ // dummy //-------------------------------------------------------------- return *this; } //_____________________________________________________________________________ AliTPCtrackerMI::~AliTPCtrackerMI() { //------------------------------------------------------------------ // TPC tracker destructor //------------------------------------------------------------------ delete[] fInnerSec; delete[] fOuterSec; if (fSeeds) { fSeeds->Delete(); delete fSeeds; } if (fDebugStreamer) delete fDebugStreamer; } void AliTPCtrackerMI::FillESD(TObjArray* arr) { // // //fill esds using updated tracks if (fEvent){ // write tracks to the event // store index of the track Int_t nseed=arr->GetEntriesFast(); //FindKinks(arr,fEvent); for (Int_t i=0; iUncheckedAt(i); if (!pt) continue; pt->UpdatePoints(); AddCovariance(pt); if (AliTPCReconstructor::StreamLevel()>1) { (*fDebugStreamer)<<"Track0"<< "Tr0.="<PropagateTo(fParam->GetInnerRadiusLow()); if (pt->GetKinkIndex(0)<=0){ //don't propagate daughter tracks pt->PropagateTo(fParam->GetInnerRadiusLow()); } if (( pt->GetPoints()[2]- pt->GetPoints()[0])>5 && pt->GetPoints()[3]>0.8){ AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); iotrack.SetTPCPoints(pt->GetPoints()); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); // iotrack.SetTPCpid(pt->fTPCr); //iotrack.SetTPCindex(i); fEvent->AddTrack(&iotrack); continue; } if ( (pt->GetNumberOfClusters()>70)&& (Float_t(pt->GetNumberOfClusters())/Float_t(pt->GetNFoundable()))>0.55) { AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); iotrack.SetTPCPoints(pt->GetPoints()); //iotrack.SetTPCindex(i); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); // iotrack.SetTPCpid(pt->fTPCr); fEvent->AddTrack(&iotrack); continue; } // // short tracks - maybe decays if ( (pt->GetNumberOfClusters()>30) && (Float_t(pt->GetNumberOfClusters())/Float_t(pt->GetNFoundable()))>0.70) { Int_t found,foundable,shared; pt->GetClusterStatistic(0,60,found, foundable,shared,kFALSE); if ( (found>20) && (pt->GetNShared()/float(pt->GetNumberOfClusters())<0.2)){ AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); //iotrack.SetTPCindex(i); iotrack.SetTPCPoints(pt->GetPoints()); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); //iotrack.SetTPCpid(pt->fTPCr); fEvent->AddTrack(&iotrack); continue; } } if ( (pt->GetNumberOfClusters()>20) && (Float_t(pt->GetNumberOfClusters())/Float_t(pt->GetNFoundable()))>0.8) { Int_t found,foundable,shared; pt->GetClusterStatistic(0,60,found, foundable,shared,kFALSE); if (found<20) continue; if (pt->GetNShared()/float(pt->GetNumberOfClusters())>0.2) continue; // AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); iotrack.SetTPCPoints(pt->GetPoints()); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); //iotrack.SetTPCpid(pt->fTPCr); //iotrack.SetTPCindex(i); fEvent->AddTrack(&iotrack); continue; } // short tracks - secondaties // if ( (pt->GetNumberOfClusters()>30) ) { Int_t found,foundable,shared; pt->GetClusterStatistic(128,158,found, foundable,shared,kFALSE); if ( (found>20) && (pt->GetNShared()/float(pt->GetNumberOfClusters())<0.2) &&float(found)/float(foundable)>0.8){ AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); iotrack.SetTPCPoints(pt->GetPoints()); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); //iotrack.SetTPCpid(pt->fTPCr); //iotrack.SetTPCindex(i); fEvent->AddTrack(&iotrack); continue; } } if ( (pt->GetNumberOfClusters()>15)) { Int_t found,foundable,shared; pt->GetClusterStatistic(138,158,found, foundable,shared,kFALSE); if (found<15) continue; if (foundable<=0) continue; if (pt->GetNShared()/float(pt->GetNumberOfClusters())>0.2) continue; if (float(found)/float(foundable)<0.8) continue; // AliESDtrack iotrack; iotrack.UpdateTrackParams(pt,AliESDtrack::kTPCin); iotrack.SetTPCPoints(pt->GetPoints()); iotrack.SetKinkIndexes(pt->GetKinkIndexes()); iotrack.SetV0Indexes(pt->GetV0Indexes()); // iotrack.SetTPCpid(pt->fTPCr); //iotrack.SetTPCindex(i); fEvent->AddTrack(&iotrack); continue; } } } printf("Number of filled ESDs-\t%d\n",fEvent->GetNumberOfTracks()); } Double_t AliTPCtrackerMI::ErrY2(AliTPCseed* seed, AliTPCclusterMI * cl){ // // // Use calibrated cluster error from OCDB // AliTPCClusterParam * clparam = AliTPCcalibDB::Instance()->GetClusterParam(); // Float_t z = TMath::Abs(fParam->GetZLength(0)-TMath::Abs(seed->GetZ())); Int_t ctype = cl->GetType(); Int_t type = (cl->GetRow()<63) ? 0: (cl->GetRow()>126) ? 1:2; Double_t angle = seed->GetSnp()*seed->GetSnp(); angle = TMath::Sqrt(TMath::Abs(angle/(1.-angle))); Double_t erry2 = clparam->GetError0Par(0,type, z,angle); if (ctype<0) { erry2+=0.5; // edge cluster } erry2*=erry2; seed->SetErrorY2(erry2); // return erry2; //calculate look-up table at the beginning // static Bool_t ginit = kFALSE; // static Float_t gnoise1,gnoise2,gnoise3; // static Float_t ggg1[10000]; // static Float_t ggg2[10000]; // static Float_t ggg3[10000]; // static Float_t glandau1[10000]; // static Float_t glandau2[10000]; // static Float_t glandau3[10000]; // // // static Float_t gcor01[500]; // static Float_t gcor02[500]; // static Float_t gcorp[500]; // // // // // if (ginit==kFALSE){ // for (Int_t i=1;i<500;i++){ // Float_t rsigma = float(i)/100.; // gcor02[i] = TMath::Max(0.78 +TMath::Exp(7.4*(rsigma-1.2)),0.6); // gcor01[i] = TMath::Max(0.72 +TMath::Exp(3.36*(rsigma-1.2)),0.6); // gcorp[i] = TMath::Max(TMath::Power((rsigma+0.5),1.5),1.2); // } // // // for (Int_t i=3;i<10000;i++){ // // // // // // inner sector // Float_t amp = float(i); // Float_t padlength =0.75; // gnoise1 = 0.0004/padlength; // Float_t nel = 0.268*amp; // Float_t nprim = 0.155*amp; // ggg1[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.001*nel/(padlength*padlength))/nel; // glandau1[i] = (2.+0.12*nprim)*0.5* (2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau1[i]>1) glandau1[i]=1; // glandau1[i]*=padlength*padlength/12.; // // // // outer short // padlength =1.; // gnoise2 = 0.0004/padlength; // nel = 0.3*amp; // nprim = 0.133*amp; // ggg2[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.0008*nel/(padlength*padlength))/nel; // glandau2[i] = (2.+0.12*nprim)*0.5*(2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau2[i]>1) glandau2[i]=1; // glandau2[i]*=padlength*padlength/12.; // // // // // // outer long // padlength =1.5; // gnoise3 = 0.0004/padlength; // nel = 0.3*amp; // nprim = 0.133*amp; // ggg3[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.0008*nel/(padlength*padlength))/nel; // glandau3[i] = (2.+0.12*nprim)*0.5*(2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau3[i]>1) glandau3[i]=1; // glandau3[i]*=padlength*padlength/12.; // // // } // ginit = kTRUE; // } // // // // // // // Int_t amp = int(TMath::Abs(cl->GetQ())); // if (amp>9999) { // seed->SetErrorY2(1.); // return 1.; // } // Float_t snoise2; // Float_t z = TMath::Abs(fParam->GetZLength(0)-TMath::Abs(seed->GetZ())); // Int_t ctype = cl->GetType(); // Float_t padlength= GetPadPitchLength(seed->GetRow()); // Double_t angle2 = seed->GetSnp()*seed->GetSnp(); // angle2 = angle2/(1-angle2); // // // //cluster "quality" // Int_t rsigmay = int(100.*cl->GetSigmaY2()/(seed->GetCurrentSigmaY2())); // Float_t res; // // // if (fSectors==fInnerSec){ // snoise2 = gnoise1; // res = ggg1[amp]*z+glandau1[amp]*angle2; // if (ctype==0) res *= gcor01[rsigmay]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmay]; // } // } // else { // if (padlength<1.1){ // snoise2 = gnoise2; // res = ggg2[amp]*z+glandau2[amp]*angle2; // if (ctype==0) res *= gcor02[rsigmay]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmay]; // } // } // else{ // snoise2 = gnoise3; // res = ggg3[amp]*z+glandau3[amp]*angle2; // if (ctype==0) res *= gcor02[rsigmay]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmay]; // } // } // } // if (ctype<0){ // res+=0.005; // res*=2.4; // overestimate error 2 times // } // res+= snoise2; // if (res<2*snoise2) // res = 2*snoise2; // seed->SetErrorY2(res); // return res; } Double_t AliTPCtrackerMI::ErrZ2(AliTPCseed* seed, AliTPCclusterMI * cl){ // // // Use calibrated cluster error from OCDB // AliTPCClusterParam * clparam = AliTPCcalibDB::Instance()->GetClusterParam(); // Float_t z = TMath::Abs(fParam->GetZLength(0)-TMath::Abs(seed->GetZ())); Int_t ctype = cl->GetType(); Int_t type = (cl->GetRow()<63) ? 0: (cl->GetRow()>126) ? 1:2; // Double_t angle2 = seed->GetSnp()*seed->GetSnp(); angle2 = seed->GetTgl()*seed->GetTgl()*(1+angle2/(1-angle2)); Double_t angle = TMath::Sqrt(TMath::Abs(angle2)); Double_t errz2 = clparam->GetError0Par(1,type, z,angle); if (ctype<0) { errz2+=0.5; // edge cluster } errz2*=errz2; seed->SetErrorZ2(errz2); // return errz2; // //seed->SetErrorY2(0.1); // //return 0.1; // //calculate look-up table at the beginning // static Bool_t ginit = kFALSE; // static Float_t gnoise1,gnoise2,gnoise3; // static Float_t ggg1[10000]; // static Float_t ggg2[10000]; // static Float_t ggg3[10000]; // static Float_t glandau1[10000]; // static Float_t glandau2[10000]; // static Float_t glandau3[10000]; // // // static Float_t gcor01[1000]; // static Float_t gcor02[1000]; // static Float_t gcorp[1000]; // // // // // if (ginit==kFALSE){ // for (Int_t i=1;i<1000;i++){ // Float_t rsigma = float(i)/100.; // gcor02[i] = TMath::Max(0.81 +TMath::Exp(6.8*(rsigma-1.2)),0.6); // gcor01[i] = TMath::Max(0.72 +TMath::Exp(2.04*(rsigma-1.2)),0.6); // gcorp[i] = TMath::Max(TMath::Power((rsigma+0.5),1.5),1.2); // } // // // for (Int_t i=3;i<10000;i++){ // // // // // // inner sector // Float_t amp = float(i); // Float_t padlength =0.75; // gnoise1 = 0.0004/padlength; // Float_t nel = 0.268*amp; // Float_t nprim = 0.155*amp; // ggg1[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.001*nel/(padlength*padlength))/nel; // glandau1[i] = (2.+0.12*nprim)*0.5* (2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau1[i]>1) glandau1[i]=1; // glandau1[i]*=padlength*padlength/12.; // // // // outer short // padlength =1.; // gnoise2 = 0.0004/padlength; // nel = 0.3*amp; // nprim = 0.133*amp; // ggg2[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.0008*nel/(padlength*padlength))/nel; // glandau2[i] = (2.+0.12*nprim)*0.5*(2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau2[i]>1) glandau2[i]=1; // glandau2[i]*=padlength*padlength/12.; // // // // // // outer long // padlength =1.5; // gnoise3 = 0.0004/padlength; // nel = 0.3*amp; // nprim = 0.133*amp; // ggg3[i] = fParam->GetDiffT()*fParam->GetDiffT()*(2+0.0008*nel/(padlength*padlength))/nel; // glandau3[i] = (2.+0.12*nprim)*0.5*(2.+nprim*nprim*0.001/(padlength*padlength))/nprim; // if (glandau3[i]>1) glandau3[i]=1; // glandau3[i]*=padlength*padlength/12.; // // // } // ginit = kTRUE; // } // // // // // // // Int_t amp = int(TMath::Abs(cl->GetQ())); // if (amp>9999) { // seed->SetErrorY2(1.); // return 1.; // } // Float_t snoise2; // Float_t z = TMath::Abs(fParam->GetZLength(0)-TMath::Abs(seed->GetZ())); // Int_t ctype = cl->GetType(); // Float_t padlength= GetPadPitchLength(seed->GetRow()); // // // Double_t angle2 = seed->GetSnp()*seed->GetSnp(); // // if (angle2<0.6) angle2 = 0.6; // angle2 = seed->GetTgl()*seed->GetTgl()*(1+angle2/(1-angle2)); // // // //cluster "quality" // Int_t rsigmaz = int(100.*cl->GetSigmaZ2()/(seed->GetCurrentSigmaZ2())); // Float_t res; // // // if (fSectors==fInnerSec){ // snoise2 = gnoise1; // res = ggg1[amp]*z+glandau1[amp]*angle2; // if (ctype==0) res *= gcor01[rsigmaz]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmaz]; // } // } // else { // if (padlength<1.1){ // snoise2 = gnoise2; // res = ggg2[amp]*z+glandau2[amp]*angle2; // if (ctype==0) res *= gcor02[rsigmaz]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmaz]; // } // } // else{ // snoise2 = gnoise3; // res = ggg3[amp]*z+glandau3[amp]*angle2; // if (ctype==0) res *= gcor02[rsigmaz]; // if ((ctype>0)){ // res+=0.002; // res*= gcorp[rsigmaz]; // } // } // } // if (ctype<0){ // res+=0.002; // res*=1.3; // } // if ((ctype<0) &&<70){ // res+=0.002; // res*=1.3; // } // res += snoise2; // if (res<2*snoise2) // res = 2*snoise2; // if (res>3) res =3; // seed->SetErrorZ2(res); // return res; } void AliTPCtrackerMI::RotateToLocal(AliTPCseed *seed) { //rotate to track "local coordinata Float_t x = seed->GetX(); Float_t y = seed->GetY(); Float_t ymax = x*TMath::Tan(0.5*fSectors->GetAlpha()); if (y > ymax) { seed->SetRelativeSector((seed->GetRelativeSector()+1) % fN); if (!seed->Rotate(fSectors->GetAlpha())) return; } else if (y <-ymax) { seed->SetRelativeSector((seed->GetRelativeSector()-1+fN) % fN); if (!seed->Rotate(-fSectors->GetAlpha())) return; } } //_____________________________________________________________________________ Double_t AliTPCtrackerMI::F1old(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t x3,Double_t y3) { //----------------------------------------------------------------- // Initial approximation of the track curvature //----------------------------------------------------------------- Double_t d=(x2-x1)*(y3-y2)-(x3-x2)*(y2-y1); Double_t a=0.5*((y3-y2)*(y2*y2-y1*y1+x2*x2-x1*x1)- (y2-y1)*(y3*y3-y2*y2+x3*x3-x2*x2)); Double_t b=0.5*((x2-x1)*(y3*y3-y2*y2+x3*x3-x2*x2)- (x3-x2)*(y2*y2-y1*y1+x2*x2-x1*x1)); Double_t xr=TMath::Abs(d/(d*x1-a)), yr=d/(d*y1-b); if ( xr*xr+yr*yr<=0.00000000000001) return 100; return -xr*yr/sqrt(xr*xr+yr*yr); } //_____________________________________________________________________________ Double_t AliTPCtrackerMI::F1(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t x3,Double_t y3) { //----------------------------------------------------------------- // Initial approximation of the track curvature //----------------------------------------------------------------- x3 -=x1; x2 -=x1; y3 -=y1; y2 -=y1; // Double_t det = x3*y2-x2*y3; if (det==0) { return 100; } // Double_t u = 0.5* (x2*(x2-x3)+y2*(y2-y3))/det; Double_t x0 = x3*0.5-y3*u; Double_t y0 = y3*0.5+x3*u; Double_t c2 = 1/TMath::Sqrt(x0*x0+y0*y0); if (det<0) c2*=-1; return c2; } Double_t AliTPCtrackerMI::F2(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t x3,Double_t y3) { //----------------------------------------------------------------- // Initial approximation of the track curvature //----------------------------------------------------------------- x3 -=x1; x2 -=x1; y3 -=y1; y2 -=y1; // Double_t det = x3*y2-x2*y3; if (det==0) { return 100; } // Double_t u = 0.5* (x2*(x2-x3)+y2*(y2-y3))/det; Double_t x0 = x3*0.5-y3*u; Double_t y0 = y3*0.5+x3*u; Double_t c2 = 1/TMath::Sqrt(x0*x0+y0*y0); if (det<0) c2*=-1; x0+=x1; x0*=c2; return x0; } //_____________________________________________________________________________ Double_t AliTPCtrackerMI::F2old(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t x3,Double_t y3) { //----------------------------------------------------------------- // Initial approximation of the track curvature times center of curvature //----------------------------------------------------------------- Double_t d=(x2-x1)*(y3-y2)-(x3-x2)*(y2-y1); Double_t a=0.5*((y3-y2)*(y2*y2-y1*y1+x2*x2-x1*x1)- (y2-y1)*(y3*y3-y2*y2+x3*x3-x2*x2)); Double_t b=0.5*((x2-x1)*(y3*y3-y2*y2+x3*x3-x2*x2)- (x3-x2)*(y2*y2-y1*y1+x2*x2-x1*x1)); Double_t xr=TMath::Abs(d/(d*x1-a)), yr=d/(d*y1-b); return -a/(d*y1-b)*xr/sqrt(xr*xr+yr*yr); } //_____________________________________________________________________________ Double_t AliTPCtrackerMI::F3(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t z1,Double_t z2) { //----------------------------------------------------------------- // Initial approximation of the tangent of the track dip angle //----------------------------------------------------------------- return (z1 - z2)/sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } Double_t AliTPCtrackerMI::F3n(Double_t x1,Double_t y1, Double_t x2,Double_t y2, Double_t z1,Double_t z2, Double_t c) { //----------------------------------------------------------------- // Initial approximation of the tangent of the track dip angle //----------------------------------------------------------------- // Double_t angle1; //angle1 = (z1-z2)*c/(TMath::ASin(c*x1-ni)-TMath::ASin(c*x2-ni)); // Double_t d = TMath::Sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); if (TMath::Abs(d*c*0.5)>1) return 0; // Double_t angle2 = TMath::ASin(d*c*0.5); // Double_t angle2 = AliTPCFastMath::FastAsin(d*c*0.5); Double_t angle2 = (d*c*0.5>0.1)? TMath::ASin(d*c*0.5): AliTPCFastMath::FastAsin(d*c*0.5); angle2 = (z1-z2)*c/(angle2*2.); return angle2; } Bool_t AliTPCtrackerMI::GetProlongation(Double_t x1, Double_t x2, Double_t x[5], Double_t &y, Double_t &z) {//----------------------------------------------------------------- // This function find proloncation of a track to a reference plane x=x2. //----------------------------------------------------------------- Double_t dx=x2-x1; if (TMath::Abs(x[4]*x1 - x[2]) >= 0.999) { return kFALSE; } Double_t c1=x[4]*x1 - x[2], r1=sqrt(1.- c1*c1); Double_t c2=x[4]*x2 - x[2], r2=sqrt(1.- c2*c2); y = x[0]; z = x[1]; Double_t dy = dx*(c1+c2)/(r1+r2); Double_t dz = 0; // Double_t delta = x[4]*dx*(c1+c2)/(c1*r2 + c2*r1); if (TMath::Abs(delta)>0.01){ dz = x[3]*TMath::ASin(delta)/x[4]; }else{ dz = x[3]*AliTPCFastMath::FastAsin(delta)/x[4]; } //dz = x[3]*AliTPCFastMath::FastAsin(delta)/x[4]; y+=dy; z+=dz; return kTRUE; } Int_t AliTPCtrackerMI::LoadClusters (TTree *tree) { // // fInput = tree; return LoadClusters(); } Int_t AliTPCtrackerMI::LoadClusters(TObjArray *arr) { // // load clusters to the memory AliTPCClustersRow *clrow = 0x0; Int_t lower = arr->LowerBound(); Int_t entries = arr->GetEntriesFast(); for (Int_t i=lower; iAt(i); if(!clrow) continue; if(!clrow->GetArray()) continue; // Int_t sec,row; fParam->AdjustSectorRow(clrow->GetID(),sec,row); for (Int_t icl=0; iclGetArray()->GetEntriesFast(); icl++){ Transform((AliTPCclusterMI*)(clrow->GetArray()->At(icl))); } // if (clrow->GetArray()->GetEntriesFast()<=0) continue; AliTPCtrackerRow * tpcrow=0; Int_t left=0; if (secSetN1(clrow->GetArray()->GetEntriesFast()); tpcrow->SetClusters1(new AliTPCclusterMI[tpcrow->GetN1()]); for (Int_t i=0;iGetN1();i++) tpcrow->SetCluster1(i, *(AliTPCclusterMI*)(clrow->GetArray()->At(i))); } if (left ==1){ tpcrow->SetN2(clrow->GetArray()->GetEntriesFast()); tpcrow->SetClusters2(new AliTPCclusterMI[tpcrow->GetN2()]); for (Int_t i=0;iGetN2();i++) tpcrow->SetCluster2(i,*(AliTPCclusterMI*)(clrow->GetArray()->At(i))); } } // delete clrow; LoadOuterSectors(); LoadInnerSectors(); return 0; } Int_t AliTPCtrackerMI::LoadClusters(TClonesArray *arr) { // // load clusters to the memory from one // TClonesArray // AliTPCclusterMI *clust=0; Int_t count[72][96] = { {0} , {0} }; // loop over clusters for (Int_t icl=0; iclGetEntriesFast(); icl++) { clust = (AliTPCclusterMI*)arr->At(icl); if(!clust) continue; //printf("cluster: det %d, row %d \n", clust->GetDetector(),clust->GetRow()); // transform clusters Transform(clust); // count clusters per pad row count[clust->GetDetector()][clust->GetRow()]++; } // insert clusters to sectors for (Int_t icl=0; iclGetEntriesFast(); icl++) { clust = (AliTPCclusterMI*)arr->At(icl); if(!clust) continue; Int_t sec = clust->GetDetector(); Int_t row = clust->GetRow(); // filter overlapping pad rows needed by HLT if(secSetClass("AliTPCclusterMI"); clrow->SetArray(0); clrow->GetArray()->ExpandCreateFast(10000); // // TTree * tree = fClustersArray.GetTree(); TTree * tree = fInput; TBranch * br = tree->GetBranch("Segment"); br->SetAddress(&clrow); // Int_t j=Int_t(tree->GetEntries()); for (Int_t i=0; iGetEntry(i); // Int_t sec,row; fParam->AdjustSectorRow(clrow->GetID(),sec,row); for (Int_t icl=0; iclGetArray()->GetEntriesFast(); icl++){ Transform((AliTPCclusterMI*)(clrow->GetArray()->At(icl))); } // AliTPCtrackerRow * tpcrow=0; Int_t left=0; if (secSetN1(clrow->GetArray()->GetEntriesFast()); tpcrow->SetClusters1(new AliTPCclusterMI[tpcrow->GetN1()]); for (Int_t i=0;iGetN1();i++) tpcrow->SetCluster1(i, *(AliTPCclusterMI*)(clrow->GetArray()->At(i))); } if (left ==1){ tpcrow->SetN2(clrow->GetArray()->GetEntriesFast()); tpcrow->SetClusters2(new AliTPCclusterMI[tpcrow->GetN2()]); for (Int_t i=0;iGetN2();i++) tpcrow->SetCluster2(i,*(AliTPCclusterMI*)(clrow->GetArray()->At(i))); } } // delete clrow; LoadOuterSectors(); LoadInnerSectors(); return 0; } void AliTPCtrackerMI::UnloadClusters() { // // unload clusters from the memory // Int_t nrows = fOuterSec->GetNRows(); for (Int_t sec = 0;secfClusters1) delete []tpcrow->fClusters1; // if (tpcrow->fClusters2) delete []tpcrow->fClusters2; //} tpcrow->ResetClusters(); } // nrows = fInnerSec->GetNRows(); for (Int_t sec = 0;secfClusters1) delete []tpcrow->fClusters1; //if (tpcrow->fClusters2) delete []tpcrow->fClusters2; //} tpcrow->ResetClusters(); } return ; } void AliTPCtrackerMI::FillClusterArray(TObjArray* array) const{ // // Filling cluster to the array - For visualization purposes // Int_t nrows=0; nrows = fOuterSec->GetNRows(); for (Int_t sec = 0;secGetN();icl++){ array->AddLast((TObject*)((*tpcrow)[icl])); } } nrows = fInnerSec->GetNRows(); for (Int_t sec = 0;secGetN();icl++){ array->AddLast((TObject*)(*tpcrow)[icl]); } } } void AliTPCtrackerMI::Transform(AliTPCclusterMI * cluster){ // // // AliTPCTransform *transform = AliTPCcalibDB::Instance()->GetTransform() ; if (!transform) { AliFatal("Tranformations not in calibDB"); } Double_t x[3]={cluster->GetRow(),cluster->GetPad(),cluster->GetTimeBin()}; Int_t i[1]={cluster->GetDetector()}; transform->Transform(x,i,0,1); // if (cluster->GetDetector()%36>17){ // x[1]*=-1; //} // // in debug mode check the transformation // if (AliTPCReconstructor::StreamLevel()>1) { Float_t gx[3]; cluster->GetGlobalXYZ(gx); Int_t event = (fEvent==NULL)? 0: fEvent->GetEventNumberInFile(); TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Transform"<< "event="<SetX(x[0]); cluster->SetY(x[1]); cluster->SetZ(x[2]); // The old stuff: // // // //if (!fParam->IsGeoRead()) fParam->ReadGeoMatrices(); TGeoHMatrix *mat = fParam->GetClusterMatrix(cluster->GetDetector()); //TGeoHMatrix mat; Double_t pos[3]= {cluster->GetX(),cluster->GetY(),cluster->GetZ()}; Double_t posC[3]={cluster->GetX(),cluster->GetY(),cluster->GetZ()}; if (mat) mat->LocalToMaster(pos,posC); else{ // chack Loading of Geo matrices from GeoManager - TEMPORARY FIX } cluster->SetX(posC[0]); cluster->SetY(posC[1]); cluster->SetZ(posC[2]); } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::LoadOuterSectors() { //----------------------------------------------------------------- // This function fills outer TPC sectors with clusters. //----------------------------------------------------------------- Int_t nrows = fOuterSec->GetNRows(); UInt_t index=0; for (Int_t sec = 0;secGetN1(); while (ncl--) { AliTPCclusterMI *c= (tpcrow->GetCluster1(ncl)); index=(((sec2<<8)+row)<<16)+ncl; tpcrow->InsertCluster(c,index); } //right ncl = tpcrow->GetN2(); while (ncl--) { AliTPCclusterMI *c= (tpcrow->GetCluster2(ncl)); index=((((sec2+fkNOS)<<8)+row)<<16)+ncl; tpcrow->InsertCluster(c,index); } // // write indexes for fast acces // for (Int_t i=0;i<510;i++) tpcrow->SetFastCluster(i,-1); for (Int_t i=0;iGetN();i++){ Int_t zi = Int_t((*tpcrow)[i]->GetZ()+255.); tpcrow->SetFastCluster(zi,i); // write index } Int_t last = 0; for (Int_t i=0;i<510;i++){ if (tpcrow->GetFastCluster(i)<0) tpcrow->SetFastCluster(i,last); else last = tpcrow->GetFastCluster(i); } } fN=fkNOS; fSectors=fOuterSec; return 0; } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::LoadInnerSectors() { //----------------------------------------------------------------- // This function fills inner TPC sectors with clusters. //----------------------------------------------------------------- Int_t nrows = fInnerSec->GetNRows(); UInt_t index=0; for (Int_t sec = 0;secGetN1(); while (ncl--) { AliTPCclusterMI *c= (tpcrow->GetCluster1(ncl)); index=(((sec<<8)+row)<<16)+ncl; tpcrow->InsertCluster(c,index); } //right ncl = tpcrow->GetN2(); while (ncl--) { AliTPCclusterMI *c= (tpcrow->GetCluster2(ncl)); index=((((sec+fkNIS)<<8)+row)<<16)+ncl; tpcrow->InsertCluster(c,index); } // // write indexes for fast acces // for (Int_t i=0;i<510;i++) tpcrow->SetFastCluster(i,-1); for (Int_t i=0;iGetN();i++){ Int_t zi = Int_t((*tpcrow)[i]->GetZ()+255.); tpcrow->SetFastCluster(zi,i); // write index } Int_t last = 0; for (Int_t i=0;i<510;i++){ if (tpcrow->GetFastCluster(i)<0) tpcrow->SetFastCluster(i,last); else last = tpcrow->GetFastCluster(i); } } fN=fkNIS; fSectors=fInnerSec; return 0; } //_________________________________________________________________________ AliTPCclusterMI *AliTPCtrackerMI::GetClusterMI(Int_t index) const { //-------------------------------------------------------------------- // Return pointer to a given cluster //-------------------------------------------------------------------- if (index<0) return 0; // no cluster Int_t sec=(index&0xff000000)>>24; Int_t row=(index&0x00ff0000)>>16; Int_t ncl=(index&0x00007fff)>>00; const AliTPCtrackerRow * tpcrow=0; AliTPCclusterMI * clrow =0; if (sec<0 || sec>=fkNIS*4) { AliWarning(Form("Wrong sector %d",sec)); return 0x0; } if (secGetN1()<=ncl) return 0; clrow = tpcrow->GetClusters1(); } else { if (tpcrow->GetN2()<=ncl) return 0; clrow = tpcrow->GetClusters2(); } } else { AliTPCtrackerSector& tracksec = fOuterSec[(sec-fkNIS*2)%fkNOS]; if (tracksec.GetNRows()<=row) return 0; tpcrow = &(tracksec[row]); if (tpcrow==0) return 0; if (sec-2*fkNISGetN1()<=ncl) return 0; clrow = tpcrow->GetClusters1(); } else { if (tpcrow->GetN2()<=ncl) return 0; clrow = tpcrow->GetClusters2(); } } return &(clrow[ncl]); } Int_t AliTPCtrackerMI::FollowToNext(AliTPCseed& t, Int_t nr) { //----------------------------------------------------------------- // This function tries to find a track prolongation to next pad row //----------------------------------------------------------------- // Double_t x= GetXrow(nr), ymax=GetMaxY(nr); AliTPCclusterMI *cl=0; Int_t tpcindex= t.GetClusterIndex2(nr); // // update current shape info every 5 pad-row // if ( (nr%5==0) || t.GetNumberOfClusters()<2 || (t.fCurrentSigmaY2<0.0001) ){ GetShape(&t,nr); //} // if (fIteration>0 && tpcindex>=-1){ //if we have already clusters // if (tpcindex==-1) return 0; //track in dead zone if (tpcindex>0){ // cl = t.GetClusterPointer(nr); if ( (cl==0) ) cl = GetClusterMI(tpcindex); t.SetCurrentClusterIndex1(tpcindex); } if (cl){ Int_t relativesector = ((tpcindex&0xff000000)>>24)%18; // if previously accepted cluster in different sector Float_t angle = relativesector*fSectors->GetAlpha()+fSectors->GetAlphaShift(); // if (angle<-TMath::Pi()) angle += 2*TMath::Pi(); if (angle>=TMath::Pi()) angle -= 2*TMath::Pi(); if (TMath::Abs(angle-t.GetAlpha())>0.001){ Double_t rotation = angle-t.GetAlpha(); t.SetRelativeSector(relativesector); if (!t.Rotate(rotation)) return 0; } if (!t.PropagateTo(x)) return 0; // t.SetCurrentCluster(cl); t.SetRow(nr); Int_t accept = AcceptCluster(&t,t.GetCurrentCluster()); if ((tpcindex&0x8000)==0) accept =0; if (accept<3) { //if founded cluster is acceptible if (cl->IsUsed(11)) { // id cluster is shared inrease uncertainty t.SetErrorY2(t.GetErrorY2()+0.03); t.SetErrorZ2(t.GetErrorZ2()+0.03); t.SetErrorY2(t.GetErrorY2()*3); t.SetErrorZ2(t.GetErrorZ2()*3); } t.SetNFoundable(t.GetNFoundable()+1); UpdateTrack(&t,accept); return 1; } } } if (TMath::Abs(t.GetSnp())>AliTPCReconstructor::GetMaxSnpTracker()) return 0; // cut on angle if (fIteration>1){ // not look for new cluster during refitting t.SetNFoundable(t.GetNFoundable()+1); return 0; } // UInt_t index=0; // if (TMath::Abs(t.GetSnp())>0.95 || TMath::Abs(x*t.GetC()-t.GetEta())>0.95) return 0;// patch 28 fev 06 Double_t y=t.GetYat(x); if (TMath::Abs(y)>ymax){ if (y > ymax) { t.SetRelativeSector((t.GetRelativeSector()+1) % fN); if (!t.Rotate(fSectors->GetAlpha())) return 0; } else if (y <-ymax) { t.SetRelativeSector((t.GetRelativeSector()-1+fN) % fN); if (!t.Rotate(-fSectors->GetAlpha())) return 0; } //return 1; } // if (!t.PropagateTo(x)) { if (fIteration==0) t.SetRemoval(10); return 0; } y=t.GetY(); Double_t z=t.GetZ(); // if (!IsActive(t.GetRelativeSector(),nr)) { t.SetInDead(kTRUE); t.SetClusterIndex2(nr,-1); return 0; } //AliInfo(Form("A - Sector%d phi %f - alpha %f", t.fRelativeSector,y/x, t.GetAlpha())); Bool_t isActive = IsActive(t.GetRelativeSector(),nr); Bool_t isActive2 = (nr>=fInnerSec->GetNRows()) ? fOuterSec[t.GetRelativeSector()][nr-fInnerSec->GetNRows()].GetN()>0:fInnerSec[t.GetRelativeSector()][nr].GetN()>0; if (!isActive || !isActive2) return 0; const AliTPCtrackerRow &krow=GetRow(t.GetRelativeSector(),nr); if ( (t.GetSigmaY2()<0) || t.GetSigmaZ2()<0) return 0; Double_t roady =1.; Double_t roadz = 1.; // if (TMath::Abs(TMath::Abs(y)-ymax)GetZLength(0) && (TMath::Abs(t.GetSnp())IsUsed(10)) return 0; Int_t accept = AcceptCluster(&t,t.GetCurrentCluster()); if (fIteration==2&&cl->IsUsed(11)) { t.SetErrorY2(t.GetErrorY2()+0.03); t.SetErrorZ2(t.GetErrorZ2()+0.03); t.SetErrorY2(t.GetErrorY2()*3); t.SetErrorZ2(t.GetErrorZ2()*3); } /* if (t.fCurrentCluster->IsUsed(10)){ // // t.fNShared++; if (t.fNShared>0.7*t.GetNumberOfClusters()) { t.fRemoval =10; return 0; } } */ if (accept<3) UpdateTrack(&t,accept); } else { if ( fIteration==0 && t.GetNFoundable()*0.5 > t.GetNumberOfClusters()) t.SetRemoval(10); } return 1; } Int_t AliTPCtrackerMI::FollowToNextFast(AliTPCseed& t, Int_t nr) { //----------------------------------------------------------------- // This function tries to find a track prolongation to next pad row //----------------------------------------------------------------- // Double_t x= GetXrow(nr), ymax=GetMaxY(nr); Double_t y,z; if (!t.GetProlongation(x,y,z)) { t.SetRemoval(10); return 0; } // // if (TMath::Abs(y)>ymax){ if (y > ymax) { t.SetRelativeSector((t.GetRelativeSector()+1) % fN); if (!t.Rotate(fSectors->GetAlpha())) return 0; } else if (y <-ymax) { t.SetRelativeSector((t.GetRelativeSector()-1+fN) % fN); if (!t.Rotate(-fSectors->GetAlpha())) return 0; } if (!t.PropagateTo(x)) { return 0; } t.GetProlongation(x,y,z); } // // update current shape info every 2 pad-row if ( (nr%2==0) || t.GetNumberOfClusters()<2 || (t.GetCurrentSigmaY2()<0.0001) ){ // t.fCurrentSigmaY = GetSigmaY(&t); //t.fCurrentSigmaZ = GetSigmaZ(&t); GetShape(&t,nr); } // AliTPCclusterMI *cl=0; UInt_t index=0; //Int_t nr2 = nr; const AliTPCtrackerRow &krow=GetRow(t.GetRelativeSector(),nr); if ( (t.GetSigmaY2()<0) || t.GetSigmaZ2()<0) return 0; Double_t roady =1.; Double_t roadz = 1.; // Int_t row = nr; if (TMath::Abs(TMath::Abs(y)-ymax)(AliTPCReconstructor::GetCtgRange()*x+10)) t.SetClusterIndex2(row,-1); } //calculate if ((cl==0)&&(krow)) { // cl = krow.FindNearest2(y+10,z,roady,roadz,index); cl = krow.FindNearest2(y,z,roady,roadz,index); if (cl) t.SetCurrentClusterIndex1(krow.GetIndex(index)); } if (cl) { t.SetCurrentCluster(cl); // Int_t accept = AcceptCluster(&t,t.fCurrentCluster); //if (accept<3){ t.SetClusterIndex2(row,index); t.SetClusterPointer(row, cl); //} } return 1; } //_________________________________________________________________________ Bool_t AliTPCtrackerMI::GetTrackPoint(Int_t index, AliTrackPoint &p ) const { // Get track space point by index // return false in case the cluster doesn't exist AliTPCclusterMI *cl = GetClusterMI(index); if (!cl) return kFALSE; Int_t sector = (index&0xff000000)>>24; // Int_t row = (index&0x00ff0000)>>16; Float_t xyz[3]; // xyz[0] = fParam->GetPadRowRadii(sector,row); xyz[0] = cl->GetX(); xyz[1] = cl->GetY(); xyz[2] = cl->GetZ(); Float_t sin,cos; fParam->AdjustCosSin(sector,cos,sin); Float_t x = cos*xyz[0]-sin*xyz[1]; Float_t y = cos*xyz[1]+sin*xyz[0]; Float_t cov[6]; Float_t sigmaY2 = 0.027*cl->GetSigmaY2(); if (sector < fParam->GetNInnerSector()) sigmaY2 *= 2.07; Float_t sigmaZ2 = 0.066*cl->GetSigmaZ2(); if (sector < fParam->GetNInnerSector()) sigmaZ2 *= 1.77; cov[0] = sin*sin*sigmaY2; cov[1] = -sin*cos*sigmaY2; cov[2] = 0.; cov[3] = cos*cos*sigmaY2; cov[4] = 0.; cov[5] = sigmaZ2; p.SetXYZ(x,y,xyz[2],cov); AliGeomManager::ELayerID iLayer; Int_t idet; if (sector < fParam->GetNInnerSector()) { iLayer = AliGeomManager::kTPC1; idet = sector; } else { iLayer = AliGeomManager::kTPC2; idet = sector - fParam->GetNInnerSector(); } UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,idet); p.SetVolumeID(volid); return kTRUE; } Int_t AliTPCtrackerMI::UpdateClusters(AliTPCseed& t, Int_t nr) { //----------------------------------------------------------------- // This function tries to find a track prolongation to next pad row //----------------------------------------------------------------- t.SetCurrentCluster(0); t.SetCurrentClusterIndex1(0); Double_t xt=t.GetX(); Int_t row = GetRowNumber(xt)-1; Double_t ymax= GetMaxY(nr); if (row < nr) return 1; // don't prolongate if not information until now - // if (TMath::Abs(t.GetSnp())>0.9 && t.GetNumberOfClusters()>40. && fIteration!=2) { // t.fRemoval =10; // return 0; // not prolongate strongly inclined tracks // } // if (TMath::Abs(t.GetSnp())>0.95) { // t.fRemoval =10; // return 0; // not prolongate strongly inclined tracks // }// patch 28 fev 06 Double_t x= GetXrow(nr); Double_t y,z; //t.PropagateTo(x+0.02); //t.PropagateTo(x+0.01); if (!t.PropagateTo(x)){ return 0; } // y=t.GetY(); z=t.GetZ(); if (TMath::Abs(y)>ymax){ if (y > ymax) { t.SetRelativeSector((t.GetRelativeSector()+1) % fN); if (!t.Rotate(fSectors->GetAlpha())) return 0; } else if (y <-ymax) { t.SetRelativeSector((t.GetRelativeSector()-1+fN) % fN); if (!t.Rotate(-fSectors->GetAlpha())) return 0; } // if (!t.PropagateTo(x)){ // return 0; //} return 1; //y = t.GetY(); } // if (TMath::Abs(t.GetSnp())>AliTPCReconstructor::GetMaxSnpTracker()) return 0; if (!IsActive(t.GetRelativeSector(),nr)) { t.SetInDead(kTRUE); t.SetClusterIndex2(nr,-1); return 0; } //AliInfo(Form("A - Sector%d phi %f - alpha %f", t.fRelativeSector,y/x, t.GetAlpha())); AliTPCtrackerRow &krow=GetRow(t.GetRelativeSector(),nr); if (TMath::Abs(TMath::Abs(y)-ymax)0) && (index&0x8000)==0){ cl = t.GetClusterPointer(nr); if ( (cl==0) && (index>0)) cl = GetClusterMI(index); t.SetCurrentClusterIndex1(index); if (cl) { t.SetCurrentCluster(cl); return 1; } } } // if (index<0) return 0; UInt_t uindex = TMath::Abs(index); if (krow) { //cl = krow.FindNearest2(y+10,z,roady,roadz,uindex); cl = krow.FindNearest2(y,z,roady,roadz,uindex); } if (cl) t.SetCurrentClusterIndex1(krow.GetIndex(uindex)); t.SetCurrentCluster(cl); return 1; } Int_t AliTPCtrackerMI::FollowToNextCluster(AliTPCseed & t, Int_t nr) { //----------------------------------------------------------------- // This function tries to find a track prolongation to next pad row //----------------------------------------------------------------- //update error according neighborhoud if (t.GetCurrentCluster()) { t.SetRow(nr); Int_t accept = AcceptCluster(&t,t.GetCurrentCluster()); if (t.GetCurrentCluster()->IsUsed(10)){ // // // t.fErrorZ2*=2; // t.fErrorY2*=2; t.SetNShared(t.GetNShared()+1); if (t.GetNShared()>0.7*t.GetNumberOfClusters()) { t.SetRemoval(10); return 0; } } if (fIteration>0) accept = 0; if (accept<3) UpdateTrack(&t,accept); } else { if (fIteration==0){ if ( ( (t.GetSigmaY2()+t.GetSigmaZ2())>0.16)&& t.GetNumberOfClusters()>18) t.SetRemoval(10); if ( t.GetChi2()/t.GetNumberOfClusters()>6 &&t.GetNumberOfClusters()>18) t.SetRemoval(10); if (( (t.GetNFoundable()*0.5 > t.GetNumberOfClusters()) || t.GetNoCluster()>15)) t.SetRemoval(10); } } return 1; } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::FollowProlongation(AliTPCseed& t, Int_t rf, Int_t step) { //----------------------------------------------------------------- // This function tries to find a track prolongation. //----------------------------------------------------------------- Double_t xt=t.GetX(); // Double_t alpha=t.GetAlpha() - fSectors->GetAlphaShift(); if (alpha > 2.*TMath::Pi()) alpha -= 2.*TMath::Pi(); if (alpha < 0. ) alpha += 2.*TMath::Pi(); // t.SetRelativeSector(Int_t(alpha/fSectors->GetAlpha()+0.0001)%fN); Int_t first = GetRowNumber(xt)-1; for (Int_t nr= first; nr>=rf; nr-=step) { // update kink info if (t.GetKinkIndexes()[0]>0){ for (Int_t i=0;i<3;i++){ Int_t index = t.GetKinkIndexes()[i]; if (index==0) break; if (index<0) continue; // AliKink * kink = (AliKink*)fEvent->GetKink(index-1); if (!kink){ printf("PROBLEM\n"); } else{ Int_t kinkrow = kink->GetTPCRow0()+2+Int_t(0.5/(0.05+kink->GetAngle(2))); if (kinkrow==nr){ AliExternalTrackParam paramd(t); kink->SetDaughter(paramd); kink->SetStatus(2,5); kink->Update(); } } } } if (nr==80) t.UpdateReference(); if (nrGetNRows()) fSectors = fInnerSec; else fSectors = fOuterSec; if (FollowToNext(t,nr)==0) if (!t.IsActive()) return 0; } return 1; } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::FollowProlongationFast(AliTPCseed& t, Int_t rf, Int_t step) { //----------------------------------------------------------------- // This function tries to find a track prolongation. //----------------------------------------------------------------- Double_t xt=t.GetX(); // Double_t alpha=t.GetAlpha() - fSectors->GetAlphaShift(); if (alpha > 2.*TMath::Pi()) alpha -= 2.*TMath::Pi(); if (alpha < 0. ) alpha += 2.*TMath::Pi(); t.SetRelativeSector(Int_t(alpha/fSectors->GetAlpha()+0.0001)%fN); for (Int_t nr=GetRowNumber(xt)-1; nr>=rf; nr-=step) { if (FollowToNextFast(t,nr)==0) if (!t.IsActive()) return 0; } return 1; } Int_t AliTPCtrackerMI::FollowBackProlongation(AliTPCseed& t, Int_t rf) { //----------------------------------------------------------------- // This function tries to find a track prolongation. //----------------------------------------------------------------- // Double_t xt=t.GetX(); Double_t alpha=t.GetAlpha() - fSectors->GetAlphaShift(); if (alpha > 2.*TMath::Pi()) alpha -= 2.*TMath::Pi(); if (alpha < 0. ) alpha += 2.*TMath::Pi(); t.SetRelativeSector(Int_t(alpha/fSectors->GetAlpha()+0.0001)%fN); Int_t first = t.GetFirstPoint(); if (first0.95)) break;//patch 28 fev 06 if (t.GetKinkIndexes()[0]<0){ for (Int_t i=0;i<3;i++){ Int_t index = t.GetKinkIndexes()[i]; if (index==0) break; if (index>0) continue; index = TMath::Abs(index); AliKink * kink = (AliKink*)fEvent->GetKink(index-1); if (!kink){ printf("PROBLEM\n"); } else{ Int_t kinkrow = kink->GetTPCRow0()-2-Int_t(0.5/(0.05+kink->GetAngle(2))); if (kinkrow==nr){ AliExternalTrackParam paramm(t); kink->SetMother(paramm); kink->SetStatus(2,1); kink->Update(); } } } } // if (nrGetNRows()) fSectors = fInnerSec; else fSectors = fOuterSec; FollowToNext(t,nr); } return 1; } Float_t AliTPCtrackerMI::OverlapFactor(AliTPCseed * s1, AliTPCseed * s2, Int_t &sum1, Int_t & sum2) { // // sum1=0; sum2=0; Int_t sum=0; // Float_t dz2 =(s1->GetZ() - s2->GetZ()); dz2*=dz2; Float_t dy2 =TMath::Abs((s1->GetY() - s2->GetY())); dy2*=dy2; Float_t distance = TMath::Sqrt(dz2+dy2); if (distance>4.) return 0; // if there are far away - not overlap - to reduce combinatorics // Int_t offset =0; Int_t firstpoint = TMath::Min(s1->GetFirstPoint(),s2->GetFirstPoint()); Int_t lastpoint = TMath::Max(s1->GetLastPoint(),s2->GetLastPoint()); if (lastpoint>160) lastpoint =160; if (firstpoint<0) firstpoint = 0; if (firstpoint>lastpoint) { firstpoint =lastpoint; // lastpoint =160; } for (Int_t i=firstpoint-1;iGetClusterIndex2(i)>0) sum1++; if (s2->GetClusterIndex2(i)>0) sum2++; if (s1->GetClusterIndex2(i)==s2->GetClusterIndex2(i) && s1->GetClusterIndex2(i)>0) { sum++; } } if (sum<5) return 0; Float_t summin = TMath::Min(sum1+1,sum2+1); Float_t ratio = (sum+1)/Float_t(summin); return ratio; } void AliTPCtrackerMI::SignShared(AliTPCseed * s1, AliTPCseed * s2) { // // Float_t thetaCut = 0.2;//+10.*TMath::Sqrt(s1->GetSigmaTglZ()+ s2->GetSigmaTglZ()); if (TMath::Abs(s1->GetTgl()-s2->GetTgl())>thetaCut) return; Float_t minCl = TMath::Min(s1->GetNumberOfClusters(),s2->GetNumberOfClusters()); Int_t cutN0 = TMath::Max(5,TMath::Nint(0.1*minCl)); // Int_t sumshared=0; // //Int_t firstpoint = TMath::Max(s1->GetFirstPoint(),s2->GetFirstPoint()); //Int_t lastpoint = TMath::Min(s1->GetLastPoint(),s2->GetLastPoint()); Int_t firstpoint = 0; Int_t lastpoint = 160; // // if (firstpoint>=lastpoint-5) return;; for (Int_t i=firstpoint;iGetClusterIndex2(i)&0xFFFF8FFF)==(s2->GetClusterIndex2(i)&0xFFFF8FFF) && s1->GetClusterIndex2(i)>0) { if ( (s1->GetClusterIndex2(i))==(s2->GetClusterIndex2(i)) && s1->GetClusterIndex2(i)>0) { sumshared++; s1->SetSharedMapBit(i, kTRUE); s2->SetSharedMapBit(i, kTRUE); } if (s1->GetClusterIndex2(i)>0) s1->SetClusterMapBit(i, kTRUE); } if (sumshared>cutN0){ // sign clusters // for (Int_t i=firstpoint;iGetClusterIndex2(i)&0xFFFF8FFF)==(s2->GetClusterIndex2(i)&0xFFFF8FFF) && s1->GetClusterIndex2(i)>0) { if ( (s1->GetClusterIndex2(i))==(s2->GetClusterIndex2(i)) && s1->GetClusterIndex2(i)>0) { AliTPCTrackerPoint *p1 = s1->GetTrackPoint(i); AliTPCTrackerPoint *p2 = s2->GetTrackPoint(i);; if (s1->IsActive()&&s2->IsActive()){ p1->SetShared(kTRUE); p2->SetShared(kTRUE); } } } } // if (sumshared>cutN0){ for (Int_t i=0;i<4;i++){ if (s1->GetOverlapLabel(3*i)==0){ s1->SetOverlapLabel(3*i, s2->GetLabel()); s1->SetOverlapLabel(3*i+1,sumshared); s1->SetOverlapLabel(3*i+2,s2->GetUniqueID()); break; } } for (Int_t i=0;i<4;i++){ if (s2->GetOverlapLabel(3*i)==0){ s2->SetOverlapLabel(3*i, s1->GetLabel()); s2->SetOverlapLabel(3*i+1,sumshared); s2->SetOverlapLabel(3*i+2,s1->GetUniqueID()); break; } } } } void AliTPCtrackerMI::SignShared(TObjArray * arr) { // //sort trackss according sectors // for (Int_t i=0; iGetEntriesFast(); i++) { AliTPCseed *pt=(AliTPCseed*)arr->UncheckedAt(i); if (!pt) continue; //if (pt) RotateToLocal(pt); pt->SetSort(0); } arr->UnSort(); arr->Sort(); // sorting according relative sectors arr->Expand(arr->GetEntries()); // // Int_t nseed=arr->GetEntriesFast(); for (Int_t i=0; iUncheckedAt(i); if (!pt) continue; for (Int_t j=0;j<=12;j++){ pt->SetOverlapLabel(j,0); } } for (Int_t i=0; iUncheckedAt(i); if (!pt) continue; if (pt->GetRemoval()>10) continue; for (Int_t j=i+1; jUncheckedAt(j); if (TMath::Abs(pt->GetRelativeSector()-pt2->GetRelativeSector())>1) continue; // if (pt2){ if (pt2->GetRemoval()<=10) { //if ( TMath::Abs(pt->GetRelativeSector()-pt2->GetRelativeSector())>0) break; SignShared(pt,pt2); } } } } void AliTPCtrackerMI::SortTracks(TObjArray * arr, Int_t mode) const { // //sort tracks in array according mode criteria Int_t nseed = arr->GetEntriesFast(); for (Int_t i=0; iUncheckedAt(i); if (!pt) { continue; } pt->SetSort(mode); } arr->UnSort(); arr->Sort(); } void AliTPCtrackerMI::RemoveUsed2(TObjArray * arr, Float_t factor1, Float_t factor2, Int_t minimal) { // // Loop over all tracks and remove overlaped tracks (with lower quality) // Algorithm: // 1. Unsign clusters // 2. Sort tracks according quality // Quality is defined by the number of cluster between first and last points // // 3. Loop over tracks - decreasing quality order // a.) remove - If the fraction of shared cluster less than factor (1- n or 2) // b.) remove - If the minimal number of clusters less than minimal and not ITS // c.) if track accepted - sign clusters // //Called in - AliTPCtrackerMI::Clusters2Tracks() // - AliTPCtrackerMI::PropagateBack() // - AliTPCtrackerMI::RefitInward() // // Arguments: // factor1 - factor for constrained // factor2 - for non constrained tracks // if (Float_t(shared+1)/Float_t(found+1)>factor) - DELETE // UnsignClusters(); // Int_t nseed = arr->GetEntriesFast(); Float_t * quality = new Float_t[nseed]; Int_t * indexes = new Int_t[nseed]; Int_t good =0; // // for (Int_t i=0; iUncheckedAt(i); if (!pt){ quality[i]=-1; continue; } pt->UpdatePoints(); //select first last max dens points Float_t * points = pt->GetPoints(); if (points[3]<0.8) quality[i] =-1; quality[i] = (points[2]-points[0])+pt->GetNumberOfClusters(); //prefer high momenta tracks if overlaps quality[i] *= TMath::Sqrt(TMath::Abs(pt->Pt())+0.5); } TMath::Sort(nseed,quality,indexes); // // for (Int_t itrack=0; itrackUncheckedAt(trackindex); if (!pt) continue; // if (quality[trackindex]<0){ if (pt) { delete arr->RemoveAt(trackindex); } else{ arr->RemoveAt(trackindex); } continue; } // // Int_t first = Int_t(pt->GetPoints()[0]); Int_t last = Int_t(pt->GetPoints()[2]); Double_t factor = (pt->GetBConstrain()) ? factor1: factor2; // Int_t found,foundable,shared; pt->GetClusterStatistic(first,last, found, foundable,shared,kFALSE); // better to get statistic in "high-dens" region do't use full track as in line bellow // pt->GetClusterStatistic(0,160, found, foundable,shared,kFALSE); Bool_t itsgold =kFALSE; if (pt->GetESD()){ Int_t dummy[12]; if (pt->GetESD()->GetITSclusters(dummy)>4) itsgold= kTRUE; } if (!itsgold){ // if (Float_t(shared+1)/Float_t(found+1)>factor){ if (pt->GetKinkIndexes()[0]!=0) continue; //don't remove tracks - part of the kinks if( AliTPCReconstructor::StreamLevel()>15){ TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"RemoveUsed"<< "iter="<RemoveAt(trackindex); continue; } if (pt->GetNumberOfClusters()<50&&(found-0.5*shared)GetKinkIndexes()[0]!=0) continue; //don't remove tracks - part of the kinks if( AliTPCReconstructor::StreamLevel()>15){ TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"RemoveShort"<< "iter="<RemoveAt(trackindex); continue; } } good++; //if (sharedfactor>0.4) continue; if (pt->GetKinkIndexes()[0]>0) continue; //Remove tracks with undefined properties - seems if (pt->GetSigmaY2()GetClusterIndex2(i); // if (index<0 || index&0x8000 ) continue; if (index<0 || index&0x8000 ) continue; AliTPCclusterMI *c= pt->GetClusterPointer(i); if (!c) continue; c->Use(10); } } fNtracks = good; if (fDebug>0){ Info("RemoveUsed","\n*****\nNumber of good tracks after shared removal\t%d\n",fNtracks); } delete []quality; delete []indexes; } void AliTPCtrackerMI::UnsignClusters() { // // loop over all clusters and unsign them // for (Int_t sec=0;secGetNRows();row++){ AliTPCclusterMI *cl = fInnerSec[sec][row].GetClusters1(); for (Int_t icl =0;icl< fInnerSec[sec][row].GetN1();icl++) // if (cl[icl].IsUsed(10)) cl[icl].Use(-1); cl = fInnerSec[sec][row].GetClusters2(); for (Int_t icl =0;icl< fInnerSec[sec][row].GetN2();icl++) //if (cl[icl].IsUsed(10)) cl[icl].Use(-1); } } for (Int_t sec=0;secGetNRows();row++){ AliTPCclusterMI *cl = fOuterSec[sec][row].GetClusters1(); for (Int_t icl =0;icl< fOuterSec[sec][row].GetN1();icl++) //if (cl[icl].IsUsed(10)) cl[icl].Use(-1); cl = fOuterSec[sec][row].GetClusters2(); for (Int_t icl =0;icl< fOuterSec[sec][row].GetN2();icl++) //if (cl[icl].IsUsed(10)) cl[icl].Use(-1); } } } void AliTPCtrackerMI::SignClusters(TObjArray * arr, Float_t fnumber, Float_t fdensity) { // //sign clusters to be "used" // // snumber and sdensity sign number of sigmas - bellow mean value to be accepted // loop over "primaries" Float_t sumdens=0; Float_t sumdens2=0; Float_t sumn =0; Float_t sumn2 =0; Float_t sumchi =0; Float_t sumchi2 =0; Float_t sum =0; TStopwatch timer; timer.Start(); Int_t nseed = arr->GetEntriesFast(); for (Int_t i=0; iUncheckedAt(i); if (!pt) { continue; } if (!(pt->IsActive())) continue; Float_t dens = pt->GetNumberOfClusters()/Float_t(pt->GetNFoundable()); if ( (dens>0.7) && (pt->GetNumberOfClusters()>70)){ sumdens += dens; sumdens2+= dens*dens; sumn += pt->GetNumberOfClusters(); sumn2 += pt->GetNumberOfClusters()*pt->GetNumberOfClusters(); Float_t chi2 = pt->GetChi2()/pt->GetNumberOfClusters(); if (chi2>5) chi2=5; sumchi +=chi2; sumchi2 +=chi2*chi2; sum++; } } Float_t mdensity = 0.9; Float_t meann = 130; Float_t meanchi = 1; Float_t sdensity = 0.1; Float_t smeann = 10; Float_t smeanchi =0.4; if (sum>20){ mdensity = sumdens/sum; meann = sumn/sum; meanchi = sumchi/sum; // sdensity = sumdens2/sum-mdensity*mdensity; if (sdensity >= 0) sdensity = TMath::Sqrt(sdensity); else sdensity = 0.1; // smeann = sumn2/sum-meann*meann; if (smeann >= 0) smeann = TMath::Sqrt(smeann); else smeann = 10; // smeanchi = sumchi2/sum - meanchi*meanchi; if (smeanchi >= 0) smeanchi = TMath::Sqrt(smeanchi); else smeanchi = 0.4; } //REMOVE SHORT DELTAS or tracks going out of sensitive volume of TPC // for (Int_t i=0; iUncheckedAt(i); if (!pt) { continue; } if (pt->GetBSigned()) continue; if (pt->GetBConstrain()) continue; //if (!(pt->IsActive())) continue; /* Int_t found,foundable,shared; pt->GetClusterStatistic(0,160,found, foundable,shared); if (shared/float(found)>0.3) { if (shared/float(found)>0.9 ){ //delete arr->RemoveAt(i); } continue; } */ Bool_t isok =kFALSE; if ( (pt->GetNShared()/pt->GetNumberOfClusters()<0.5) &&pt->GetNumberOfClusters()>60) isok = kTRUE; if ((TMath::Abs(1/pt->GetC())<100.) && (pt->GetNShared()/pt->GetNumberOfClusters()<0.7)) isok =kTRUE; if (TMath::Abs(pt->GetZ()/pt->GetX())>1.1) isok =kTRUE; if ( (TMath::Abs(pt->GetSnp()>0.7) && pt->GetD(0,0)>60.)) isok =kTRUE; if (isok) for (Int_t i=0; i<160; i++) { Int_t index=pt->GetClusterIndex2(i); if (index<0) continue; AliTPCclusterMI *c= pt->GetClusterPointer(i); if (!c) continue; //if (!(c->IsUsed(10))) c->Use(); c->Use(10); } } // Double_t maxchi = meanchi+2.*smeanchi; for (Int_t i=0; iUncheckedAt(i); if (!pt) { continue; } //if (!(pt->IsActive())) continue; if (pt->GetBSigned()) continue; Double_t chi = pt->GetChi2()/pt->GetNumberOfClusters(); if (chi>maxchi) continue; Float_t bfactor=1; Float_t dens = pt->GetNumberOfClusters()/Float_t(pt->GetNFoundable()); //sign only tracks with enoug big density at the beginning if ((pt->GetDensityFirst(40)<0.75) && pt->GetNumberOfClusters()fBConstrain) mindens = TMath::Max(mdensity-sdensity*fdensity*bfactor,0.65); if ( (pt->GetRemoval()==10) && (pt->GetSnp()>0.8)&&(dens>mindens)) minn=0; if ((dens>mindens && pt->GetNumberOfClusters()>minn) && chiGetNumberOfClusters(); pt->SetBSigned(kTRUE); for (Int_t i=0; i<160; i++) { Int_t index=pt->GetClusterIndex2(i); if (index<0) continue; AliTPCclusterMI *c= pt->GetClusterPointer(i); if (!c) continue; // if (!(c->IsUsed(10))) c->Use(); c->Use(10); } } } // gLastCheck = nseed; // arr->Compress(); if (fDebug>0){ timer.Print(); } } void AliTPCtrackerMI::StopNotActive(TObjArray * arr, Int_t row0, Float_t th0, Float_t th1, Float_t th2) const { // stop not active tracks // take th1 as threshold for number of founded to number of foundable on last 10 active rows // take th2 as threshold for number of founded to number of foundable on last 20 active rows Int_t nseed = arr->GetEntriesFast(); // for (Int_t i=0; iUncheckedAt(i); if (!pt) { continue; } if (!(pt->IsActive())) continue; StopNotActive(pt,row0,th0, th1,th2); } } void AliTPCtrackerMI::StopNotActive(AliTPCseed * seed, Int_t row0, Float_t th0, Float_t th1, Float_t th2) const { // stop not active tracks // take th1 as threshold for number of founded to number of foundable on last 10 active rows // take th2 as threshold for number of founded to number of foundable on last 20 active rows Int_t sumgood1 = 0; Int_t sumgood2 = 0; Int_t foundable = 0; Int_t maxindex = seed->GetLastPoint(); //last foundable row if (seed->GetNFoundable()*th0 > seed->GetNumberOfClusters()) { seed->Desactivate(10) ; return; } for (Int_t i=row0; iGetClusterIndex2(i); if (index!=-1) foundable++; //if (!c) continue; if (foundable<=30) sumgood1++; if (foundable<=50) { sumgood2++; } else{ break; } } if (foundable>=30.){ if (sumgood1<(th1*30.)) seed->Desactivate(10); } if (foundable>=50) if (sumgood2<(th2*50.)) seed->Desactivate(10); } Int_t AliTPCtrackerMI::RefitInward(AliESDEvent *event) { // // back propagation of ESD tracks // //return 0; const Int_t kMaxFriendTracks=2000; fEvent = event; ReadSeeds(event,2); fIteration=2; //PrepareForProlongation(fSeeds,1); PropagateForward2(fSeeds); RemoveUsed2(fSeeds,0.4,0.4,20); TObjArray arraySeed(fSeeds->GetEntries()); for (Int_t i=0;iGetEntries();i++) { arraySeed.AddAt(fSeeds->At(i),i); } SignShared(&arraySeed); // FindCurling(fSeeds, event,2); // find multi found tracks FindSplitted(fSeeds, event,2); // find multi found tracks Int_t ntracks=0; Int_t nseed = fSeeds->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (!seed) continue; if (seed->GetKinkIndex(0)>0) UpdateKinkQualityD(seed); // update quality informations for kinks AliESDtrack *esd=event->GetTrack(i); if (seed->GetNumberOfClusters()<60 && seed->GetNumberOfClusters()<(esd->GetTPCclusters(0) -5)*0.8){ AliExternalTrackParam paramIn; AliExternalTrackParam paramOut; Int_t ncl = seed->RefitTrack(seed,¶mIn,¶mOut); if (AliTPCReconstructor::StreamLevel()>0) { (*fDebugStreamer)<<"RecoverIn"<< "seed.="<15) { seed->Set(paramIn.GetX(),paramIn.GetAlpha(),paramIn.GetParameter(),paramIn.GetCovariance()); seed->SetNumberOfClusters(ncl); } } seed->PropagateTo(fParam->GetInnerRadiusLow()); seed->UpdatePoints(); AddCovariance(seed); MakeBitmaps(seed); seed->CookdEdx(0.02,0.6); CookLabel(seed,0.1); //For comparison only esd->SetTPCClusterMap(seed->GetClusterMap()); esd->SetTPCSharedMap(seed->GetSharedMap()); // if (AliTPCReconstructor::StreamLevel()>1 && seed!=0&&esd!=0) { TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Crefit"<< "Esd.="<GetNumberOfClusters()>15){ esd->UpdateTrackParams(seed,AliESDtrack::kTPCrefit); esd->SetTPCPoints(seed->GetPoints()); esd->SetTPCPointsF(seed->GetNFoundable()); Int_t ndedx = seed->GetNCDEDX(0)+seed->GetNCDEDX(1)+seed->GetNCDEDX(2)+seed->GetNCDEDX(3); Float_t sdedx = (seed->GetSDEDX(0)+seed->GetSDEDX(1)+seed->GetSDEDX(2)+seed->GetSDEDX(3))*0.25; Float_t dedx = seed->GetdEdx(); esd->SetTPCsignal(dedx, sdedx, ndedx); // // add seed to the esd track in Calib level // Bool_t storeFriend = gRandom->Rndm()<(kMaxFriendTracks)/Float_t(nseed); if (AliTPCReconstructor::StreamLevel()>0 &&storeFriend){ AliTPCseed * seedCopy = new AliTPCseed(*seed, kTRUE); esd->AddCalibObject(seedCopy); } ntracks++; } else{ //printf("problem\n"); } } //FindKinks(fSeeds,event); Info("RefitInward","Number of refitted tracks %d",ntracks); return 0; } Int_t AliTPCtrackerMI::PropagateBack(AliESDEvent *event) { // // back propagation of ESD tracks // fEvent = event; fIteration = 1; ReadSeeds(event,1); PropagateBack(fSeeds); RemoveUsed2(fSeeds,0.4,0.4,20); //FindCurling(fSeeds, fEvent,1); FindSplitted(fSeeds, event,1); // find multi found tracks // Int_t nseed = fSeeds->GetEntriesFast(); Int_t ntracks=0; for (Int_t i=0;iUncheckedAt(i); if (!seed) continue; if (seed->GetKinkIndex(0)<0) UpdateKinkQualityM(seed); // update quality informations for kinks seed->UpdatePoints(); AddCovariance(seed); AliESDtrack *esd=event->GetTrack(i); if (seed->GetNumberOfClusters()<60 && seed->GetNumberOfClusters()<(esd->GetTPCclusters(0) -5)*0.8){ AliExternalTrackParam paramIn; AliExternalTrackParam paramOut; Int_t ncl = seed->RefitTrack(seed,¶mIn,¶mOut); if (AliTPCReconstructor::StreamLevel()>0) { (*fDebugStreamer)<<"RecoverBack"<< "seed.="<15) { seed->Set(paramOut.GetX(),paramOut.GetAlpha(),paramOut.GetParameter(),paramOut.GetCovariance()); seed->SetNumberOfClusters(ncl); } } seed->CookdEdx(0.02,0.6); CookLabel(seed,0.1); //For comparison only if (seed->GetNumberOfClusters()>15){ esd->UpdateTrackParams(seed,AliESDtrack::kTPCout); esd->SetTPCPoints(seed->GetPoints()); esd->SetTPCPointsF(seed->GetNFoundable()); Int_t ndedx = seed->GetNCDEDX(0)+seed->GetNCDEDX(1)+seed->GetNCDEDX(2)+seed->GetNCDEDX(3); Float_t sdedx = (seed->GetSDEDX(0)+seed->GetSDEDX(1)+seed->GetSDEDX(2)+seed->GetSDEDX(3))*0.25; Float_t dedx = seed->GetdEdx(); esd->SetTPCsignal(dedx, sdedx, ndedx); ntracks++; Int_t eventnumber = event->GetEventNumberInFile();// patch 28 fev 06 // This is most likely NOT the event number you'd like to use. It has nothing to do with the 'real' event number if (AliTPCReconstructor::StreamLevel()>1 && esd) { (*fDebugStreamer)<<"Cback"<< "Tr0.="<GetEntriesFast(); for (Int_t i=0;iAt(i); if (seed) delete fSeeds->RemoveAt(i); } delete fSeeds; fSeeds =0; } void AliTPCtrackerMI::ReadSeeds(AliESDEvent *event, Int_t direction) { // //read seeds from the event Int_t nentr=event->GetNumberOfTracks(); if (fDebug>0){ Info("ReadSeeds", "Number of ESD tracks: %d\n", nentr); } if (fSeeds) DeleteSeeds(); if (!fSeeds){ fSeeds = new TObjArray(nentr); } UnsignClusters(); // Int_t ntrk=0; for (Int_t i=0; iGetTrack(i); ULong_t status=esd->GetStatus(); if (!(status&AliESDtrack::kTPCin)) continue; AliTPCtrack t(*esd); t.SetNumberOfClusters(0); // AliTPCseed *seed = new AliTPCseed(t,t.GetAlpha()); AliTPCseed *seed = new AliTPCseed(t/*,t.GetAlpha()*/); seed->SetUniqueID(esd->GetID()); AddCovariance(seed); //add systematic ucertainty for (Int_t ikink=0;ikink<3;ikink++) { Int_t index = esd->GetKinkIndex(ikink); seed->GetKinkIndexes()[ikink] = index; if (index==0) continue; index = TMath::Abs(index); AliESDkink * kink = fEvent->GetKink(index-1); if (kink&&esd->GetKinkIndex(ikink)<0){ if ((status & AliESDtrack::kTRDrefit) != 0) kink->SetStatus(1,2); if ((status & AliESDtrack::kITSout) != 0) kink->SetStatus(1,0); } if (kink&&esd->GetKinkIndex(ikink)>0){ if ((status & AliESDtrack::kTRDrefit) != 0) kink->SetStatus(1,6); if ((status & AliESDtrack::kITSout) != 0) kink->SetStatus(1,4); } } if (((status&AliESDtrack::kITSout)==0)&&(direction==1)) seed->ResetCovariance(10.); if ( direction ==2 &&(status & AliESDtrack::kTRDrefit) == 0 ) seed->ResetCovariance(10.); //if ( direction ==2 && ((status & AliESDtrack::kTPCout) == 0) ) { // fSeeds->AddAt(0,i); // delete seed; // continue; //} if ( direction ==2 &&(status & AliESDtrack::kTRDrefit) > 0 ) { Double_t par0[5],par1[5],alpha,x; esd->GetInnerExternalParameters(alpha,x,par0); esd->GetExternalParameters(x,par1); Double_t delta1 = TMath::Abs(par0[4]-par1[4])/(0.000000001+TMath::Abs(par0[4]+par1[4])); Double_t delta2 = TMath::Abs(par0[3]-par1[3]); Double_t trdchi2=0; if (esd->GetTRDncls()>0) trdchi2 = esd->GetTRDchi2()/esd->GetTRDncls(); //reset covariance if suspicious if ( (delta1>0.1) || (delta2>0.006) ||trdchi2>7.) seed->ResetCovariance(10.); } // // // rotate to the local coordinate system // fSectors=fInnerSec; fN=fkNIS; Double_t alpha=seed->GetAlpha() - fSectors->GetAlphaShift(); if (alpha > 2.*TMath::Pi()) alpha -= 2.*TMath::Pi(); if (alpha < 0. ) alpha += 2.*TMath::Pi(); Int_t ns=Int_t(alpha/fSectors->GetAlpha())%fN; alpha =ns*fSectors->GetAlpha() + fSectors->GetAlphaShift(); if (alpha<-TMath::Pi()) alpha += 2*TMath::Pi(); if (alpha>=TMath::Pi()) alpha -= 2*TMath::Pi(); alpha-=seed->GetAlpha(); if (!seed->Rotate(alpha)) { delete seed; continue; } seed->SetESD(esd); // sign clusters if (esd->GetKinkIndex(0)<=0){ for (Int_t irow=0;irow<160;irow++){ Int_t index = seed->GetClusterIndex2(irow); if (index>0){ // AliTPCclusterMI * cl = GetClusterMI(index); seed->SetClusterPointer(irow,cl); if (cl){ if ((index & 0x8000)==0){ cl->Use(10); // accepted cluster }else{ cl->Use(6); // close cluster not accepted } }else{ Info("ReadSeeds","Not found cluster"); } } } } fSeeds->AddAt(seed,i); } } //_____________________________________________________________________________ void AliTPCtrackerMI::MakeSeeds3(TObjArray * arr, Int_t sec, Int_t i1, Int_t i2, Float_t cuts[4], Float_t deltay, Int_t ddsec) { //----------------------------------------------------------------- // This function creates track seeds. // SEEDING WITH VERTEX CONSTRAIN //----------------------------------------------------------------- // cuts[0] - fP4 cut // cuts[1] - tan(phi) cut // cuts[2] - zvertex cut // cuts[3] - fP3 cut Int_t nin0 = 0; Int_t nin1 = 0; Int_t nin2 = 0; Int_t nin = 0; Int_t nout1 = 0; Int_t nout2 = 0; Double_t x[5], c[15]; // Int_t di = i1-i2; // AliTPCseed * seed = new AliTPCseed(); Double_t alpha=fSectors->GetAlpha(), shift=fSectors->GetAlphaShift(); Double_t cs=cos(alpha), sn=sin(alpha); // // Double_t x1 =fOuterSec->GetX(i1); //Double_t xx2=fOuterSec->GetX(i2); Double_t x1 =GetXrow(i1); Double_t xx2=GetXrow(i2); Double_t x3=GetX(), y3=GetY(), z3=GetZ(); Int_t imiddle = (i2+i1)/2; //middle pad row index Double_t xm = GetXrow(imiddle); // radius of middle pad-row const AliTPCtrackerRow& krm=GetRow(sec,imiddle); //middle pad -row // Int_t ns =sec; const AliTPCtrackerRow& kr1=GetRow(ns,i1); Double_t ymax = GetMaxY(i1)-kr1.GetDeadZone()-1.5; Double_t ymaxm = GetMaxY(imiddle)-kr1.GetDeadZone()-1.5; // // change cut on curvature if it can't reach this layer // maximal curvature set to reach it Double_t dvertexmax = TMath::Sqrt((x1-x3)*(x1-x3)+(ymax+5-y3)*(ymax+5-y3)); if (dvertexmax*0.5*cuts[0]>0.85){ cuts[0] = 0.85/(dvertexmax*0.5+1.); } Double_t r2min = 1/(cuts[0]*cuts[0]); //minimal square of radius given by cut // Int_t ddsec = 1; if (deltay>0) ddsec = 0; // loop over clusters for (Int_t is=0; is < kr1; is++) { // if (kr1[is]->IsUsed(10)) continue; Double_t y1=kr1[is]->GetY(), z1=kr1[is]->GetZ(); //if (TMath::Abs(y1)>ymax) continue; if (deltay>0 && TMath::Abs(ymax-TMath::Abs(y1))> deltay ) continue; // seed only at the edge // find possible directions Float_t anglez = (z1-z3)/(x1-x3); Float_t extraz = z1 - anglez*(x1-xx2); // extrapolated z // // //find rotation angles relative to line given by vertex and point 1 Double_t dvertex2 = (x1-x3)*(x1-x3)+(y1-y3)*(y1-y3); Double_t dvertex = TMath::Sqrt(dvertex2); Double_t angle13 = TMath::ATan((y1-y3)/(x1-x3)); Double_t cs13 = cos(-angle13), sn13 = sin(-angle13); // // loop over 2 sectors Int_t dsec1=-ddsec; Int_t dsec2= ddsec; if (y1<0) dsec2= 0; if (y1>0) dsec1= 0; Double_t dddz1=0; // direction of delta inclination in z axis Double_t dddz2=0; if ( (z1-z3)>0) dddz1 =1; else dddz2 =1; // for (Int_t dsec = dsec1; dsec<=dsec2;dsec++){ Int_t sec2 = sec + dsec; // // AliTPCtrackerRow& kr2 = fOuterSec[(sec2+fkNOS)%fkNOS][i2]; //AliTPCtrackerRow& kr2m = fOuterSec[(sec2+fkNOS)%fkNOS][imiddle]; AliTPCtrackerRow& kr2 = GetRow((sec2+fkNOS)%fkNOS,i2); AliTPCtrackerRow& kr2m = GetRow((sec2+fkNOS)%fkNOS,imiddle); Int_t index1 = TMath::Max(kr2.Find(extraz-0.6-dddz1*TMath::Abs(z1)*0.05)-1,0); Int_t index2 = TMath::Min(kr2.Find(extraz+0.6+dddz2*TMath::Abs(z1)*0.05)+1,kr2); // rotation angles to p1-p3 Double_t cs13r = cos(-angle13+dsec*alpha)/dvertex, sn13r = sin(-angle13+dsec*alpha)/dvertex; Double_t x2, y2, z2; // // Double_t dymax = maxangle*TMath::Abs(x1-xx2); // Double_t dxx0 = (xx2-x3)*cs13r; Double_t dyy0 = (xx2-x3)*sn13r; for (Int_t js=index1; js < index2; js++) { const AliTPCclusterMI *kcl = kr2[js]; if (kcl->IsUsed(10)) continue; // //calcutate parameters // Double_t yy0 = dyy0 +(kcl->GetY()-y3)*cs13r; // stright track if (TMath::Abs(yy0)<0.000001) continue; Double_t xx0 = dxx0 -(kcl->GetY()-y3)*sn13r; Double_t y0 = 0.5*(xx0*xx0+yy0*yy0-xx0)/yy0; Double_t r02 = (0.25+y0*y0)*dvertex2; //curvature (radius) cut if (r020) c0*=-1.; //Double_t dfi0 = 2.*TMath::ASin(dvertex*c0*0.5); //Double_t dfi1 = 2.*TMath::ASin(TMath::Sqrt(yy0*yy0+(1-xx0)*(1-xx0))*dvertex*c0*0.5); Double_t dfi0 = 2.*AliTPCFastMath::FastAsin(dvertex*c0*0.5); Double_t dfi1 = 2.*AliTPCFastMath::FastAsin(TMath::Sqrt(yy0*yy0+(1-xx0)*(1-xx0))*dvertex*c0*0.5); // // Double_t z0 = kcl->GetZ(); Double_t zzzz2 = z1-(z1-z3)*dfi1/dfi0; if (TMath::Abs(zzzz2-z0)>0.5) continue; nin1++; // Double_t dip = (z1-z0)*c0/dfi1; Double_t x0 = (0.5*cs13+y0*sn13)*dvertex*c0; // y2 = kcl->GetY(); if (dsec==0){ x2 = xx2; z2 = kcl->GetZ(); } else { // rotation z2 = kcl->GetZ(); x2= xx2*cs-y2*sn*dsec; y2=+xx2*sn*dsec+y2*cs; } x[0] = y1; x[1] = z1; x[2] = x0; x[3] = dip; x[4] = c0; // // // do we have cluster at the middle ? Double_t ym,zm; GetProlongation(x1,xm,x,ym,zm); UInt_t dummy; AliTPCclusterMI * cm=0; if (TMath::Abs(ym)-ymaxm<0){ cm = krm.FindNearest2(ym,zm,1.0,0.6,dummy); if ((!cm) || (cm->IsUsed(10))) { continue; } } else{ // rotate y1 to system 0 // get state vector in rotated system Double_t yr1 = (-0.5*sn13+y0*cs13)*dvertex*c0; Double_t xr2 = x0*cs+yr1*sn*dsec; Double_t xr[5]={kcl->GetY(),kcl->GetZ(), xr2, dip, c0}; // GetProlongation(xx2,xm,xr,ym,zm); if (TMath::Abs(ym)-ymaxm<0){ cm = kr2m.FindNearest2(ym,zm,1.0,0.6,dummy); if ((!cm) || (cm->IsUsed(10))) { continue; } } } Double_t dym = 0; Double_t dzm = 0; if (cm){ dym = ym - cm->GetY(); dzm = zm - cm->GetZ(); } nin2++; // // Double_t sy1=kr1[is]->GetSigmaY2()*2., sz1=kr1[is]->GetSigmaZ2()*2.; Double_t sy2=kcl->GetSigmaY2()*2., sz2=kcl->GetSigmaZ2()*2.; //Double_t sy3=400*3./12., sy=0.1, sz=0.1; Double_t sy3=25000*x[4]*x[4]+0.1, sy=0.1, sz=0.1; //Double_t sy3=25000*x[4]*x[4]*60+0.5, sy=0.1, sz=0.1; Double_t f40=(F1(x1,y1+sy,x2,y2,x3,y3)-x[4])/sy; Double_t f42=(F1(x1,y1,x2,y2+sy,x3,y3)-x[4])/sy; Double_t f43=(F1(x1,y1,x2,y2,x3,y3+sy)-x[4])/sy; Double_t f20=(F2(x1,y1+sy,x2,y2,x3,y3)-x[2])/sy; Double_t f22=(F2(x1,y1,x2,y2+sy,x3,y3)-x[2])/sy; Double_t f23=(F2(x1,y1,x2,y2,x3,y3+sy)-x[2])/sy; Double_t f30=(F3(x1,y1+sy,x2,y2,z1,z2)-x[3])/sy; Double_t f31=(F3(x1,y1,x2,y2,z1+sz,z2)-x[3])/sz; Double_t f32=(F3(x1,y1,x2,y2+sy,z1,z2)-x[3])/sy; Double_t f34=(F3(x1,y1,x2,y2,z1,z2+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; // if (!BuildSeed(kr1[is],kcl,0,x1,x2,x3,x,c)) continue; UInt_t index=kr1.GetIndex(is); seed->~AliTPCseed(); // this does not set the pointer to 0... AliTPCseed *track=new(seed) AliTPCseed(x1, ns*alpha+shift, x, c, index); track->SetIsSeeding(kTRUE); track->SetSeed1(i1); track->SetSeed2(i2); track->SetSeedType(3); //if (dsec==0) { FollowProlongation(*track, (i1+i2)/2,1); Int_t foundable,found,shared; track->GetClusterStatistic((i1+i2)/2,i1, found, foundable, shared, kTRUE); if ((found<0.55*foundable) || shared>0.5*found || (track->GetSigmaY2()+track->GetSigmaZ2())>0.5){ seed->Reset(); seed->~AliTPCseed(); continue; } //} nin++; FollowProlongation(*track, i2,1); //Int_t rc = 1; track->SetBConstrain(1); // track->fLastPoint = i1+fInnerSec->GetNRows(); // first cluster in track position track->SetLastPoint(i1); // first cluster in track position track->SetFirstPoint(track->GetLastPoint()); if (track->GetNumberOfClusters()<(i1-i2)*0.5 || track->GetNumberOfClusters() < track->GetNFoundable()*0.6 || track->GetNShared()>0.4*track->GetNumberOfClusters() ) { seed->Reset(); seed->~AliTPCseed(); continue; } nout1++; // Z VERTEX CONDITION Double_t zv, bz=GetBz(); if ( !track->GetZAt(0.,bz,zv) ) continue; if (TMath::Abs(zv-z3)>cuts[2]) { FollowProlongation(*track, TMath::Max(i2-20,0)); if ( !track->GetZAt(0.,bz,zv) ) continue; if (TMath::Abs(zv-z3)>cuts[2]){ FollowProlongation(*track, TMath::Max(i2-40,0)); if ( !track->GetZAt(0.,bz,zv) ) continue; if (TMath::Abs(zv-z3)>cuts[2] &&(track->GetNumberOfClusters() > track->GetNFoundable()*0.7)){ // make seed without constrain AliTPCseed * track2 = MakeSeed(track,0.2,0.5,1.); FollowProlongation(*track2, i2,1); track2->SetBConstrain(kFALSE); track2->SetSeedType(1); arr->AddLast(track2); seed->Reset(); seed->~AliTPCseed(); continue; } else{ seed->Reset(); seed->~AliTPCseed(); continue; } } } track->SetSeedType(0); arr->AddLast(track); seed = new AliTPCseed; nout2++; // don't consider other combinations if (track->GetNumberOfClusters() > track->GetNFoundable()*0.8) break; } } } if (fDebug>3){ Info("MakeSeeds3","\nSeeding statistic:\t%d\t%d\t%d\t%d\t%d\t%d",nin0,nin1,nin2,nin,nout1,nout2); } delete seed; } void AliTPCtrackerMI::MakeSeeds5(TObjArray * arr, Int_t sec, Int_t i1, Int_t i2, Float_t cuts[4], Float_t deltay) { //----------------------------------------------------------------- // This function creates track seeds. //----------------------------------------------------------------- // cuts[0] - fP4 cut // cuts[1] - tan(phi) cut // cuts[2] - zvertex cut // cuts[3] - fP3 cut Int_t nin0 = 0; Int_t nin1 = 0; Int_t nin2 = 0; Int_t nin = 0; Int_t nout1 = 0; Int_t nout2 = 0; Int_t nout3 =0; Double_t x[5], c[15]; // // make temporary seed AliTPCseed * seed = new AliTPCseed; Double_t alpha=fOuterSec->GetAlpha(), shift=fOuterSec->GetAlphaShift(); // Double_t cs=cos(alpha), sn=sin(alpha); // // // first 3 padrows Double_t x1 = GetXrow(i1-1); const AliTPCtrackerRow& kr1=GetRow(sec,i1-1); Double_t y1max = GetMaxY(i1-1)-kr1.GetDeadZone()-1.5; // Double_t x1p = GetXrow(i1); const AliTPCtrackerRow& kr1p=GetRow(sec,i1); // Double_t x1m = GetXrow(i1-2); const AliTPCtrackerRow& kr1m=GetRow(sec,i1-2); // //last 3 padrow for seeding AliTPCtrackerRow& kr3 = GetRow((sec+fkNOS)%fkNOS,i1-7); Double_t x3 = GetXrow(i1-7); // Double_t y3max= GetMaxY(i1-7)-kr3.fDeadZone-1.5; // AliTPCtrackerRow& kr3p = GetRow((sec+fkNOS)%fkNOS,i1-6); Double_t x3p = GetXrow(i1-6); // AliTPCtrackerRow& kr3m = GetRow((sec+fkNOS)%fkNOS,i1-8); Double_t x3m = GetXrow(i1-8); // // // middle padrow Int_t im = i1-4; //middle pad row index Double_t xm = GetXrow(im); // radius of middle pad-row const AliTPCtrackerRow& krm=GetRow(sec,im); //middle pad -row // Double_t ymmax = GetMaxY(im)-kr1.fDeadZone-1.5; // // Double_t deltax = x1-x3; Double_t dymax = deltax*cuts[1]; Double_t dzmax = deltax*cuts[3]; // // loop over clusters for (Int_t is=0; is < kr1; is++) { // if (kr1[is]->IsUsed(10)) continue; Double_t y1=kr1[is]->GetY(), z1=kr1[is]->GetZ(); // if (deltay>0 && TMath::Abs(y1max-TMath::Abs(y1))> deltay ) continue; // seed only at the edge // Int_t index1 = TMath::Max(kr3.Find(z1-dzmax)-1,0); Int_t index2 = TMath::Min(kr3.Find(z1+dzmax)+1,kr3); // Double_t y3, z3; // // UInt_t index; for (Int_t js=index1; js < index2; js++) { const AliTPCclusterMI *kcl = kr3[js]; if (kcl->IsUsed(10)) continue; y3 = kcl->GetY(); // apply angular cuts if (TMath::Abs(y1-y3)>dymax) continue; x3 = x3; z3 = kcl->GetZ(); if (TMath::Abs(z1-z3)>dzmax) continue; // Double_t angley = (y1-y3)/(x1-x3); Double_t anglez = (z1-z3)/(x1-x3); // Double_t erry = TMath::Abs(angley)*(x1-x1m)*0.5+0.5; Double_t errz = TMath::Abs(anglez)*(x1-x1m)*0.5+0.5; // Double_t yyym = angley*(xm-x1)+y1; Double_t zzzm = anglez*(xm-x1)+z1; const AliTPCclusterMI *kcm = krm.FindNearest2(yyym,zzzm,erry,errz,index); if (!kcm) continue; if (kcm->IsUsed(10)) continue; erry = TMath::Abs(angley)*(x1-x1m)*0.4+0.5; errz = TMath::Abs(anglez)*(x1-x1m)*0.4+0.5; // // // Int_t used =0; Int_t found =0; // // look around first const AliTPCclusterMI *kc1m = kr1m.FindNearest2(angley*(x1m-x1)+y1, anglez*(x1m-x1)+z1, erry,errz,index); // if (kc1m){ found++; if (kc1m->IsUsed(10)) used++; } const AliTPCclusterMI *kc1p = kr1p.FindNearest2(angley*(x1p-x1)+y1, anglez*(x1p-x1)+z1, erry,errz,index); // if (kc1p){ found++; if (kc1p->IsUsed(10)) used++; } if (used>1) continue; if (found<1) continue; // // look around last const AliTPCclusterMI *kc3m = kr3m.FindNearest2(angley*(x3m-x3)+y3, anglez*(x3m-x3)+z3, erry,errz,index); // if (kc3m){ found++; if (kc3m->IsUsed(10)) used++; } else continue; const AliTPCclusterMI *kc3p = kr3p.FindNearest2(angley*(x3p-x3)+y3, anglez*(x3p-x3)+z3, erry,errz,index); // if (kc3p){ found++; if (kc3p->IsUsed(10)) used++; } else continue; if (used>1) continue; if (found<3) continue; // Double_t x2,y2,z2; x2 = xm; y2 = kcm->GetY(); z2 = kcm->GetZ(); // x[0]=y1; x[1]=z1; x[4]=F1(x1,y1,x2,y2,x3,y3); //if (TMath::Abs(x[4]) >= cuts[0]) continue; nin0++; // x[2]=F2(x1,y1,x2,y2,x3,y3); nin1++; // x[3]=F3n(x1,y1,x2,y2,z1,z2,x[4]); //if (TMath::Abs(x[3]) > cuts[3]) continue; nin2++; // // Double_t sy1=0.1, sz1=0.1; Double_t sy2=0.1, sz2=0.1; Double_t sy3=0.1, sy=0.1, sz=0.1; Double_t f40=(F1(x1,y1+sy,x2,y2,x3,y3)-x[4])/sy; Double_t f42=(F1(x1,y1,x2,y2+sy,x3,y3)-x[4])/sy; Double_t f43=(F1(x1,y1,x2,y2,x3,y3+sy)-x[4])/sy; Double_t f20=(F2(x1,y1+sy,x2,y2,x3,y3)-x[2])/sy; Double_t f22=(F2(x1,y1,x2,y2+sy,x3,y3)-x[2])/sy; Double_t f23=(F2(x1,y1,x2,y2,x3,y3+sy)-x[2])/sy; Double_t f30=(F3(x1,y1+sy,x2,y2,z1,z2)-x[3])/sy; Double_t f31=(F3(x1,y1,x2,y2,z1+sz,z2)-x[3])/sz; Double_t f32=(F3(x1,y1,x2,y2+sy,z1,z2)-x[3])/sy; Double_t f34=(F3(x1,y1,x2,y2,z1,z2+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; // if (!BuildSeed(kr1[is],kcl,0,x1,x2,x3,x,c)) continue; UInt_t index=kr1.GetIndex(is); seed->~AliTPCseed(); AliTPCseed *track=new(seed) AliTPCseed(x1, sec*alpha+shift, x, c, index); track->SetIsSeeding(kTRUE); nin++; FollowProlongation(*track, i1-7,1); if (track->GetNumberOfClusters() < track->GetNFoundable()*0.75 || track->GetNShared()>0.6*track->GetNumberOfClusters() || ( track->GetSigmaY2()+ track->GetSigmaZ2())>0.6){ seed->Reset(); seed->~AliTPCseed(); continue; } nout1++; nout2++; //Int_t rc = 1; FollowProlongation(*track, i2,1); track->SetBConstrain(0); track->SetLastPoint(i1+fInnerSec->GetNRows()); // first cluster in track position track->SetFirstPoint(track->GetLastPoint()); if (track->GetNumberOfClusters()<(i1-i2)*0.5 || track->GetNumberOfClusters()GetNFoundable()*0.7 || track->GetNShared()>2. || track->GetChi2()/track->GetNumberOfClusters()>6 || ( track->GetSigmaY2()+ track->GetSigmaZ2())>0.5 ) { seed->Reset(); seed->~AliTPCseed(); continue; } { FollowProlongation(*track, TMath::Max(i2-10,0),1); AliTPCseed * track2 = MakeSeed(track,0.2,0.5,0.9); FollowProlongation(*track2, i2,1); track2->SetBConstrain(kFALSE); track2->SetSeedType(4); arr->AddLast(track2); seed->Reset(); seed->~AliTPCseed(); } //arr->AddLast(track); //seed = new AliTPCseed; nout3++; } } if (fDebug>3){ Info("MakeSeeds5","\nSeeding statiistic:\t%d\t%d\t%d\t%d\t%d\t%d",nin0,nin1,nin2,nin,nout1,nout2,nout3); } delete seed; } //_____________________________________________________________________________ void AliTPCtrackerMI::MakeSeeds2(TObjArray * arr, Int_t sec, Int_t i1, Int_t i2, Float_t */*cuts[4]*/, Float_t deltay, Bool_t /*bconstrain*/) { //----------------------------------------------------------------- // This function creates track seeds - without vertex constraint //----------------------------------------------------------------- // cuts[0] - fP4 cut - not applied // cuts[1] - tan(phi) cut // cuts[2] - zvertex cut - not applied // cuts[3] - fP3 cut Int_t nin0=0; Int_t nin1=0; Int_t nin2=0; Int_t nin3=0; // Int_t nin4=0; //Int_t nin5=0; Double_t alpha=fOuterSec->GetAlpha(), shift=fOuterSec->GetAlphaShift(); // Double_t cs=cos(alpha), sn=sin(alpha); Int_t row0 = (i1+i2)/2; Int_t drow = (i1-i2)/2; const AliTPCtrackerRow& kr0=fSectors[sec][row0]; AliTPCtrackerRow * kr=0; AliTPCpolyTrack polytrack; Int_t nclusters=fSectors[sec][row0]; AliTPCseed * seed = new AliTPCseed; Int_t sumused=0; Int_t cused=0; Int_t cnused=0; for (Int_t is=0; is < nclusters; is++) { //LOOP over clusters Int_t nfound =0; Int_t nfoundable =0; for (Int_t iter =1; iter<2; iter++){ //iterations const AliTPCtrackerRow& krm=fSectors[sec][row0-iter]; const AliTPCtrackerRow& krp=fSectors[sec][row0+iter]; const AliTPCclusterMI * cl= kr0[is]; if (cl->IsUsed(10)) { cused++; } else{ cnused++; } Double_t x = kr0.GetX(); // Initialization of the polytrack nfound =0; nfoundable =0; polytrack.Reset(); // Double_t y0= cl->GetY(); Double_t z0= cl->GetZ(); Float_t erry = 0; Float_t errz = 0; Double_t ymax = fSectors->GetMaxY(row0)-kr0.GetDeadZone()-1.5; if (deltay>0 && TMath::Abs(ymax-TMath::Abs(y0))> deltay ) continue; // seed only at the edge erry = (0.5)*cl->GetSigmaY2()/TMath::Sqrt(cl->GetQ())*6; errz = (0.5)*cl->GetSigmaZ2()/TMath::Sqrt(cl->GetQ())*6; polytrack.AddPoint(x,y0,z0,erry, errz); sumused=0; if (cl->IsUsed(10)) sumused++; Float_t roady = (5*TMath::Sqrt(cl->GetSigmaY2()+0.2)+1.)*iter; Float_t roadz = (5*TMath::Sqrt(cl->GetSigmaZ2()+0.2)+1.)*iter; // x = krm.GetX(); AliTPCclusterMI * cl1 = krm.FindNearest(y0,z0,roady,roadz); if (cl1 && TMath::Abs(ymax-TMath::Abs(y0))) { erry = (0.5)*cl1->GetSigmaY2()/TMath::Sqrt(cl1->GetQ())*3; errz = (0.5)*cl1->GetSigmaZ2()/TMath::Sqrt(cl1->GetQ())*3; if (cl1->IsUsed(10)) sumused++; polytrack.AddPoint(x,cl1->GetY(),cl1->GetZ(),erry,errz); } // x = krp.GetX(); AliTPCclusterMI * cl2 = krp.FindNearest(y0,z0,roady,roadz); if (cl2) { erry = (0.5)*cl2->GetSigmaY2()/TMath::Sqrt(cl2->GetQ())*3; errz = (0.5)*cl2->GetSigmaZ2()/TMath::Sqrt(cl2->GetQ())*3; if (cl2->IsUsed(10)) sumused++; polytrack.AddPoint(x,cl2->GetY(),cl2->GetZ(),erry,errz); } // if (sumused>0) continue; nin0++; polytrack.UpdateParameters(); // follow polytrack roadz = 1.2; roady = 1.2; // Double_t yn,zn; nfoundable = polytrack.GetN(); nfound = nfoundable; // for (Int_t ddrow = iter+1; ddrowGetX(); Double_t ymax = fSectors->GetMaxY(row)-kr->GetDeadZone()-1.5; polytrack.GetFitPoint(xn,yn,zn); if (TMath::Abs(yn)>ymax) continue; nfoundable++; AliTPCclusterMI * cln = kr->FindNearest(yn,zn,roady,roadz); if (cln) { Float_t dist = TMath::Sqrt( (yn-cln->GetY())*(yn-cln->GetY())+(zn-cln->GetZ())*(zn-cln->GetZ())); if (distGetSigmaY2()/TMath::Sqrt(cln->GetQ())*(1.+1./(ddrow)); errz = (dist+0.3)*cln->GetSigmaZ2()/TMath::Sqrt(cln->GetQ())*(1.+1./(ddrow)); if (cln->IsUsed(10)) { // printf("used\n"); sumused++; erry*=2; errz*=2; } */ erry=0.1; errz=0.1; polytrack.AddPoint(xn,cln->GetY(),cln->GetZ(),erry, errz); nfound++; } } } if ( (sumused>3) || (sumused>0.5*nfound) || (nfound<0.6*nfoundable)) break; polytrack.UpdateParameters(); } } if ( (sumused>3) || (sumused>0.5*nfound)) { //printf("sumused %d\n",sumused); continue; } nin1++; Double_t dy,dz; polytrack.GetFitDerivation(kr0.GetX(),dy,dz); AliTPCpolyTrack track2; polytrack.Refit(track2,0.5+TMath::Abs(dy)*0.3,0.4+TMath::Abs(dz)*0.3); if (track2.GetN()<0.5*nfoundable) continue; nin2++; if ((nfound>0.6*nfoundable) &&( nfoundable>0.4*(i1-i2))) { // // test seed with and without constrain for (Int_t constrain=0; constrain<=0;constrain++){ // add polytrack candidate Double_t x[5], c[15]; Double_t x1,x2,x3,y1,y2,y3,z1,z2,z3; track2.GetBoundaries(x3,x1); x2 = (x1+x3)/2.; track2.GetFitPoint(x1,y1,z1); track2.GetFitPoint(x2,y2,z2); track2.GetFitPoint(x3,y3,z3); // //is track pointing to the vertex ? Double_t x0,y0,z0; x0=0; polytrack.GetFitPoint(x0,y0,z0); if (constrain) { x2 = x3; y2 = y3; z2 = z3; x3 = 0; y3 = 0; z3 = 0; } x[0]=y1; x[1]=z1; x[4]=F1(x1,y1,x2,y2,x3,y3); // if (TMath::Abs(x[4]) >= cuts[0]) continue; // x[2]=F2(x1,y1,x2,y2,x3,y3); //if (TMath::Abs(x[4]*x1-x[2]) >= cuts[1]) continue; //x[3]=F3(x1,y1,x2,y2,z1,z2); x[3]=F3n(x1,y1,x3,y3,z1,z3,x[4]); //if (TMath::Abs(x[3]) > cuts[3]) continue; Double_t sy =0.1, sz =0.1; Double_t sy1=0.02, sz1=0.02; Double_t sy2=0.02, sz2=0.02; Double_t sy3=0.02; if (constrain){ sy3=25000*x[4]*x[4]+0.1, sy=0.1, sz=0.1; } Double_t f40=(F1(x1,y1+sy,x2,y2,x3,y3)-x[4])/sy; Double_t f42=(F1(x1,y1,x2,y2+sy,x3,y3)-x[4])/sy; Double_t f43=(F1(x1,y1,x2,y2,x3,y3+sy)-x[4])/sy; Double_t f20=(F2(x1,y1+sy,x2,y2,x3,y3)-x[2])/sy; Double_t f22=(F2(x1,y1,x2,y2+sy,x3,y3)-x[2])/sy; Double_t f23=(F2(x1,y1,x2,y2,x3,y3+sy)-x[2])/sy; Double_t f30=(F3(x1,y1+sy,x3,y3,z1,z3)-x[3])/sy; Double_t f31=(F3(x1,y1,x3,y3,z1+sz,z3)-x[3])/sz; Double_t f32=(F3(x1,y1,x3,y3+sy,z1,z3)-x[3])/sy; Double_t f34=(F3(x1,y1,x3,y3,z1,z3+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; //Int_t row1 = fSectors->GetRowNumber(x1); Int_t row1 = GetRowNumber(x1); UInt_t index=0; //kr0.GetIndex(is); seed->~AliTPCseed(); AliTPCseed *track=new(seed) AliTPCseed(x1,sec*alpha+shift,x,c,index); track->SetIsSeeding(kTRUE); Int_t rc=FollowProlongation(*track, i2); if (constrain) track->SetBConstrain(1); else track->SetBConstrain(0); track->SetLastPoint(row1+fInnerSec->GetNRows()); // first cluster in track position track->SetFirstPoint(track->GetLastPoint()); if (rc==0 || track->GetNumberOfClusters()<(i1-i2)*0.5 || track->GetNumberOfClusters() < track->GetNFoundable()*0.6 || track->GetNShared()>0.4*track->GetNumberOfClusters()) { //delete track; seed->Reset(); seed->~AliTPCseed(); } else { arr->AddLast(track); seed = new AliTPCseed; } nin3++; } } // if accepted seed } if (fDebug>3){ Info("MakeSeeds2","\nSeeding statiistic:\t%d\t%d\t%d\t%d",nin0,nin1,nin2,nin3); } delete seed; } AliTPCseed *AliTPCtrackerMI::MakeSeed(AliTPCseed *track, Float_t r0, Float_t r1, Float_t r2) { // // //reseed using track points Int_t p0 = int(r0*track->GetNumberOfClusters()); // point 0 Int_t p1 = int(r1*track->GetNumberOfClusters()); Int_t p2 = int(r2*track->GetNumberOfClusters()); // last point Int_t pp2=0; Double_t x0[3],x1[3],x2[3]; for (Int_t i=0;i<3;i++){ x0[i]=-1; x1[i]=-1; x2[i]=-1; } // find track position at given ratio of the length Int_t sec0=0, sec1=0, sec2=0; Int_t index=-1; Int_t clindex; for (Int_t i=0;i<160;i++){ if (track->GetClusterPointer(i)){ index++; AliTPCTrackerPoint *trpoint =track->GetTrackPoint(i); if ( (indexGetX()>1){ clindex = track->GetClusterIndex2(i); if (clindex>0){ x0[0] = trpoint->GetX(); x0[1] = trpoint->GetY(); x0[2] = trpoint->GetZ(); sec0 = ((clindex&0xff000000)>>24)%18; } } } if ( (indexGetX()>1)){ clindex = track->GetClusterIndex2(i); if (clindex>0){ x1[0] = trpoint->GetX(); x1[1] = trpoint->GetY(); x1[2] = trpoint->GetZ(); sec1 = ((clindex&0xff000000)>>24)%18; } } if ( (indexGetX()>1)){ clindex = track->GetClusterIndex2(i); if (clindex>0){ x2[0] = trpoint->GetX(); x2[1] = trpoint->GetY(); x2[2] = trpoint->GetZ(); sec2 = ((clindex&0xff000000)>>24)%18; pp2 = i; } } } } Double_t alpha, cs,sn, xx2,yy2; // alpha = (sec1-sec2)*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= x1[0]*cs-x1[1]*sn; yy2= x1[0]*sn+x1[1]*cs; x1[0] = xx2; x1[1] = yy2; // alpha = (sec0-sec2)*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= x0[0]*cs-x0[1]*sn; yy2= x0[0]*sn+x0[1]*cs; x0[0] = xx2; x0[1] = yy2; // // // Double_t x[5],c[15]; // x[0]=x2[1]; x[1]=x2[2]; x[4]=F1(x2[0],x2[1],x1[0],x1[1],x0[0],x0[1]); // if (x[4]>1) return 0; x[2]=F2(x2[0],x2[1],x1[0],x1[1],x0[0],x0[1]); x[3]=F3n(x2[0],x2[1],x0[0],x0[1],x2[2],x0[2],x[4]); //if (TMath::Abs(x[3]) > 2.2) return 0; //if (TMath::Abs(x[2]) > 1.99) return 0; // Double_t sy =0.1, sz =0.1; // Double_t sy1=0.02+track->GetSigmaY2(), sz1=0.02+track->GetSigmaZ2(); Double_t sy2=0.01+track->GetSigmaY2(), sz2=0.01+track->GetSigmaZ2(); Double_t sy3=0.01+track->GetSigmaY2(); // Double_t f40=(F1(x2[0],x2[1]+sy,x1[0],x1[1],x0[0],x0[1])-x[4])/sy; Double_t f42=(F1(x2[0],x2[1],x1[0],x1[1]+sy,x0[0],x0[1])-x[4])/sy; Double_t f43=(F1(x2[0],x2[1],x1[0],x1[1],x0[0],x0[1]+sy)-x[4])/sy; Double_t f20=(F2(x2[0],x2[1]+sy,x1[0],x1[1],x0[0],x0[1])-x[2])/sy; Double_t f22=(F2(x2[0],x2[1],x1[0],x1[1]+sy,x0[0],x0[1])-x[2])/sy; Double_t f23=(F2(x2[0],x2[1],x1[0],x1[1],x0[0],x0[1]+sy)-x[2])/sy; // Double_t f30=(F3(x2[0],x2[1]+sy,x0[0],x0[1],x2[2],x0[2])-x[3])/sy; Double_t f31=(F3(x2[0],x2[1],x0[0],x0[1],x2[2]+sz,x0[2])-x[3])/sz; Double_t f32=(F3(x2[0],x2[1],x0[0],x0[1]+sy,x2[2],x0[2])-x[3])/sy; Double_t f34=(F3(x2[0],x2[1],x0[0],x0[1],x2[2],x0[2]+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; // Int_t row1 = fSectors->GetRowNumber(x2[0]); AliTPCseed *seed=new AliTPCseed(x2[0], sec2*fSectors->GetAlpha()+fSectors->GetAlphaShift(), x, c, 0); // Double_t y0,z0,y1,z1, y2,z2; //seed->GetProlongation(x0[0],y0,z0); // seed->GetProlongation(x1[0],y1,z1); //seed->GetProlongation(x2[0],y2,z2); // seed =0; seed->SetLastPoint(pp2); seed->SetFirstPoint(pp2); return seed; } AliTPCseed *AliTPCtrackerMI::ReSeed(AliTPCseed *track, Float_t r0, Float_t r1, Float_t r2) { // // //reseed using founded clusters // // Find the number of clusters Int_t nclusters = 0; for (Int_t irow=0;irow<160;irow++){ if (track->GetClusterIndex(irow)>0) nclusters++; } // Int_t ipos[3]; ipos[0] = TMath::Max(int(r0*nclusters),0); // point 0 cluster ipos[1] = TMath::Min(int(r1*nclusters),nclusters-1); // ipos[2] = TMath::Min(int(r2*nclusters),nclusters-1); // last point // // Double_t xyz[3][3]; Int_t row[3],sec[3]={0,0,0}; // // find track row position at given ratio of the length Int_t index=-1; for (Int_t irow=0;irow<160;irow++){ if (track->GetClusterIndex2(irow)<0) continue; index++; for (Int_t ipoint=0;ipoint<3;ipoint++){ if (index<=ipos[ipoint]) row[ipoint] = irow; } } // //Get cluster and sector position for (Int_t ipoint=0;ipoint<3;ipoint++){ Int_t clindex = track->GetClusterIndex2(row[ipoint]); AliTPCclusterMI * cl = GetClusterMI(clindex); if (cl==0) { //Error("Bug\n"); // AliTPCclusterMI * cl = GetClusterMI(clindex); return 0; } sec[ipoint] = ((clindex&0xff000000)>>24)%18; xyz[ipoint][0] = GetXrow(row[ipoint]); xyz[ipoint][1] = cl->GetY(); xyz[ipoint][2] = cl->GetZ(); } // // // Calculate seed state vector and covariance matrix Double_t alpha, cs,sn, xx2,yy2; // alpha = (sec[1]-sec[2])*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= xyz[1][0]*cs-xyz[1][1]*sn; yy2= xyz[1][0]*sn+xyz[1][1]*cs; xyz[1][0] = xx2; xyz[1][1] = yy2; // alpha = (sec[0]-sec[2])*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= xyz[0][0]*cs-xyz[0][1]*sn; yy2= xyz[0][0]*sn+xyz[0][1]*cs; xyz[0][0] = xx2; xyz[0][1] = yy2; // // // Double_t x[5],c[15]; // x[0]=xyz[2][1]; x[1]=xyz[2][2]; x[4]=F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]); x[2]=F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]); x[3]=F3n(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2],x[4]); // Double_t sy =0.1, sz =0.1; // Double_t sy1=0.2, sz1=0.2; Double_t sy2=0.2, sz2=0.2; Double_t sy3=0.2; // Double_t f40=(F1(xyz[2][0],xyz[2][1]+sy,xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1])-x[4])/sy; Double_t f42=(F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1]+sy,xyz[0][0],xyz[0][1])-x[4])/sy; Double_t f43=(F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]+sy)-x[4])/sy; Double_t f20=(F2(xyz[2][0],xyz[2][1]+sy,xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1])-x[2])/sy; Double_t f22=(F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1]+sy,xyz[0][0],xyz[0][1])-x[2])/sy; Double_t f23=(F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]+sy)-x[2])/sy; // Double_t f30=(F3(xyz[2][0],xyz[2][1]+sy,xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2])-x[3])/sy; Double_t f31=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2]+sz,xyz[0][2])-x[3])/sz; Double_t f32=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1]+sy,xyz[2][2],xyz[0][2])-x[3])/sy; Double_t f34=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2]+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; // Int_t row1 = fSectors->GetRowNumber(xyz[2][0]); AliTPCseed *seed=new AliTPCseed(xyz[2][0], sec[2]*fSectors->GetAlpha()+fSectors->GetAlphaShift(), x, c, 0); seed->SetLastPoint(row[2]); seed->SetFirstPoint(row[2]); return seed; } AliTPCseed *AliTPCtrackerMI::ReSeed(AliTPCseed *track,Int_t r0, Bool_t forward) { // // //reseed using founded clusters // Double_t xyz[3][3]; Int_t row[3]={0,0,0}; Int_t sec[3]={0,0,0}; // // forward direction if (forward){ for (Int_t irow=r0;irow<160;irow++){ if (track->GetClusterIndex(irow)>0){ row[0] = irow; break; } } for (Int_t irow=160;irow>r0;irow--){ if (track->GetClusterIndex(irow)>0){ row[2] = irow; break; } } for (Int_t irow=row[2]-15;irow>row[0];irow--){ if (track->GetClusterIndex(irow)>0){ row[1] = irow; break; } } // } if (!forward){ for (Int_t irow=0;irowGetClusterIndex(irow)>0){ row[0] = irow; break; } } for (Int_t irow=r0;irow>0;irow--){ if (track->GetClusterIndex(irow)>0){ row[2] = irow; break; } } for (Int_t irow=row[2]-15;irow>row[0];irow--){ if (track->GetClusterIndex(irow)>0){ row[1] = irow; break; } } } // if ((row[2]-row[0])<20) return 0; if (row[1]==0) return 0; // // //Get cluster and sector position for (Int_t ipoint=0;ipoint<3;ipoint++){ Int_t clindex = track->GetClusterIndex2(row[ipoint]); AliTPCclusterMI * cl = GetClusterMI(clindex); if (cl==0) { //Error("Bug\n"); // AliTPCclusterMI * cl = GetClusterMI(clindex); return 0; } sec[ipoint] = ((clindex&0xff000000)>>24)%18; xyz[ipoint][0] = GetXrow(row[ipoint]); AliTPCTrackerPoint * point = track->GetTrackPoint(row[ipoint]); if (point&&ipoint<2){ // xyz[ipoint][1] = point->GetY(); xyz[ipoint][2] = point->GetZ(); } else{ xyz[ipoint][1] = cl->GetY(); xyz[ipoint][2] = cl->GetZ(); } } // // // // // Calculate seed state vector and covariance matrix Double_t alpha, cs,sn, xx2,yy2; // alpha = (sec[1]-sec[2])*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= xyz[1][0]*cs-xyz[1][1]*sn; yy2= xyz[1][0]*sn+xyz[1][1]*cs; xyz[1][0] = xx2; xyz[1][1] = yy2; // alpha = (sec[0]-sec[2])*fSectors->GetAlpha(); cs = TMath::Cos(alpha); sn = TMath::Sin(alpha); xx2= xyz[0][0]*cs-xyz[0][1]*sn; yy2= xyz[0][0]*sn+xyz[0][1]*cs; xyz[0][0] = xx2; xyz[0][1] = yy2; // // // Double_t x[5],c[15]; // x[0]=xyz[2][1]; x[1]=xyz[2][2]; x[4]=F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]); x[2]=F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]); x[3]=F3n(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2],x[4]); // Double_t sy =0.1, sz =0.1; // Double_t sy1=0.2, sz1=0.2; Double_t sy2=0.2, sz2=0.2; Double_t sy3=0.2; // Double_t f40=(F1(xyz[2][0],xyz[2][1]+sy,xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1])-x[4])/sy; Double_t f42=(F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1]+sy,xyz[0][0],xyz[0][1])-x[4])/sy; Double_t f43=(F1(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]+sy)-x[4])/sy; Double_t f20=(F2(xyz[2][0],xyz[2][1]+sy,xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1])-x[2])/sy; Double_t f22=(F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1]+sy,xyz[0][0],xyz[0][1])-x[2])/sy; Double_t f23=(F2(xyz[2][0],xyz[2][1],xyz[1][0],xyz[1][1],xyz[0][0],xyz[0][1]+sy)-x[2])/sy; // Double_t f30=(F3(xyz[2][0],xyz[2][1]+sy,xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2])-x[3])/sy; Double_t f31=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2]+sz,xyz[0][2])-x[3])/sz; Double_t f32=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1]+sy,xyz[2][2],xyz[0][2])-x[3])/sy; Double_t f34=(F3(xyz[2][0],xyz[2][1],xyz[0][0],xyz[0][1],xyz[2][2],xyz[0][2]+sz)-x[3])/sz; c[0]=sy1; c[1]=0.; c[2]=sz1; c[3]=f20*sy1; c[4]=0.; c[5]=f20*sy1*f20+f22*sy2*f22+f23*sy3*f23; c[6]=f30*sy1; c[7]=f31*sz1; c[8]=f30*sy1*f20+f32*sy2*f22; c[9]=f30*sy1*f30+f31*sz1*f31+f32*sy2*f32+f34*sz2*f34; c[10]=f40*sy1; c[11]=0.; c[12]=f40*sy1*f20+f42*sy2*f22+f43*sy3*f23; c[13]=f30*sy1*f40+f32*sy2*f42; c[14]=f40*sy1*f40+f42*sy2*f42+f43*sy3*f43; // Int_t row1 = fSectors->GetRowNumber(xyz[2][0]); AliTPCseed *seed=new AliTPCseed(xyz[2][0], sec[2]*fSectors->GetAlpha()+fSectors->GetAlphaShift(), x, c, 0); seed->SetLastPoint(row[2]); seed->SetFirstPoint(row[2]); for (Int_t i=row[0];iSetClusterIndex(i, track->GetClusterIndex(i)); } return seed; } void AliTPCtrackerMI::FindMultiMC(TObjArray * array, AliESDEvent */*esd*/, Int_t iter) { // // find multi tracks - THIS FUNCTION IS ONLY FOR DEBUG PURPOSES // USES MC LABELS // Use AliTPCReconstructor::StreamLevel()>2 if you want to tune parameters - cuts // // Two reasons to have multiple find tracks // 1. Curling tracks can be find more than once // 2. Splitted tracks // a.) Multiple seeding to increase tracking efficiency - (~ 100% reached) // b.) Edge effect on the sector boundaries // // // Algorithm done in 2 phases - because of CPU consumption // it is n^2 algorithm - for lead-lead 20000x20000 combination are investigated // // Algorihm for curling tracks sign: // 1 phase -makes a very rough fast cuts to minimize combinatorics // a.) opposite sign // b.) one of the tracks - not pointing to the primary vertex - // c.) delta tan(theta) // d.) delta phi // 2 phase - calculates DCA between tracks - time consument // // fast cuts // // General cuts - for splitted tracks and for curling tracks // const Float_t kMaxdPhi = 0.2; // maximal distance in phi // // Curling tracks cuts // // // // Int_t nentries = array->GetEntriesFast(); AliHelix *helixes = new AliHelix[nentries]; Float_t *xm = new Float_t[nentries]; Float_t *dz0 = new Float_t[nentries]; Float_t *dz1 = new Float_t[nentries]; // // TStopwatch timer; timer.Start(); // // Find track COG in x direction - point with best defined parameters // for (Int_t i=0;iAt(i); if (!track) continue; track->SetCircular(0); new (&helixes[i]) AliHelix(*track); Int_t ncl=0; xm[i]=0; Float_t dz[2]; track->GetDZ(GetX(),GetY(),GetZ(),GetBz(),dz); dz0[i]=dz[0]; dz1[i]=dz[1]; for (Int_t icl=0; icl<160; icl++){ AliTPCclusterMI * cl = track->GetClusterPointer(icl); if (cl) { xm[i]+=cl->GetX(); ncl++; } } if (ncl>0) xm[i]/=Float_t(ncl); } // for (Int_t i0=0;i0At(i0); if (!track0) continue; Float_t xc0 = helixes[i0].GetHelix(6); Float_t yc0 = helixes[i0].GetHelix(7); Float_t r0 = helixes[i0].GetHelix(8); Float_t rc0 = TMath::Sqrt(xc0*xc0+yc0*yc0); Float_t fi0 = TMath::ATan2(yc0,xc0); for (Int_t i1=i0+1;i1At(i1); if (!track1) continue; Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); if (TMath::Abs(lab0)!=TMath::Abs(lab1)) continue; // Float_t xc1 = helixes[i1].GetHelix(6); Float_t yc1 = helixes[i1].GetHelix(7); Float_t r1 = helixes[i1].GetHelix(8); Float_t rc1 = TMath::Sqrt(xc1*xc1+yc1*yc1); Float_t fi1 = TMath::ATan2(yc1,xc1); // Float_t dfi = fi0-fi1; // // if (dfi>1.5*TMath::Pi()) dfi-=TMath::Pi(); // take care about edge effect if (dfi<-1.5*TMath::Pi()) dfi+=TMath::Pi(); // if (TMath::Abs(dfi)>kMaxdPhi&&helixes[i0].GetHelix(4)*helixes[i1].GetHelix(4)<0){ // // if short tracks with undefined sign fi1 = -TMath::ATan2(yc1,-xc1); dfi = fi0-fi1; } Float_t dtheta = TMath::Abs(track0->GetTgl()-track1->GetTgl())GetTgl()+track1->GetTgl())? track0->GetTgl()-track1->GetTgl():track0->GetTgl()+track1->GetTgl(); // // debug stream to tune "fast cuts" // Double_t dist[3]; // distance at X Double_t mdist[3]={0,0,0}; // mean distance X+-40cm track0->GetDistance(track1,0.5*(xm[i0]+xm[i1])-40.,dist,AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[i]); track0->GetDistance(track1,0.5*(xm[i0]+xm[i1])+40.,dist,AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[i]); track0->GetDistance(track1,0.5*(xm[i0]+xm[i1]),dist,AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[i]); for (Int_t i=0;i<3;i++) mdist[i]*=0.33333; Float_t sum =0; Float_t sums=0; for (Int_t icl=0; icl<160; icl++){ AliTPCclusterMI * cl0 = track0->GetClusterPointer(icl); AliTPCclusterMI * cl1 = track1->GetClusterPointer(icl); if (cl0&&cl1) { sum++; if (cl0==cl1) sums++; } } // if (AliTPCReconstructor::StreamLevel()>0) { TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Multi"<< "iter="<1) { AliInfo("Time for curling tracks removal DEBUGGING MC"); timer.Print(); } } void AliTPCtrackerMI::FindSplitted(TObjArray * array, AliESDEvent */*esd*/, Int_t iter) { // // // Two reasons to have multiple find tracks // 1. Curling tracks can be find more than once // 2. Splitted tracks // a.) Multiple seeding to increase tracking efficiency - (~ 100% reached) // b.) Edge effect on the sector boundaries // // This function tries to find tracks closed in the parametric space // // cut logic if distance is bigger than cut continue - Do Nothing const Float_t kMaxdTheta = 0.05; // maximal distance in theta const Float_t kMaxdPhi = 0.05; // maximal deistance in phi const Float_t kdelta = 40.; //delta r to calculate track distance // // const Float_t kMaxDist0 = 1.; // maximal distance 0 //const Float_t kMaxDist1 = 0.3; // maximal distance 1 - cut if track in separate rows // /* TCut csec("csec","abs(Tr0.fRelativeSector-Tr1.fRelativeSector)<2"); TCut cdtheta("cdtheta","abs(dtheta)<0.05"); */ // // // Int_t nentries = array->GetEntriesFast(); AliHelix *helixes = new AliHelix[nentries]; Float_t *xm = new Float_t[nentries]; // // TStopwatch timer; timer.Start(); // //Sort tracks according quality // Int_t nseed = array->GetEntriesFast(); Float_t * quality = new Float_t[nseed]; Int_t * indexes = new Int_t[nseed]; for (Int_t i=0; iUncheckedAt(i); if (!pt){ quality[i]=-1; continue; } pt->UpdatePoints(); //select first last max dens points Float_t * points = pt->GetPoints(); if (points[3]<0.8) quality[i] =-1; quality[i] = (points[2]-points[0])+pt->GetNumberOfClusters(); //prefer high momenta tracks if overlaps quality[i] *= TMath::Sqrt(TMath::Abs(pt->Pt())+0.5); } TMath::Sort(nseed,quality,indexes); // // Find track COG in x direction - point with best defined parameters // for (Int_t i=0;iAt(i); if (!track) continue; track->SetCircular(0); new (&helixes[i]) AliHelix(*track); Int_t ncl=0; xm[i]=0; for (Int_t icl=0; icl<160; icl++){ AliTPCclusterMI * cl = track->GetClusterPointer(icl); if (cl) { xm[i]+=cl->GetX(); ncl++; } } if (ncl>0) xm[i]/=Float_t(ncl); } // for (Int_t is0=0;is0At(i0); if (!track0) continue; if (track0->GetKinkIndexes()[0]!=0) continue; Float_t xc0 = helixes[i0].GetHelix(6); Float_t yc0 = helixes[i0].GetHelix(7); Float_t fi0 = TMath::ATan2(yc0,xc0); for (Int_t is1=is0+1;is1At(i1); if (!track1) continue; // if (TMath::Abs(track0->GetRelativeSector()-track1->GetRelativeSector())>1) continue; if (track1->GetKinkIndexes()[0]>0 &&track0->GetKinkIndexes()[0]<0) continue; if (track1->GetKinkIndexes()[0]!=0) continue; Float_t dtheta = TMath::Abs(track0->GetTgl()-track1->GetTgl())GetTgl()+track1->GetTgl())? track0->GetTgl()-track1->GetTgl():track0->GetTgl()+track1->GetTgl(); if (TMath::Abs(dtheta)>kMaxdTheta) continue; // Float_t xc1 = helixes[i1].GetHelix(6); Float_t yc1 = helixes[i1].GetHelix(7); Float_t fi1 = TMath::ATan2(yc1,xc1); // Float_t dfi = fi0-fi1; if (dfi>1.5*TMath::Pi()) dfi-=TMath::Pi(); // take care about edge effect if (dfi<-1.5*TMath::Pi()) dfi+=TMath::Pi(); // if (TMath::Abs(dfi)>kMaxdPhi&&helixes[i0].GetHelix(4)*helixes[i1].GetHelix(4)<0){ // // if short tracks with undefined sign fi1 = -TMath::ATan2(yc1,-xc1); dfi = fi0-fi1; } if (TMath::Abs(dfi)>kMaxdPhi) continue; // // Float_t sum =0; Float_t sums=0; Float_t sum0=0; Float_t sum1=0; for (Int_t icl=0; icl<160; icl++){ Int_t index0=track0->GetClusterIndex2(icl); Int_t index1=track1->GetClusterIndex2(icl); Bool_t used0 = (index0>0 && !(index0&0x8000)); Bool_t used1 = (index1>0 && !(index1&0x8000)); // if (used0) sum0++; // used cluster0 if (used1) sum1++; // used clusters1 if (used0&&used1) sum++; if (index0==index1 && used0 && used1) sums++; } // if (sums<10) continue; if (sum<40) continue; if (sums/Float_t(TMath::Min(sum0,sum1))<0.5) continue; // Double_t dist[5][4]; // distance at X Double_t mdist[4]={0,0,0,0}; // mean distance on range +-delta // // track0->GetDistance(track1,xm[i0],dist[0],AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[0][i]); track0->GetDistance(track1,xm[i1],dist[1],AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[1][i]); // track0->GetDistance(track1,TMath::Min(xm[i1],xm[i0])-kdelta,dist[2],AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[2][i]); track0->GetDistance(track1,TMath::Max(xm[i1],xm[i0])+kdelta,dist[3],AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[3][i]); // track0->GetDistance(track1,(xm[i1]+xm[i0])*0.5,dist[4],AliTracker::GetBz()); for (Int_t i=0;i<3;i++) mdist[i]+=TMath::Abs(dist[4][i]); for (Int_t i=0;i<3;i++) mdist[i]*=0.2; // // Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); if( AliTPCReconstructor::StreamLevel()>5){ TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Splitted"<< "iter="<RemoveAt(i1); } } delete [] helixes; delete [] xm; delete [] quality; delete [] indexes; AliInfo("Time for splitted tracks removal"); timer.Print(); } void AliTPCtrackerMI::FindCurling(TObjArray * array, AliESDEvent */*esd*/, Int_t iter) { // // find Curling tracks // Use AliTPCReconstructor::StreamLevel()>1 if you want to tune parameters - cuts // // // Algorithm done in 2 phases - because of CPU consumption // it is n^2 algorithm - for lead-lead 20000x20000 combination are investigated // see detal in MC part what can be used to cut // // // const Float_t kMaxC = 400; // maximal curvature to of the track const Float_t kMaxdTheta = 0.15; // maximal distance in theta const Float_t kMaxdPhi = 0.15; // maximal distance in phi const Float_t kPtRatio = 0.3; // ratio between pt const Float_t kMinDCAR = 2.; // distance to the primary vertex in r - see cpipe cut // // Curling tracks cuts // // const Float_t kMaxDeltaRMax = 40; // distance in outer radius const Float_t kMaxDeltaRMin = 5.; // distance in lower radius - see cpipe cut const Float_t kMinAngle = 2.9; // angle between tracks const Float_t kMaxDist = 5; // biggest distance // // The cuts can be tuned using the "MC information stored in Multi tree ==> see FindMultiMC /* Fast cuts: TCut csign("csign","Tr0.fP[4]*Tr1.fP[4]<0"); //opposite sign TCut cmax("cmax","abs(Tr0.GetC())>1/400"); TCut cda("cda","sqrt(dtheta^2+dfi^2)<0.15"); TCut ccratio("ccratio","abs((Tr0.fP[4]+Tr1.fP[4])/(abs(Tr0.fP[4])+abs(Tr1.fP[4])))<0.3"); TCut cpipe("cpipe", "min(abs(r0-rc0),abs(r1-rc1))>5"); // TCut cdrmax("cdrmax","abs(abs(rc0+r0)-abs(rc1+r1))<40") TCut cdrmin("cdrmin","abs(abs(rc0+r0)-abs(rc1+r1))<10") // Multi->Draw("dfi","iter==0"+csign+cmax+cda+ccratio); ~94% of curling tracks fulfill Multi->Draw("min(abs(r0-rc0),abs(r1-rc1))","iter==0&&abs(lab1)==abs(lab0)"+csign+cmax+cda+ccratio+cpipe+cdrmin+cdrmax); //80% // Curling2->Draw("dfi","iter==0&&abs(lab0)==abs(lab1)"+csign+cmax+cdtheta+cdfi+ccratio) */ // // // Int_t nentries = array->GetEntriesFast(); AliHelix *helixes = new AliHelix[nentries]; for (Int_t i=0;iAt(i); if (!track) continue; track->SetCircular(0); new (&helixes[i]) AliHelix(*track); } // // TStopwatch timer; timer.Start(); Double_t phase[2][2],radius[2]; // // Find tracks // // for (Int_t i0=0;i0At(i0); if (!track0) continue; if (TMath::Abs(track0->GetC())<1/kMaxC) continue; Float_t xc0 = helixes[i0].GetHelix(6); Float_t yc0 = helixes[i0].GetHelix(7); Float_t r0 = helixes[i0].GetHelix(8); Float_t rc0 = TMath::Sqrt(xc0*xc0+yc0*yc0); Float_t fi0 = TMath::ATan2(yc0,xc0); for (Int_t i1=i0+1;i1At(i1); if (!track1) continue; if (TMath::Abs(track1->GetC())<1/kMaxC) continue; Float_t xc1 = helixes[i1].GetHelix(6); Float_t yc1 = helixes[i1].GetHelix(7); Float_t r1 = helixes[i1].GetHelix(8); Float_t rc1 = TMath::Sqrt(xc1*xc1+yc1*yc1); Float_t fi1 = TMath::ATan2(yc1,xc1); // Float_t dfi = fi0-fi1; // // if (dfi>1.5*TMath::Pi()) dfi-=TMath::Pi(); // take care about edge effect if (dfi<-1.5*TMath::Pi()) dfi+=TMath::Pi(); // Float_t dtheta = TMath::Abs(track0->GetTgl()-track1->GetTgl())GetTgl()+track1->GetTgl())? track0->GetTgl()-track1->GetTgl():track0->GetTgl()+track1->GetTgl(); // // // FIRST fast cuts if (track0->GetBConstrain()&&track1->GetBConstrain()) continue; // not constrained if (track1->GetSigned1Pt()*track0->GetSigned1Pt()>0) continue; // not the same sign if ( TMath::Abs(track1->GetTgl()+track0->GetTgl())>kMaxdTheta) continue; //distance in the Theta if ( TMath::Abs(dfi)>kMaxdPhi) continue; //distance in phi if ( TMath::Sqrt(dfi*dfi+dtheta*dtheta)>kMaxdPhi) continue; //common angular offset // Float_t pt0 = track0->GetSignedPt(); Float_t pt1 = track1->GetSignedPt(); if ((TMath::Abs(pt0+pt1)/(TMath::Abs(pt0)+TMath::Abs(pt1)))>kPtRatio) continue; if ((iter==1) && TMath::Abs(TMath::Abs(rc0+r0)-TMath::Abs(rc1+r1))>kMaxDeltaRMax) continue; if ((iter!=1) &&TMath::Abs(TMath::Abs(rc0-r0)-TMath::Abs(rc1-r1))>kMaxDeltaRMin) continue; if (TMath::Min(TMath::Abs(rc0-r0),TMath::Abs(rc1-r1))0){ Int_t ibest=0; helixes[i0].ParabolicDCA(helixes[i1],phase[0][0],phase[0][1],radius[0],deltah[0],2); if (npoints==2){ helixes[i0].ParabolicDCA(helixes[i1],phase[1][0],phase[1][1],radius[1],deltah[1],2); if (deltah[1]kMaxDist) continue; // if (mindcar+mindcaz<40 && (TMath::Abs(hangles[2])3)) continue; Bool_t sign =kFALSE; if (hangles[2]>kMinAngle) sign =kTRUE; // if (sign){ // circular[i0] = kTRUE; // circular[i1] = kTRUE; if (track0->OneOverPt()OneOverPt()){ track0->SetCircular(track0->GetCircular()+1); track1->SetCircular(track1->GetCircular()+2); } else{ track1->SetCircular(track1->GetCircular()+1); track0->SetCircular(track0->GetCircular()+2); } } if (AliTPCReconstructor::StreamLevel()>1){ // //debug stream to tune "fine" cuts Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Curling2"<< "iter="<1) { AliInfo("Time for curling tracks removal"); timer.Print(); } } void AliTPCtrackerMI::FindKinks(TObjArray * array, AliESDEvent *esd) { // // find kinks // // TObjArray *kinks= new TObjArray(10000); // TObjArray *v0s= new TObjArray(10000); Int_t nentries = array->GetEntriesFast(); AliHelix *helixes = new AliHelix[nentries]; Int_t *sign = new Int_t[nentries]; Int_t *nclusters = new Int_t[nentries]; Float_t *alpha = new Float_t[nentries]; AliKink *kink = new AliKink(); Int_t * usage = new Int_t[nentries]; Float_t *zm = new Float_t[nentries]; Float_t *z0 = new Float_t[nentries]; Float_t *fim = new Float_t[nentries]; Float_t *shared = new Float_t[nentries]; Bool_t *circular = new Bool_t[nentries]; Float_t *dca = new Float_t[nentries]; //const AliESDVertex * primvertex = esd->GetVertex(); // // nentries = array->GetEntriesFast(); // // // for (Int_t i=0;iAt(i); if (!track) continue; track->SetCircular(0); shared[i] = kFALSE; track->UpdatePoints(); if (( track->GetPoints()[2]- track->GetPoints()[0])>5 && track->GetPoints()[3]>0.8){ } nclusters[i]=track->GetNumberOfClusters(); alpha[i] = track->GetAlpha(); new (&helixes[i]) AliHelix(*track); Double_t xyz[3]; helixes[i].Evaluate(0,xyz); sign[i] = (track->GetC()>0) ? -1:1; Double_t x,y,z; x=160; if (track->GetProlongation(x,y,z)){ zm[i] = z; fim[i] = alpha[i]+TMath::ATan2(y,x); } else{ zm[i] = track->GetZ(); fim[i] = alpha[i]; } z0[i]=1000; circular[i]= kFALSE; if (track->GetProlongation(0,y,z)) z0[i] = z; dca[i] = track->GetD(0,0); } // // TStopwatch timer; timer.Start(); Int_t ncandidates =0; Int_t nall =0; Int_t ntracks=0; Double_t phase[2][2],radius[2]; // // Find circling track // for (Int_t i0=0;i0At(i0); if (!track0) continue; if (track0->GetNumberOfClusters()<40) continue; if (TMath::Abs(1./track0->GetC())>200) continue; for (Int_t i1=i0+1;i1At(i1); if (!track1) continue; if (track1->GetNumberOfClusters()<40) continue; if ( TMath::Abs(track1->GetTgl()+track0->GetTgl())>0.1) continue; if (track0->GetBConstrain()&&track1->GetBConstrain()) continue; if (TMath::Abs(1./track1->GetC())>200) continue; if (track1->GetSigned1Pt()*track0->GetSigned1Pt()>0) continue; if (track1->GetTgl()*track0->GetTgl()>0) continue; if (TMath::Max(TMath::Abs(1./track0->GetC()),TMath::Abs(1./track1->GetC()))>190) continue; if (track0->GetBConstrain()&&track1->OneOverPt()OneOverPt()) continue; //returning - lower momenta if (track1->GetBConstrain()&&track0->OneOverPt()OneOverPt()) continue; //returning - lower momenta // Float_t mindcar = TMath::Min(TMath::Abs(dca[i0]),TMath::Abs(dca[i1])); if (mindcar<5) continue; Float_t mindcaz = TMath::Min(TMath::Abs(z0[i0]-GetZ()),TMath::Abs(z0[i1]-GetZ())); if (mindcaz<5) continue; if (mindcar+mindcaz<20) continue; // // Float_t xc0 = helixes[i0].GetHelix(6); Float_t yc0 = helixes[i0].GetHelix(7); Float_t r0 = helixes[i0].GetHelix(8); Float_t xc1 = helixes[i1].GetHelix(6); Float_t yc1 = helixes[i1].GetHelix(7); Float_t r1 = helixes[i1].GetHelix(8); Float_t rmean = (r0+r1)*0.5; Float_t delta =TMath::Sqrt((xc1-xc0)*(xc1-xc0)+(yc1-yc0)*(yc1-yc0)); //if (delta>30) continue; if (delta>rmean*0.25) continue; if (TMath::Abs(r0-r1)/rmean>0.3) continue; // Int_t npoints = helixes[i0].GetRPHIintersections(helixes[i1], phase, radius,10); if (npoints==0) continue; helixes[i0].GetClosestPhases(helixes[i1], phase); // Double_t xyz0[3]; Double_t xyz1[3]; Double_t hangles[3]; helixes[i0].Evaluate(phase[0][0],xyz0); helixes[i1].Evaluate(phase[0][1],xyz1); helixes[i0].GetAngle(phase[0][0],helixes[i1],phase[0][1],hangles); Double_t deltah[2],deltabest; if (hangles[2]<2.8) continue; if (npoints>0){ Int_t ibest=0; helixes[i0].ParabolicDCA(helixes[i1],phase[0][0],phase[0][1],radius[0],deltah[0],2); if (npoints==2){ helixes[i0].ParabolicDCA(helixes[i1],phase[1][0],phase[1][1],radius[1],deltah[1],2); if (deltah[1]6) continue; if (mindcar+mindcaz<40 && (hangles[2]<3.12||deltabest>3)) continue; Bool_t sign =kFALSE; if (hangles[2]>3.06) sign =kTRUE; // if (sign){ circular[i0] = kTRUE; circular[i1] = kTRUE; if (track0->OneOverPt()OneOverPt()){ track0->SetCircular(track0->GetCircular()+1); track1->SetCircular(track1->GetCircular()+2); } else{ track1->SetCircular(track1->GetCircular()+1); track0->SetCircular(track0->GetCircular()+2); } } if (sign&&AliTPCReconstructor::StreamLevel()>1){ //debug stream Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Curling"<< "lab0="<At(i); if (track0==0) { AliInfo("seed==0"); continue; } ntracks++; // Double_t cradius0 = 40*40; Double_t cradius1 = 270*270; Double_t cdist1=8.; Double_t cdist2=8.; Double_t cdist3=0.55; for (Int_t j =i+1;j200) continue; if ( (nclusters[i]+nclusters[j])<80) continue; if ( TMath::Abs(zm[i]-zm[j])>60.) continue; if ( TMath::Abs(fim[i]-fim[j])>0.6 && TMath::Abs(fim[i]-fim[j])<5.7 ) continue; //AliTPCseed * track1 = (AliTPCseed*)array->At(j); Double_t phase[2][2],radius[2]; Int_t npoints = helixes[i].GetRPHIintersections(helixes[j], phase, radius,20); if (npoints<1) continue; // cuts on radius if (npoints==1){ if (radius[0]cradius1) continue; } else{ if ( (radius[0]cradius1) && (radius[1]cradius1) ) continue; } // Double_t delta1=10000,delta2=10000; // cuts on the intersection radius helixes[i].LinearDCA(helixes[j],phase[0][0],phase[0][1],radius[0],delta1); if (radius[0]<20&&delta1<1) continue; //intersection at vertex if (radius[0]<10&&delta1<3) continue; //intersection at vertex if (npoints==2){ helixes[i].LinearDCA(helixes[j],phase[1][0],phase[1][1],radius[1],delta2); if (radius[1]<20&&delta2<1) continue; //intersection at vertex if (radius[1]<10&&delta2<3) continue; //intersection at vertex } // Double_t distance1 = TMath::Min(delta1,delta2); if (distance1>cdist1) continue; // cut on DCA linear approximation // npoints = helixes[i].GetRPHIintersections(helixes[j], phase, radius,20); helixes[i].ParabolicDCA(helixes[j],phase[0][0],phase[0][1],radius[0],delta1); if (radius[0]<20&&delta1<1) continue; //intersection at vertex if (radius[0]<10&&delta1<3) continue; //intersection at vertex // if (npoints==2){ helixes[i].ParabolicDCA(helixes[j],phase[1][0],phase[1][1],radius[1],delta2); if (radius[1]<20&&delta2<1) continue; //intersection at vertex if (radius[1]<10&&delta2<3) continue; //intersection at vertex } distance1 = TMath::Min(delta1,delta2); Float_t rkink =0; if (delta1cdist2) continue; // // AliTPCseed * track1 = (AliTPCseed*)array->At(j); // // Int_t row0 = GetRowNumber(rkink); if (row0<10) continue; if (row0>150) continue; // // Float_t dens00=-1,dens01=-1; Float_t dens10=-1,dens11=-1; // Int_t found,foundable,shared; track0->GetClusterStatistic(0,row0-5, found, foundable,shared,kFALSE); if (foundable>5) dens00 = Float_t(found)/Float_t(foundable); track0->GetClusterStatistic(row0+5,155, found, foundable,shared,kFALSE); if (foundable>5) dens01 = Float_t(found)/Float_t(foundable); // track1->GetClusterStatistic(0,row0-5, found, foundable,shared,kFALSE); if (foundable>10) dens10 = Float_t(found)/Float_t(foundable); track1->GetClusterStatistic(row0+5,155, found, foundable,shared,kFALSE); if (foundable>10) dens11 = Float_t(found)/Float_t(foundable); // if (dens00dens10 && dens01>dens11) continue; if (TMath::Max(dens00,dens10)<0.1) continue; if (TMath::Max(dens01,dens11)<0.3) continue; // if (TMath::Min(dens00,dens10)>0.6) continue; if (TMath::Min(dens01,dens11)>0.6) continue; // AliTPCseed * ktrack0, *ktrack1; if (dens00>dens10){ ktrack0 = track0; ktrack1 = track1; } else{ ktrack0 = track1; ktrack1 = track0; } if (TMath::Abs(ktrack0->GetC())>5) continue; // cut on the curvature for mother particle AliExternalTrackParam paramm(*ktrack0); AliExternalTrackParam paramd(*ktrack1); if (row0>60&&ktrack1->GetReference().GetX()>90.)new (¶md) AliExternalTrackParam(ktrack1->GetReference()); // // kink->SetMother(paramm); kink->SetDaughter(paramd); kink->Update(); Float_t x[3] = { kink->GetPosition()[0],kink->GetPosition()[1],kink->GetPosition()[2]}; Int_t index[4]; fParam->Transform0to1(x,index); fParam->Transform1to2(x,index); row0 = GetRowNumber(x[0]); if (kink->GetR()<100) continue; if (kink->GetR()>240) continue; if (kink->GetPosition()[2]/kink->GetR()>AliTPCReconstructor::GetCtgRange()) continue; //out of fiducial volume if (kink->GetDistance()>cdist3) continue; Float_t dird = kink->GetDaughterP()[0]*kink->GetPosition()[0]+kink->GetDaughterP()[1]*kink->GetPosition()[1]; // rough direction estimate if (dird<0) continue; Float_t dirm = kink->GetMotherP()[0]*kink->GetPosition()[0]+kink->GetMotherP()[1]*kink->GetPosition()[1]; // rough direction estimate if (dirm<0) continue; Float_t mpt = TMath::Sqrt(kink->GetMotherP()[0]*kink->GetMotherP()[0]+kink->GetMotherP()[1]*kink->GetMotherP()[1]); if (mpt<0.2) continue; if (mpt<1){ //for high momenta momentum not defined well in first iteration Double_t qt = TMath::Sin(kink->GetAngle(2))*ktrack1->GetP(); if (qt>0.35) continue; } kink->SetLabel(CookLabel(ktrack0,0.4,0,row0),0); kink->SetLabel(CookLabel(ktrack1,0.4,row0,160),1); if (dens00>dens10){ kink->SetTPCDensity(dens00,0,0); kink->SetTPCDensity(dens01,0,1); kink->SetTPCDensity(dens10,1,0); kink->SetTPCDensity(dens11,1,1); kink->SetIndex(i,0); kink->SetIndex(j,1); } else{ kink->SetTPCDensity(dens10,0,0); kink->SetTPCDensity(dens11,0,1); kink->SetTPCDensity(dens00,1,0); kink->SetTPCDensity(dens01,1,1); kink->SetIndex(j,0); kink->SetIndex(i,1); } if (mpt<1||kink->GetAngle(2)>0.1){ // angle and densities not defined yet if (kink->GetTPCDensityFactor()<0.8) continue; if ((2-kink->GetTPCDensityFactor())*kink->GetDistance() >0.25) continue; if (kink->GetAngle(2)*ktrack0->GetP()<0.003) continue; //too small angle if (kink->GetAngle(2)>0.2&&kink->GetTPCDensityFactor()<1.15) continue; if (kink->GetAngle(2)>0.2&&kink->GetTPCDensity(0,1)>0.05) continue; Float_t criticalangle = track0->GetSigmaSnp2()+track0->GetSigmaTgl2(); criticalangle+= track1->GetSigmaSnp2()+track1->GetSigmaTgl2(); criticalangle= 3*TMath::Sqrt(criticalangle); if (criticalangle>0.02) criticalangle=0.02; if (kink->GetAngle(2)GetAngle(2))); // overlap region defined Float_t shapesum =0; Float_t sum = 0; for ( Int_t row = row0-drow; row155) continue; if (ktrack0->GetClusterPointer(row)){ AliTPCTrackerPoint *point =ktrack0->GetTrackPoint(row); shapesum+=point->GetSigmaY()+point->GetSigmaZ(); sum++; } if (ktrack1->GetClusterPointer(row)){ AliTPCTrackerPoint *point =ktrack1->GetTrackPoint(row); shapesum+=point->GetSigmaY()+point->GetSigmaZ(); sum++; } } if (sum<4){ kink->SetShapeFactor(-1.); } else{ kink->SetShapeFactor(shapesum/sum); } // esd->AddKink(kink); kinks->AddLast(kink); kink = new AliKink; ncandidates++; } } // // sort the kinks according quality - and refit them towards vertex // Int_t nkinks = kinks->GetEntriesFast(); Float_t *quality = new Float_t[nkinks]; Int_t *indexes = new Int_t[nkinks]; AliTPCseed *mothers = new AliTPCseed[nkinks]; AliTPCseed *daughters = new AliTPCseed[nkinks]; // // for (Int_t i=0;iAt(i); // // refit kinks towards vertex // Int_t index0 = kink->GetIndex(0); Int_t index1 = kink->GetIndex(1); AliTPCseed * ktrack0 = (AliTPCseed*)array->At(index0); AliTPCseed * ktrack1 = (AliTPCseed*)array->At(index1); // Int_t sumn=ktrack0->GetNumberOfClusters()+ktrack1->GetNumberOfClusters(); // // Refit Kink under if too small angle // if (kink->GetAngle(2)<0.05){ kink->SetTPCRow0(GetRowNumber(kink->GetR())); Int_t row0 = kink->GetTPCRow0(); Int_t drow = Int_t(2.+0.5/(0.05+kink->GetAngle(2))); // // Int_t last = row0-drow; if (last<40) last=40; if (lastGetFirstPoint()+25) last = ktrack0->GetFirstPoint()+25; AliTPCseed* seed0 = ReSeed(ktrack0,last,kFALSE); // // Int_t first = row0+drow; if (first>130) first=130; if (first>ktrack1->GetLastPoint()-25) first = TMath::Max(ktrack1->GetLastPoint()-25,30); AliTPCseed* seed1 = ReSeed(ktrack1,first,kTRUE); // if (seed0 && seed1){ kink->SetStatus(1,8); if (RefitKink(*seed0,*seed1,*kink)) kink->SetStatus(1,9); row0 = GetRowNumber(kink->GetR()); sumn = seed0->GetNumberOfClusters()+seed1->GetNumberOfClusters(); mothers[i] = *seed0; daughters[i] = *seed1; } else{ delete kinks->RemoveAt(i); if (seed0) delete seed0; if (seed1) delete seed1; continue; } if (kink->GetDistance()>0.5 || kink->GetR()<110 || kink->GetR()>240) { delete kinks->RemoveAt(i); if (seed0) delete seed0; if (seed1) delete seed1; continue; } // delete seed0; delete seed1; } // if (kink) quality[i] = 160*((0.1+kink->GetDistance())*(2.-kink->GetTPCDensityFactor()))/(sumn+40.); //the longest -clossest will win } TMath::Sort(nkinks,quality,indexes,kFALSE); // //remove double find kinks // for (Int_t ikink0=1;ikink0At(indexes[ikink0]); if (!kink0) continue; // for (Int_t ikink1=0;ikink1At(indexes[ikink1]); if (!kink1) continue; // if not close kink continue if (TMath::Abs(kink1->GetPosition()[2]-kink0->GetPosition()[2])>10) continue; if (TMath::Abs(kink1->GetPosition()[1]-kink0->GetPosition()[1])>10) continue; if (TMath::Abs(kink1->GetPosition()[0]-kink0->GetPosition()[0])>10) continue; // AliTPCseed &mother0 = mothers[indexes[ikink0]]; AliTPCseed &daughter0 = daughters[indexes[ikink0]]; AliTPCseed &mother1 = mothers[indexes[ikink1]]; AliTPCseed &daughter1 = daughters[indexes[ikink1]]; Int_t row0 = (kink0->GetTPCRow0()+kink1->GetTPCRow0())/2; // Int_t same = 0; Int_t both = 0; Int_t samem = 0; Int_t bothm = 0; Int_t samed = 0; Int_t bothd = 0; // for (Int_t i=0;i0 && mother1.GetClusterIndex(i)>0){ both++; bothm++; if (mother0.GetClusterIndex(i)==mother1.GetClusterIndex(i)){ same++; samem++; } } } for (Int_t i=row0;i<158;i++){ if (daughter0.GetClusterIndex(i)>0 && daughter0.GetClusterIndex(i)>0){ both++; bothd++; if (mother0.GetClusterIndex(i)==mother1.GetClusterIndex(i)){ same++; samed++; } } } Float_t ratio = Float_t(same+1)/Float_t(both+1); Float_t ratiom = Float_t(samem+1)/Float_t(bothm+1); Float_t ratiod = Float_t(samed+1)/Float_t(bothd+1); if (ratio>0.3 && ratiom>0.5 &&ratiod>0.5) { Int_t sum0 = mother0.GetNumberOfClusters()+daughter0.GetNumberOfClusters(); Int_t sum1 = mother1.GetNumberOfClusters()+daughter1.GetNumberOfClusters(); if (sum1>sum0){ shared[kink0->GetIndex(0)]= kTRUE; shared[kink0->GetIndex(1)]= kTRUE; delete kinks->RemoveAt(indexes[ikink0]); } else{ shared[kink1->GetIndex(0)]= kTRUE; shared[kink1->GetIndex(1)]= kTRUE; delete kinks->RemoveAt(indexes[ikink1]); } } } } for (Int_t i=0;iAt(indexes[i]); if (!kink) continue; kink->SetTPCRow0(GetRowNumber(kink->GetR())); Int_t index0 = kink->GetIndex(0); Int_t index1 = kink->GetIndex(1); if (circular[index0]||(circular[index1]&&kink->GetDistance()>0.2)) continue; kink->SetMultiple(usage[index0],0); kink->SetMultiple(usage[index1],1); if (kink->GetMultiple()[0]+kink->GetMultiple()[1]>2) continue; if (kink->GetMultiple()[0]+kink->GetMultiple()[1]>0 && quality[indexes[i]]>0.2) continue; if (kink->GetMultiple()[0]+kink->GetMultiple()[1]>0 && kink->GetDistance()>0.2) continue; if (circular[index0]||(circular[index1]&&kink->GetDistance()>0.1)) continue; AliTPCseed * ktrack0 = (AliTPCseed*)array->At(index0); AliTPCseed * ktrack1 = (AliTPCseed*)array->At(index1); if (!ktrack0 || !ktrack1) continue; Int_t index = esd->AddKink(kink); // // if ( ktrack0->GetKinkIndex(0)==0 && ktrack1->GetKinkIndex(0)==0) { //best kink if (mothers[indexes[i]].GetNumberOfClusters()>20 && daughters[indexes[i]].GetNumberOfClusters()>20 && (mothers[indexes[i]].GetNumberOfClusters()+daughters[indexes[i]].GetNumberOfClusters())>100){ *ktrack0 = mothers[indexes[i]]; *ktrack1 = daughters[indexes[i]]; } } // ktrack0->SetKinkIndex(usage[index0],-(index+1)); ktrack1->SetKinkIndex(usage[index1], (index+1)); usage[index0]++; usage[index1]++; } // // Remove tracks corresponding to shared kink's // for (Int_t i=0;iAt(i); if (!track0) continue; if (track0->GetKinkIndex(0)!=0) continue; if (shared[i]) delete array->RemoveAt(i); } // // RemoveUsed2(array,0.5,0.4,30); UnsignClusters(); for (Int_t i=0;iAt(i); if (!track0) continue; track0->CookdEdx(0.02,0.6); track0->CookPID(); } // for (Int_t i=0;iAt(i); if (!track0) continue; if (track0->Pt()<1.4) continue; //remove double high momenta tracks - overlapped with kink candidates Int_t shared=0; Int_t all =0; for (Int_t icl=track0->GetFirstPoint();iclGetLastPoint(); icl++){ if (track0->GetClusterPointer(icl)!=0){ all++; if (track0->GetClusterPointer(icl)->IsUsed(10)) shared++; } } if (Float_t(shared+1)/Float_t(all+1)>0.5) { delete array->RemoveAt(i); continue; } // if (track0->GetKinkIndex(0)!=0) continue; if (track0->GetNumberOfClusters()<80) continue; AliTPCseed *pmother = new AliTPCseed(); AliTPCseed *pdaughter = new AliTPCseed(); AliKink *pkink = new AliKink; AliTPCseed & mother = *pmother; AliTPCseed & daughter = *pdaughter; AliKink & kink = *pkink; if (CheckKinkPoint(track0,mother,daughter, kink)){ if (mother.GetNumberOfClusters()<30||daughter.GetNumberOfClusters()<20) { delete pmother; delete pdaughter; delete pkink; continue; //too short tracks } if (mother.Pt()<1.4) { delete pmother; delete pdaughter; delete pkink; continue; } Int_t row0= kink.GetTPCRow0(); if (kink.GetDistance()>0.5 || kink.GetR()<110. || kink.GetR()>240.) { delete pmother; delete pdaughter; delete pkink; continue; } // Int_t index = esd->AddKink(&kink); mother.SetKinkIndex(0,-(index+1)); daughter.SetKinkIndex(0,index+1); if (mother.GetNumberOfClusters()>50) { delete array->RemoveAt(i); array->AddAt(new AliTPCseed(mother),i); } else{ array->AddLast(new AliTPCseed(mother)); } array->AddLast(new AliTPCseed(daughter)); for (Int_t icl=0;iclUse(20); } // for (Int_t icl=row0;icl<158;icl++) { if (daughter.GetClusterPointer(icl)) daughter.GetClusterPointer(icl)->Use(20); } // } delete pmother; delete pdaughter; delete pkink; } delete [] daughters; delete [] mothers; // // delete [] dca; delete []circular; delete []shared; delete []quality; delete []indexes; // delete kink; delete[]fim; delete[] zm; delete[] z0; delete [] usage; delete[] alpha; delete[] nclusters; delete[] sign; delete[] helixes; kinks->Delete(); delete kinks; printf("Ncandidates=\t%d\t%d\t%d\t%d\n",esd->GetNumberOfKinks(),ncandidates,ntracks,nall); timer.Print(); } void AliTPCtrackerMI::FindV0s(TObjArray * array, AliESDEvent *esd) { // // find V0s // // TObjArray *tpcv0s = new TObjArray(100000); Int_t nentries = array->GetEntriesFast(); AliHelix *helixes = new AliHelix[nentries]; Int_t *sign = new Int_t[nentries]; Float_t *alpha = new Float_t[nentries]; Float_t *z0 = new Float_t[nentries]; Float_t *dca = new Float_t[nentries]; Float_t *sdcar = new Float_t[nentries]; Float_t *cdcar = new Float_t[nentries]; Float_t *pulldcar = new Float_t[nentries]; Float_t *pulldcaz = new Float_t[nentries]; Float_t *pulldca = new Float_t[nentries]; Bool_t *isPrim = new Bool_t[nentries]; const AliESDVertex * primvertex = esd->GetVertex(); Double_t zvertex = primvertex->GetZv(); // // nentries = array->GetEntriesFast(); // for (Int_t i=0;iAt(i); if (!track) continue; track->GetV0Indexes()[0] = 0; //rest v0 indexes track->GetV0Indexes()[1] = 0; //rest v0 indexes track->GetV0Indexes()[2] = 0; //rest v0 indexes // alpha[i] = track->GetAlpha(); new (&helixes[i]) AliHelix(*track); Double_t xyz[3]; helixes[i].Evaluate(0,xyz); sign[i] = (track->GetC()>0) ? -1:1; Double_t x,y,z; x=160; z0[i]=1000; if (track->GetProlongation(0,y,z)) z0[i] = z; dca[i] = track->GetD(0,0); // // dca error parrameterezation + pulls // sdcar[i] = TMath::Sqrt(0.150*0.150+(100*track->GetC())*(100*track->GetC())); if (TMath::Abs(track->GetTgl())>1) sdcar[i]*=2.5; cdcar[i] = TMath::Exp((TMath::Abs(track->GetC())-0.0106)*525.3); pulldcar[i] = (dca[i]-cdcar[i])/sdcar[i]; pulldcaz[i] = (z0[i]-zvertex)/sdcar[i]; pulldca[i] = TMath::Sqrt(pulldcar[i]*pulldcar[i]+pulldcaz[i]*pulldcaz[i]); if (track->TPCrPID(1)+track->TPCrPID(2)+track->TPCrPID(3)>0.5) { if (pulldca[i]<3.) isPrim[i]=kTRUE; //pion, muon and Kaon 3 sigma cut } if (track->TPCrPID(4)>0.5) { if (pulldca[i]<0.5) isPrim[i]=kTRUE; //proton 0.5 sigma cut } if (track->TPCrPID(0)>0.4) { isPrim[i]=kFALSE; //electron no sigma cut } } // // TStopwatch timer; timer.Start(); Int_t ncandidates =0; Int_t nall =0; Int_t ntracks=0; Double_t phase[2][2],radius[2]; // // Finf V0s loop // // // // Float_t fprimvertex[3]={GetX(),GetY(),GetZ()}; AliV0 vertex; Double_t cradius0 = 10*10; Double_t cradius1 = 200*200; Double_t cdist1=3.; Double_t cdist2=4.; Double_t cpointAngle = 0.95; // Double_t delta[2]={10000,10000}; for (Int_t i =0;iAt(i); if (!track0) continue; if (AliTPCReconstructor::StreamLevel()>1){ TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"Tracks"<< "Tr0.="<GetSigned1Pt()<0) continue; if (track0->GetKinkIndex(0)>0||isPrim[i]) continue; //daughter kink // if (TMath::Abs(helixes[i].GetHelix(4))<0.000000001) continue; ntracks++; // debug output for (Int_t j =0;jAt(j); if (!track1) continue; if (track1->GetKinkIndex(0)>0 || isPrim[j]) continue; //daughter kink if (sign[j]*sign[i]>0) continue; if (TMath::Abs(helixes[j].GetHelix(4))<0.000001) continue; if (track0->GetCircular()+track1->GetCircular()>1) continue; //circling -returning track nall++; // // DCA to prim vertex cut // // delta[0]=10000; delta[1]=10000; Int_t npoints = helixes[i].GetRPHIintersections(helixes[j], phase, radius,cdist2); if (npoints<1) continue; Int_t iclosest=0; // cuts on radius if (npoints==1){ if (radius[0]cradius1) continue; helixes[i].LinearDCA(helixes[j],phase[0][0],phase[0][1],radius[0],delta[0]); if (delta[0]>cdist1) continue; } else{ if (TMath::Max(radius[0],radius[1])cradius1) continue; helixes[i].LinearDCA(helixes[j],phase[0][0],phase[0][1],radius[0],delta[0]); helixes[i].LinearDCA(helixes[j],phase[1][0],phase[1][1],radius[1],delta[1]); if (delta[1]cdist1) continue; } helixes[i].ParabolicDCA(helixes[j],phase[iclosest][0],phase[iclosest][1],radius[iclosest],delta[iclosest]); if (radius[iclosest]cradius1 || delta[iclosest]>cdist1) continue; // Double_t pointAngle = helixes[i].GetPointAngle(helixes[j],phase[iclosest],fprimvertex); if (pointAngleTPCrPID(0)>0.3&&track1->TPCrPID(0)>0.3&&vertex.GetAnglep()[2]<0.15) isGamma=kTRUE; // gamma conversion candidate Double_t pointAngle2 = vertex.GetV0CosineOfPointingAngle(); //continue; if (vertex.GetV0CosineOfPointingAngle()2&&(!isGamma)) continue; // point angle cut if (vertex.GetDcaV0Daughters()>2&&(!isGamma)) continue;//Bo: // point angle cut Float_t sigmae = 0.15*0.15; if (vertex.GetRr()<80) sigmae += (sdcar[i]*sdcar[i]+sdcar[j]*sdcar[j])*(1.-vertex.GetRr()/80.)*(1.-vertex.GetRr()/80.); sigmae+= TMath::Sqrt(sigmae); //Bo: if (vertex.GetDist2()/sigmae>3.&&(!isGamma)) continue; if (vertex.GetDcaV0Daughters()/sigmae>3.&&(!isGamma)) continue; Float_t densb0=0,densb1=0,densa0=0,densa1=0; Int_t row0 = GetRowNumber(vertex.GetRr()); if (row0>15){ //Bo: if (vertex.GetDist2()>0.2) continue; if (vertex.GetDcaV0Daughters()>0.2) continue; densb0 = track0->Density2(0,row0-5); densb1 = track1->Density2(0,row0-5); if (densb0>0.3|| densb1>0.3) continue; //clusters before vertex densa0 = track0->Density2(row0+5,row0+40); densa1 = track1->Density2(row0+5,row0+40); if ((densa0<0.4|| densa1<0.4)&&(!isGamma)) continue; //missing clusters after vertex } else{ densa0 = track0->Density2(0,40); //cluster density densa1 = track1->Density2(0,40); //cluster density if ((vertex.GetRr()<80&&densa0+densa1<1.)&&(!isGamma)) continue; } //Bo: vertex.SetLab(0,track0->GetLabel()); //Bo: vertex.SetLab(1,track1->GetLabel()); vertex.SetChi2After((densa0+densa1)*0.5); vertex.SetChi2Before((densb0+densb1)*0.5); vertex.SetIndex(0,i); vertex.SetIndex(1,j); //Bo: vertex.SetStatus(1); // TPC v0 candidate vertex.SetOnFlyStatus(2);//Bo: // TPC v0 candidate //Bo: vertex.SetRp(track0->TPCrPIDs()); //Bo: vertex.SetRm(track1->TPCrPIDs()); tpcv0s->AddLast(new AliESDv0(vertex)); ncandidates++; { Int_t eventNr = esd->GetEventNumberInFile(); // This is most likely NOT the event number you'd like to use. It has nothing to do with the 'real' event number Double_t radiusm= (delta[0]1) { Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); Char_t c0=track0->GetCircular(); Char_t c1=track1->GetCircular(); TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"V0"<< "Event="<At(i); quality[i] = 1./(1.00001-v0->GetV0CosineOfPointingAngle()); //base point angle // quality[i] /= (0.5+v0->GetDist2()); // quality[i] *= v0->GetChi2After(); //density factor Int_t index0 = v0->GetIndex(0); Int_t index1 = v0->GetIndex(1); //Bo: Double_t minpulldca = TMath::Min(2.+pulldca[v0->GetIndex(0)],(2.+pulldca[v0->GetIndex(1)]) ); //pull Double_t minpulldca = TMath::Min(2.+pulldca[index0],(2.+pulldca[index1]) );//Bo: AliTPCseed * track0 = (AliTPCseed*)array->At(index0); AliTPCseed * track1 = (AliTPCseed*)array->At(index1); if (track0->TPCrPID(0)>0.3&&track1->TPCrPID(0)>0.3&&v0->GetAnglep()[2]<0.15) quality[i]+=1000000; // gamma conversion candidate if (track0->TPCrPID(4)>0.9||(track1->TPCrPID(4)>0.9&&minpulldca>4)) quality[i]*=10; // lambda candidate candidate } TMath::Sort(ncandidates,quality,indexes,kTRUE); // // for (Int_t i=0;iAt(indexes[i]); if (!v0) continue; Int_t index0 = v0->GetIndex(0); Int_t index1 = v0->GetIndex(1); AliTPCseed * track0 = (AliTPCseed*)array->At(index0); AliTPCseed * track1 = (AliTPCseed*)array->At(index1); if (!track0||!track1) { printf("Bug\n"); continue; } Bool_t accept =kTRUE; //default accept Int_t *v0indexes0 = track0->GetV0Indexes(); Int_t *v0indexes1 = track1->GetV0Indexes(); // Int_t order0 = (v0indexes0[0]!=0) ? 1:0; Int_t order1 = (v0indexes1[0]!=0) ? 1:0; if (v0indexes0[1]!=0) order0 =2; if (v0indexes1[1]!=0) order1 =2; // if (v0indexes0[2]!=0) {order0=3; accept=kFALSE;} if (v0indexes0[2]!=0) {order1=3; accept=kFALSE;} // AliESDv0 * v02 = v0; if (accept){ //Bo: v0->SetOrder(0,order0); //Bo: v0->SetOrder(1,order1); //Bo: v0->SetOrder(1,order0+order1); v0->SetOnFlyStatus(kTRUE); Int_t index = esd->AddV0(v0); v02 = esd->GetV0(index); v0indexes0[order0]=index; v0indexes1[order1]=index; naccepted++; } { Int_t eventNr = esd->GetEventNumberInFile(); // This is most likely NOT the event number you'd like to use. It has nothing to do with the 'real' event number if (AliTPCReconstructor::StreamLevel()>1) { Int_t lab0=track0->GetLabel(); Int_t lab1=track1->GetLabel(); TTreeSRedirector &cstream = *fDebugStreamer; cstream<<"V02"<< "Event="<240.) continue; if (TMath::Abs(kinks[irow].GetR())<100.) continue; // Float_t normdist = TMath::Abs(param0[irow].GetX()-kinks[irow].GetR())*(0.1+kink.GetDistance()); normdist/= (param0[irow].GetNumberOfClusters()+param1[irow].GetNumberOfClusters()+40.); if (normdist < mindist){ mindist = normdist; index = irow; } } // if (index==-1) return 0; // // param0[index].Reset(kTRUE); FollowProlongation(param0[index],0); // mother = param0[index]; daughter = param1[index]; // daughter in vertex // kink.SetMother(mother); kink.SetDaughter(daughter); kink.Update(); kink.SetTPCRow0(GetRowNumber(kink.GetR())); kink.SetTPCncls(param0[index].GetNumberOfClusters(),0); kink.SetTPCncls(param1[index].GetNumberOfClusters(),1); kink.SetLabel(CookLabel(&mother,0.4, 0,kink.GetTPCRow0()),0); kink.SetLabel(CookLabel(&daughter,0.4, kink.GetTPCRow0(),160),1); mother.SetLabel(kink.GetLabel(0)); daughter.SetLabel(kink.GetLabel(1)); return 1; } void AliTPCtrackerMI::UpdateKinkQualityM(AliTPCseed * seed){ // // update Kink quality information for mother after back propagation // if (seed->GetKinkIndex(0)>=0) return; for (Int_t ikink=0;ikink<3;ikink++){ Int_t index = seed->GetKinkIndex(ikink); if (index>=0) break; index = TMath::Abs(index)-1; AliESDkink * kink = fEvent->GetKink(index); kink->SetTPCDensity(-1,0,0); kink->SetTPCDensity(1,0,1); // Int_t row0 = kink->GetTPCRow0() - 2 - Int_t( 0.5/ (0.05+kink->GetAngle(2))); if (row0<15) row0=15; // Int_t row1 = kink->GetTPCRow0() + 2 + Int_t( 0.5/ (0.05+kink->GetAngle(2))); if (row1>145) row1=145; // Int_t found,foundable,shared; seed->GetClusterStatistic(0,row0, found, foundable,shared,kFALSE); if (foundable>5) kink->SetTPCDensity(Float_t(found)/Float_t(foundable),0,0); seed->GetClusterStatistic(row1,155, found, foundable,shared,kFALSE); if (foundable>5) kink->SetTPCDensity(Float_t(found)/Float_t(foundable),0,1); } } void AliTPCtrackerMI::UpdateKinkQualityD(AliTPCseed * seed){ // // update Kink quality information for daughter after refit // if (seed->GetKinkIndex(0)<=0) return; for (Int_t ikink=0;ikink<3;ikink++){ Int_t index = seed->GetKinkIndex(ikink); if (index<=0) break; index = TMath::Abs(index)-1; AliESDkink * kink = fEvent->GetKink(index); kink->SetTPCDensity(-1,1,0); kink->SetTPCDensity(-1,1,1); // Int_t row0 = kink->GetTPCRow0() -2 - Int_t( 0.5/ (0.05+kink->GetAngle(2))); if (row0<15) row0=15; // Int_t row1 = kink->GetTPCRow0() +2 + Int_t( 0.5/ (0.05+kink->GetAngle(2))); if (row1>145) row1=145; // Int_t found,foundable,shared; seed->GetClusterStatistic(0,row0, found, foundable,shared,kFALSE); if (foundable>5) kink->SetTPCDensity(Float_t(found)/Float_t(foundable),1,0); seed->GetClusterStatistic(row1,155, found, foundable,shared,kFALSE); if (foundable>5) kink->SetTPCDensity(Float_t(found)/Float_t(foundable),1,1); } } Int_t AliTPCtrackerMI::CheckKinkPoint(AliTPCseed*seed,AliTPCseed &mother, AliTPCseed &daughter, AliESDkink &knk) { // // check kink point for given track // if return value=0 kink point not found // otherwise seed0 correspond to mother particle // seed1 correspond to daughter particle // kink parameter of kink point AliKink &kink=(AliKink &)knk; Int_t middlerow = (seed->GetFirstPoint()+seed->GetLastPoint())/2; Int_t first = seed->GetFirstPoint(); Int_t last = seed->GetLastPoint(); if (last-first<20) return 0; // shortest length - 2*30 = 60 pad-rows AliTPCseed *seed1 = ReSeed(seed,middlerow+20, kTRUE); //middle of chamber if (!seed1) return 0; FollowProlongation(*seed1,seed->GetLastPoint()-20); seed1->Reset(kTRUE); FollowProlongation(*seed1,158); seed1->Reset(kTRUE); last = seed1->GetLastPoint(); // AliTPCseed *seed0 = new AliTPCseed(*seed); seed0->Reset(kFALSE); seed0->Reset(); // AliTPCseed param0[20]; // parameters along the track AliTPCseed param1[20]; // parameters along the track AliKink kinks[20]; // corresponding kink parameters Int_t rows[20]; for (Int_t irow=0; irow<20;irow++){ rows[irow] = first +((last-first)*irow)/19; } // store parameters along the track // for (Int_t irow=0;irow<20;irow++){ FollowBackProlongation(*seed0, rows[irow]); FollowProlongation(*seed1,rows[19-irow]); param0[irow] = *seed0; param1[19-irow] = *seed1; } // // define kinks for (Int_t irow=0; irow<19;irow++){ kinks[irow].SetMother(param0[irow]); kinks[irow].SetDaughter(param1[irow]); kinks[irow].Update(); } // // choose kink with biggest change of angle Int_t index =-1; Double_t maxchange= 0; for (Int_t irow=1;irow<19;irow++){ if (TMath::Abs(kinks[irow].GetR())>240.) continue; if (TMath::Abs(kinks[irow].GetR())<110.) continue; Float_t quality = TMath::Abs(kinks[irow].GetAngle(2))/(3.+TMath::Abs(kinks[irow].GetR()-param0[irow].GetX())); if ( quality > maxchange){ maxchange = quality; index = irow; // } } delete seed0; delete seed1; if (index<0) return 0; // Int_t row0 = GetRowNumber(kinks[index].GetR()); //row 0 estimate seed0 = new AliTPCseed(param0[index]); seed1 = new AliTPCseed(param1[index]); seed0->Reset(kFALSE); seed1->Reset(kFALSE); seed0->ResetCovariance(10.); seed1->ResetCovariance(10.); FollowProlongation(*seed0,0); FollowBackProlongation(*seed1,158); mother = *seed0; // backup mother at position 0 seed0->Reset(kFALSE); seed1->Reset(kFALSE); seed0->ResetCovariance(10.); seed1->ResetCovariance(10.); // first = TMath::Max(row0-20,0); last = TMath::Min(row0+20,158); // for (Int_t irow=0; irow<20;irow++){ rows[irow] = first +((last-first)*irow)/19; } // store parameters along the track // for (Int_t irow=0;irow<20;irow++){ FollowBackProlongation(*seed0, rows[irow]); FollowProlongation(*seed1,rows[19-irow]); param0[irow] = *seed0; param1[19-irow] = *seed1; } // // define kinks for (Int_t irow=0; irow<19;irow++){ kinks[irow].SetMother(param0[irow]); kinks[irow].SetDaughter(param1[irow]); // param0[irow].Dump(); //param1[irow].Dump(); kinks[irow].Update(); } // // choose kink with biggest change of angle index =-1; maxchange= 0; for (Int_t irow=0;irow<20;irow++){ if (TMath::Abs(kinks[irow].GetR())>250.) continue; if (TMath::Abs(kinks[irow].GetR())<90.) continue; Float_t quality = TMath::Abs(kinks[irow].GetAngle(2))/(3.+TMath::Abs(kinks[irow].GetR()-param0[irow].GetX())); if ( quality > maxchange){ maxchange = quality; index = irow; // } } // // if (index==-1 || param0[index].GetNumberOfClusters()+param1[index].GetNumberOfClusters()<100){ delete seed0; delete seed1; return 0; } // Float_t anglesigma = TMath::Sqrt(param0[index].fC22+param0[index].fC33+param1[index].fC22+param1[index].fC33); kink.SetMother(param0[index]); kink.SetDaughter(param1[index]); kink.Update(); row0 = GetRowNumber(kink.GetR()); kink.SetTPCRow0(row0); kink.SetLabel(CookLabel(seed0,0.5,0,row0),0); kink.SetLabel(CookLabel(seed1,0.5,row0,158),1); kink.SetIndex(-10,0); kink.SetIndex(int(param0[index].GetNumberOfClusters()+param1[index].GetNumberOfClusters()),1); kink.SetTPCncls(param0[index].GetNumberOfClusters(),0); kink.SetTPCncls(param1[index].GetNumberOfClusters(),1); // // // new (&mother) AliTPCseed(param0[index]); daughter = param1[index]; daughter.SetLabel(kink.GetLabel(1)); param0[index].Reset(kTRUE); FollowProlongation(param0[index],0); mother = param0[index]; mother.SetLabel(kink.GetLabel(0)); delete seed0; delete seed1; // return 1; } AliTPCseed* AliTPCtrackerMI::ReSeed(AliTPCseed *t) { // // reseed - refit - track // Int_t first = 0; // Int_t last = fSectors->GetNRows()-1; // if (fSectors == fOuterSec){ first = TMath::Max(first, t->GetFirstPoint()-fInnerSec->GetNRows()); //last = } else first = t->GetFirstPoint(); // AliTPCseed * seed = MakeSeed(t,0.1,0.5,0.9); FollowBackProlongation(*t,fSectors->GetNRows()-1); t->Reset(kFALSE); FollowProlongation(*t,first); return seed; } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::ReadSeeds(const TFile *inp) { //----------------------------------------------------------------- // This function reades track seeds. //----------------------------------------------------------------- TDirectory *savedir=gDirectory; TFile *in=(TFile*)inp; if (!in->IsOpen()) { cerr<<"AliTPCtrackerMI::ReadSeeds(): input file is not open !\n"; return 1; } in->cd(); TTree *seedTree=(TTree*)in->Get("Seeds"); if (!seedTree) { cerr<<"AliTPCtrackerMI::ReadSeeds(): "; cerr<<"can't get a tree with track seeds !\n"; return 2; } AliTPCtrack *seed=new AliTPCtrack; seedTree->SetBranchAddress("tracks",&seed); if (fSeeds==0) fSeeds=new TObjArray(15000); Int_t n=(Int_t)seedTree->GetEntries(); for (Int_t i=0; iGetEvent(i); fSeeds->AddLast(new AliTPCseed(*seed/*,seed->GetAlpha()*/)); } delete seed; delete seedTree; savedir->cd(); return 0; } Int_t AliTPCtrackerMI::Clusters2Tracks (AliESDEvent *esd) { // if (fSeeds) DeleteSeeds(); fEvent = esd; Clusters2Tracks(); if (!fSeeds) return 1; FillESD(fSeeds); return 0; // } //_____________________________________________________________________________ Int_t AliTPCtrackerMI::Clusters2Tracks() { //----------------------------------------------------------------- // This is a track finder. //----------------------------------------------------------------- TDirectory *savedir=gDirectory; TStopwatch timer; fIteration = 0; fSeeds = Tracking(); if (fDebug>0){ Info("Clusters2Tracks","Time for tracking: \t");timer.Print();timer.Start(); } //activate again some tracks for (Int_t i=0; iGetEntriesFast(); i++) { AliTPCseed *pt=(AliTPCseed*)fSeeds->UncheckedAt(i), &t=*pt; if (!pt) continue; Int_t nc=t.GetNumberOfClusters(); if (nc<20) { delete fSeeds->RemoveAt(i); continue; } CookLabel(pt,0.1); if (pt->GetRemoval()==10) { if (pt->GetDensityFirst(20)>0.8 || pt->GetDensityFirst(30)>0.8 || pt->GetDensityFirst(40)>0.7) pt->Desactivate(10); // make track again active else{ pt->Desactivate(20); delete fSeeds->RemoveAt(i); } } } // RemoveUsed2(fSeeds,0.85,0.85,0); if (AliTPCReconstructor::GetRecoParam()->GetDoKinks()) FindKinks(fSeeds,fEvent); //FindCurling(fSeeds, fEvent,0); if (AliTPCReconstructor::StreamLevel()>2) FindMultiMC(fSeeds, fEvent,0); // find multi found tracks RemoveUsed2(fSeeds,0.5,0.4,20); FindSplitted(fSeeds, fEvent,0); // find multi found tracks // // // // refit short tracks // // Int_t nseed=fSeeds->GetEntriesFast(); // Int_t found = 0; for (Int_t i=0; iUncheckedAt(i), &t=*pt; if (!pt) continue; Int_t nc=t.GetNumberOfClusters(); if (nc<15) { delete fSeeds->RemoveAt(i); continue; } CookLabel(pt,0.1); //For comparison only //if ((pt->IsActive() || (pt->fRemoval==10) )&& nc>50 &&pt->GetNumberOfClusters()>0.4*pt->fNFoundable){ if ((pt->IsActive() || (pt->GetRemoval()==10) )){ found++; if (fDebug>0) cerr<SetLab2(i); } else delete fSeeds->RemoveAt(i); } //RemoveOverlap(fSeeds,0.99,7,kTRUE); SignShared(fSeeds); //RemoveUsed(fSeeds,0.9,0.9,6); // nseed=fSeeds->GetEntriesFast(); found = 0; for (Int_t i=0; iUncheckedAt(i), &t=*pt; if (!pt) continue; Int_t nc=t.GetNumberOfClusters(); if (nc<15) { delete fSeeds->RemoveAt(i); continue; } t.SetUniqueID(i); t.CookdEdx(0.02,0.6); // CheckKinkPoint(&t,0.05); //if ((pt->IsActive() || (pt->fRemoval==10) )&& nc>50 &&pt->GetNumberOfClusters()>0.4*pt->fNFoundable){ if ((pt->IsActive() || (pt->GetRemoval()==10) )){ found++; if (fDebug>0){ cerr<SetLab2(i); } else delete fSeeds->RemoveAt(i); //AliTPCseed * seed1 = ReSeed(pt,0.05,0.5,1); //if (seed1){ // FollowProlongation(*seed1,0); // Int_t n = seed1->GetNumberOfClusters(); // printf("fP4\t%f\t%f\n",seed1->GetC(),pt->GetC()); // printf("fN\t%d\t%d\n", seed1->GetNumberOfClusters(),pt->GetNumberOfClusters()); // //} //AliTPCseed * seed2 = ReSeed(pt,0.95,0.5,0.05); } SortTracks(fSeeds, 1); /* fIteration = 1; PrepareForBackProlongation(fSeeds,5.); PropagateBack(fSeeds); printf("Time for back propagation: \t");timer.Print();timer.Start(); fIteration = 2; PrepareForProlongation(fSeeds,5.); PropagateForward2(fSeeds); printf("Time for FORWARD propagation: \t");timer.Print();timer.Start(); // RemoveUsed(fSeeds,0.7,0.7,6); //RemoveOverlap(fSeeds,0.9,7,kTRUE); nseed=fSeeds->GetEntriesFast(); found = 0; for (Int_t i=0; iUncheckedAt(i), &t=*pt; if (!pt) continue; Int_t nc=t.GetNumberOfClusters(); if (nc<15) { delete fSeeds->RemoveAt(i); continue; } t.CookdEdx(0.02,0.6); // CookLabel(pt,0.1); //For comparison only //if ((pt->IsActive() || (pt->fRemoval==10) )&& nc>50 &&pt->GetNumberOfClusters()>0.4*pt->fNFoundable){ if ((pt->IsActive() || (pt->fRemoval==10) )){ cerr<RemoveAt(i); pt->fLab2 = i; } */ // fNTracks = found; if (fDebug>0){ Info("Clusters2Tracks","Time for overlap removal, track writing and dedx cooking: \t"); timer.Print();timer.Start(); } // // cerr<<"Number of found tracks : "<<"\t"<cd(); // UnloadClusters(); // return 0; } void AliTPCtrackerMI::Tracking(TObjArray * arr) { // // tracking of the seeds // fSectors = fOuterSec; ParallelTracking(arr,150,63); fSectors = fOuterSec; ParallelTracking(arr,63,0); } TObjArray * AliTPCtrackerMI::Tracking(Int_t seedtype, Int_t i1, Int_t i2, Float_t cuts[4], Float_t dy, Int_t dsec) { // // //tracking routine TObjArray * arr = new TObjArray; // fSectors = fOuterSec; TStopwatch timer; timer.Start(); for (Int_t sec=0;sec0){ Info("Tracking","\nSeeding - %d\t%d\t%d\t%d\n",seedtype,i1,i2,arr->GetEntriesFast()); timer.Print(); timer.Start(); } Tracking(arr); if (fDebug>0){ timer.Print(); } return arr; } TObjArray * AliTPCtrackerMI::Tracking() { // // if (AliTPCReconstructor::GetRecoParam()->GetSpecialSeeding()) return TrackingSpecial(); TStopwatch timer; timer.Start(); Int_t nup=fOuterSec->GetNRows()+fInnerSec->GetNRows(); TObjArray * seeds = new TObjArray; TObjArray * arr=0; Int_t gap =20; Float_t cuts[4]; cuts[0] = 0.002; cuts[1] = 1.5; cuts[2] = 3.; cuts[3] = 3.; Float_t fnumber = 3.0; Float_t fdensity = 3.0; // //find primaries cuts[0]=0.0066; for (Int_t delta = 0; delta<18; delta+=6){ // cuts[0]=0.0070; cuts[1] = 1.5; arr = Tracking(3,nup-1-delta,nup-1-delta-gap,cuts,-1,1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // for (Int_t i=2;i<6;i+=2){ // seed high pt tracks cuts[0]=0.0022; cuts[1]=0.3; arr = Tracking(3,nup-i-delta,nup-i-delta-gap,cuts,-1,0); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); } } fnumber = 4; fdensity = 4.; // RemoveUsed(seeds,0.9,0.9,1); // UnsignClusters(); // SignClusters(seeds,fnumber,fdensity); //find primaries cuts[0]=0.0077; for (Int_t delta = 20; delta<120; delta+=10){ // // seed high pt tracks cuts[0]=0.0060; cuts[1]=0.3; cuts[2]=6.; arr = Tracking(3,nup-delta,nup-delta-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); cuts[0]=0.003; cuts[1]=0.3; cuts[2]=6.; arr = Tracking(3,nup-delta-5,nup-delta-5-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); } cuts[0] = 0.01; cuts[1] = 2.0; cuts[2] = 3.; cuts[3] = 2.0; fnumber = 2.; fdensity = 2.; if (fDebug>0){ Info("Tracking()","\n\nPrimary seeding\t%d\n\n",seeds->GetEntriesFast()); timer.Print(); timer.Start(); } // RemoveUsed(seeds,0.75,0.75,1); //UnsignClusters(); //SignClusters(seeds,fnumber,fdensity); // find secondaries cuts[0] = 0.3; cuts[1] = 1.5; cuts[2] = 3.; cuts[3] = 1.5; arr = Tracking(4,nup-1,nup-1-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // arr = Tracking(4,nup-2,nup-2-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // arr = Tracking(4,nup-3,nup-3-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // for (Int_t delta = 3; delta<30; delta+=5){ // cuts[0] = 0.3; cuts[1] = 1.5; cuts[2] = 3.; cuts[3] = 1.5; arr = Tracking(4,nup-1-delta,nup-1-delta-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // arr = Tracking(4,nup-3-delta,nup-5-delta-gap,cuts,4); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); // } fnumber = 1; fdensity = 1; // // change cuts fnumber = 2.; fdensity = 2.; cuts[0]=0.0080; Int_t fLastSeedRowSec=AliTPCReconstructor::GetRecoParam()->GetLastSeedRowSec(); // find secondaries for (Int_t delta = 30; delta0){ Info("Tracking()","\n\nSecondary seeding\t%d\n\n",seeds->GetEntriesFast()); timer.Print(); timer.Start(); } return seeds; // } TObjArray * AliTPCtrackerMI::TrackingSpecial() { // // seeding adjusted for laser and cosmic tests - short tracks with big inclination angle // no primary vertex seeding tried // TStopwatch timer; timer.Start(); Int_t nup=fOuterSec->GetNRows()+fInnerSec->GetNRows(); TObjArray * seeds = new TObjArray; TObjArray * arr=0; Int_t gap = 15; Float_t cuts[4]; Float_t fnumber = 3.0; Float_t fdensity = 3.0; // find secondaries cuts[0] = AliTPCReconstructor::GetRecoParam()->GetMaxC(); // max curvature cuts[1] = 3.5; // max tan(phi) angle for seeding cuts[2] = 3.; // not used (cut on z primary vertex) cuts[3] = 3.5; // max tan(theta) angle for seeding for (Int_t delta = 0; nup-delta-gap-1>0; delta+=3){ // arr = Tracking(4,nup-1-delta,nup-1-delta-gap,cuts,-1); SumTracks(seeds,arr); SignClusters(seeds,fnumber,fdensity); } if (fDebug>0){ Info("Tracking()","\n\nSecondary seeding\t%d\n\n",seeds->GetEntriesFast()); timer.Print(); timer.Start(); } return seeds; // } void AliTPCtrackerMI::SumTracks(TObjArray *arr1,TObjArray *&arr2) const { // //sum tracks to common container //remove suspicious tracks Int_t nseed = arr2->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (pt){ // // remove tracks with too big curvature // if (TMath::Abs(pt->GetC())>AliTPCReconstructor::GetRecoParam()->GetMaxC()){ delete arr2->RemoveAt(i); continue; } // REMOVE VERY SHORT TRACKS if (pt->GetNumberOfClusters()<20){ delete arr2->RemoveAt(i); continue; }// patch 28 fev06 // NORMAL ACTIVE TRACK if (pt->IsActive()){ arr1->AddLast(arr2->RemoveAt(i)); continue; } //remove not usable tracks if (pt->GetRemoval()!=10){ delete arr2->RemoveAt(i); continue; } // ENABLE ONLY ENOUGH GOOD STOPPED TRACKS if (pt->GetDensityFirst(20)>0.8 || pt->GetDensityFirst(30)>0.8 || pt->GetDensityFirst(40)>0.7) arr1->AddLast(arr2->RemoveAt(i)); else{ delete arr2->RemoveAt(i); } } } delete arr2; arr2 = 0; } void AliTPCtrackerMI::ParallelTracking(TObjArray * arr, Int_t rfirst, Int_t rlast) { // // try to track in parralel Int_t nseed=arr->GetEntriesFast(); //prepare seeds for tracking for (Int_t i=0; iUncheckedAt(i), &t=*pt; if (!pt) continue; if (!t.IsActive()) continue; // follow prolongation to the first layer if ( (fSectors ==fInnerSec) || (t.GetFirstPoint()-fParam->GetNRowLow()>rfirst+1) ) FollowProlongation(t, rfirst+1); } // for (Int_t nr=rfirst; nr>=rlast; nr--){ if (nrGetNRows()) fSectors = fInnerSec; else fSectors = fOuterSec; // make indexes with the cluster tracks for given // find nearest cluster for (Int_t i=0; iUncheckedAt(i), &t=*pt; if (!pt) continue; if (nr==80) pt->UpdateReference(); if (!pt->IsActive()) continue; // if ( (fSectors ==fOuterSec) && (pt->fFirstPoint-fParam->GetNRowLow())GetRelativeSector()>17) { continue; } UpdateClusters(t,nr); } // prolonagate to the nearest cluster - if founded for (Int_t i=0; iUncheckedAt(i); if (!pt) continue; if (!pt->IsActive()) continue; // if ((fSectors ==fOuterSec) && (pt->fFirstPoint-fParam->GetNRowLow())GetRelativeSector()>17) { continue; } FollowToNextCluster(*pt,nr); } } } void AliTPCtrackerMI::PrepareForBackProlongation(TObjArray * arr,Float_t fac) const { // // // if we use TPC track itself we have to "update" covariance // Int_t nseed= arr->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (pt) { pt->Modify(fac); // //rotate to current local system at first accepted point Int_t index = pt->GetClusterIndex2(pt->GetFirstPoint()); Int_t sec = (index&0xff000000)>>24; sec = sec%18; Float_t angle1 = fInnerSec->GetAlpha()*sec+fInnerSec->GetAlphaShift(); if (angle1>TMath::Pi()) angle1-=2.*TMath::Pi(); Float_t angle2 = pt->GetAlpha(); if (TMath::Abs(angle1-angle2)>0.001){ pt->Rotate(angle1-angle2); //angle2 = pt->GetAlpha(); //pt->fRelativeSector = pt->GetAlpha()/fInnerSec->GetAlpha(); //if (pt->GetAlpha()<0) // pt->fRelativeSector+=18; //sec = pt->fRelativeSector; } } } } void AliTPCtrackerMI::PrepareForProlongation(TObjArray * arr, Float_t fac) const { // // // if we use TPC track itself we have to "update" covariance // Int_t nseed= arr->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (pt) { pt->Modify(fac); pt->SetFirstPoint(pt->GetLastPoint()); } } } Int_t AliTPCtrackerMI::PropagateBack(TObjArray * arr) { // // make back propagation // Int_t nseed= arr->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (pt&& pt->GetKinkIndex(0)<=0) { //AliTPCseed *pt2 = new AliTPCseed(*pt); fSectors = fInnerSec; //FollowBackProlongation(*pt,fInnerSec->GetNRows()-1); //fSectors = fOuterSec; FollowBackProlongation(*pt,fInnerSec->GetNRows()+fOuterSec->GetNRows()-1); //if (pt->GetNumberOfClusters()<(pt->fEsd->GetTPCclusters(0)) ){ // Error("PropagateBack","Not prolonged track %d",pt->GetLabel()); // FollowBackProlongation(*pt2,fInnerSec->GetNRows()+fOuterSec->GetNRows()-1); //} } if (pt&& pt->GetKinkIndex(0)>0) { AliESDkink * kink = fEvent->GetKink(pt->GetKinkIndex(0)-1); pt->SetFirstPoint(kink->GetTPCRow0()); fSectors = fInnerSec; FollowBackProlongation(*pt,fInnerSec->GetNRows()+fOuterSec->GetNRows()-1); } CookLabel(pt,0.3); } return 0; } Int_t AliTPCtrackerMI::PropagateForward2(TObjArray * arr) { // // make forward propagation // Int_t nseed= arr->GetEntriesFast(); // for (Int_t i=0;iUncheckedAt(i); if (pt) { FollowProlongation(*pt,0); CookLabel(pt,0.3); } } return 0; } Int_t AliTPCtrackerMI::PropagateForward() { // // propagate track forward //UnsignClusters(); Int_t nseed = fSeeds->GetEntriesFast(); for (Int_t i=0;iUncheckedAt(i); if (pt){ AliTPCseed &t = *pt; Double_t alpha=t.GetAlpha() - fSectors->GetAlphaShift(); if (alpha > 2.*TMath::Pi()) alpha -= 2.*TMath::Pi(); if (alpha < 0. ) alpha += 2.*TMath::Pi(); t.SetRelativeSector(Int_t(alpha/fSectors->GetAlpha()+0.0001)%fN); } } fSectors = fOuterSec; ParallelTracking(fSeeds,fOuterSec->GetNRows()+fInnerSec->GetNRows()-1,fInnerSec->GetNRows()); fSectors = fInnerSec; ParallelTracking(fSeeds,fInnerSec->GetNRows()-1,0); return 1; } Int_t AliTPCtrackerMI::PropagateBack(AliTPCseed * pt, Int_t row0, Int_t row1) { // // make back propagation, in between row0 and row1 // if (pt) { fSectors = fInnerSec; Int_t r1; // if (row1GetNRows()) r1 = row1; else r1 = fSectors->GetNRows()-1; if (row0GetNRows()&& r1>0 ) FollowBackProlongation(*pt,r1); if (row1<=fSectors->GetNRows()) return 0; // r1 = row1 - fSectors->GetNRows(); if (r1<=0) return 0; if (r1>=fOuterSec->GetNRows()) return 0; fSectors = fOuterSec; return FollowBackProlongation(*pt,r1); } return 0; } void AliTPCtrackerMI::GetShape(AliTPCseed * seed, Int_t row) { // // AliTPCClusterParam * clparam = AliTPCcalibDB::Instance()->GetClusterParam(); Float_t zdrift = TMath::Abs((fParam->GetZLength(0)-TMath::Abs(seed->GetZ()))); Int_t type = (seed->GetSector() < fParam->GetNSector()/2) ? 0: (row>126) ? 1:2; Double_t angulary = seed->GetSnp(); angulary = angulary*angulary/(1.-angulary*angulary); Double_t angularz = seed->GetTgl()*seed->GetTgl()*(1.+angulary); Double_t sigmay = clparam->GetRMS0(0,type,zdrift,TMath::Sqrt(TMath::Abs(angulary))); Double_t sigmaz = clparam->GetRMS0(1,type,zdrift,TMath::Sqrt(TMath::Abs(angularz))); seed->SetCurrentSigmaY2(sigmay*sigmay); seed->SetCurrentSigmaZ2(sigmaz*sigmaz); // Float_t sd2 = TMath::Abs((fParam->GetZLength(0)-TMath::Abs(seed->GetZ())))*fParam->GetDiffL()*fParam->GetDiffL(); // // Float_t padlength = fParam->GetPadPitchLength(seed->fSector); // Float_t padlength = GetPadPitchLength(row); // // // Float_t sresy = (seed->GetSector() < fParam->GetNSector()/2) ? 0.2 :0.3; // seed->SetCurrentSigmaY2(sd2+padlength*padlength*angulary/12.+sresy*sresy); // // // Float_t sresz = fParam->GetZSigma(); // seed->SetCurrentSigmaZ2(sd2+padlength*padlength*angularz*angularz*(1+angulary)/12.+sresz*sresz); /* Float_t wy = GetSigmaY(seed); Float_t wz = GetSigmaZ(seed); wy*=wy; wz*=wz; if (TMath::Abs(wy/seed->fCurrentSigmaY2-1)>0.0001 || TMath::Abs(wz/seed->fCurrentSigmaZ2-1)>0.0001 ){ printf("problem\n"); } */ } //__________________________________________________________________________ void AliTPCtrackerMI::CookLabel(AliKalmanTrack *tk, Float_t wrong) const { //-------------------------------------------------------------------- //This function "cooks" a track label. If label<0, this track is fake. //-------------------------------------------------------------------- AliTPCseed * t = dynamic_cast(tk); if(!t){ printf("%s:%d wrong type \n",(char*)__FILE__,__LINE__); return; } Int_t noc=t->GetNumberOfClusters(); if (noc<10){ //printf("\nnot founded prolongation\n\n\n"); //t->Dump(); return ; } Int_t lb[160]; Int_t mx[160]; AliTPCclusterMI *clusters[160]; // for (Int_t i=0;i<160;i++) { clusters[i]=0; lb[i]=mx[i]=0; } Int_t i; Int_t current=0; for (i=0; i<160 && currentGetClusterIndex2(i); if (index<=0) continue; if (index&0x8000) continue; // //clusters[current]=GetClusterMI(index); if (t->GetClusterPointer(i)){ clusters[current]=t->GetClusterPointer(i); current++; } } noc = current; Int_t lab=123456789; for (i=0; iGetLabel(0)); Int_t j; for (j=0; jmax) {max=mx[i]; lab=lb[i];} for (i=0; iGetLabel(1)) == lab || TMath::Abs(c->GetLabel(2)) == lab ) max++; } if ((1.- Float_t(max)/noc) > wrong) lab=-lab; else { Int_t tail=Int_t(0.10*noc); max=0; Int_t ind=0; for (i=1; i<=160&&indGetLabel(0)) || lab == TMath::Abs(c->GetLabel(1)) || lab == TMath::Abs(c->GetLabel(2))) max++; ind++; } if (max < Int_t(0.5*tail)) lab=-lab; } t->SetLabel(lab); // delete[] lb; //delete[] mx; //delete[] clusters; } //__________________________________________________________________________ Int_t AliTPCtrackerMI::CookLabel(AliTPCseed *t, Float_t wrong,Int_t first, Int_t last) const { //-------------------------------------------------------------------- //This function "cooks" a track label. If label<0, this track is fake. //-------------------------------------------------------------------- Int_t noc=t->GetNumberOfClusters(); if (noc<10){ //printf("\nnot founded prolongation\n\n\n"); //t->Dump(); return -1; } Int_t lb[160]; Int_t mx[160]; AliTPCclusterMI *clusters[160]; // for (Int_t i=0;i<160;i++) { clusters[i]=0; lb[i]=mx[i]=0; } Int_t i; Int_t current=0; for (i=0; i<160 && currentlast) continue; Int_t index=t->GetClusterIndex2(i); if (index<=0) continue; if (index&0x8000) continue; // //clusters[current]=GetClusterMI(index); if (t->GetClusterPointer(i)){ clusters[current]=t->GetClusterPointer(i); current++; } } noc = current; if (noc<5) return -1; Int_t lab=123456789; for (i=0; iGetLabel(0)); Int_t j; for (j=0; jmax) {max=mx[i]; lab=lb[i];} for (i=0; iGetLabel(1)) == lab || TMath::Abs(c->GetLabel(2)) == lab ) max++; } if ((1.- Float_t(max)/noc) > wrong) lab=-lab; else { Int_t tail=Int_t(0.10*noc); max=0; Int_t ind=0; for (i=1; i<=160&&indGetLabel(0)) || lab == TMath::Abs(c->GetLabel(1)) || lab == TMath::Abs(c->GetLabel(2))) max++; ind++; } if (max < Int_t(0.5*tail)) lab=-lab; } // t->SetLabel(lab); return lab; // delete[] lb; //delete[] mx; //delete[] clusters; } Int_t AliTPCtrackerMI::GetRowNumber(Double_t x[3]) const { //return pad row number for given x vector Float_t phi = TMath::ATan2(x[1],x[0]); if(phi<0) phi=2.*TMath::Pi()+phi; // Get the local angle in the sector philoc const Float_t kRaddeg = 180/3.14159265358979312; Float_t phiangle = (Int_t (phi*kRaddeg/20.) + 0.5)*20./kRaddeg; Double_t localx = x[0]*TMath::Cos(phiangle)-x[1]*TMath::Sin(phiangle); return GetRowNumber(localx); } void AliTPCtrackerMI::MakeBitmaps(AliTPCseed *t) { //----------------------------------------------------------------------- // Fill the cluster and sharing bitmaps of the track //----------------------------------------------------------------------- Int_t firstpoint = 0; Int_t lastpoint = 159; AliTPCTrackerPoint *point; for (int iter=firstpoint; iterGetTrackPoint(iter); if (point) { t->SetClusterMapBit(iter, kTRUE); if (point->IsShared()) t->SetSharedMapBit(iter,kTRUE); else t->SetSharedMapBit(iter, kFALSE); } else { t->SetClusterMapBit(iter, kFALSE); t->SetSharedMapBit(iter, kFALSE); } } } void AliTPCtrackerMI::AddCovariance(AliTPCseed * seed){ // // Adding systematic error // !!!! the systematic error for element 4 is in 1/cm not in pt const Double_t *param = AliTPCReconstructor::GetRecoParam()->GetSystematicError(); Double_t covar[15]; for (Int_t i=0;i<15;i++) covar[i]=0; // 0 // 1 2 // 3 4 5 // 6 7 8 9 // 10 11 12 13 14 covar[0] = param[0]*param[0]; covar[2] = param[1]*param[1]; covar[5] = param[2]*param[2]; covar[9] = param[3]*param[3]; Double_t facC = AliTracker::GetBz()*kB2C; covar[14]= param[4]*param[4]*facC*facC; seed->AddCovariance(covar); }