/* TPC DA for online calibration Contact: Haavard.Helstrup@cern.ch Link: Run Type: PEDESTAL DA Type: LDC Number of events needed: 100 Input Files: Output Files: tpcPedestal.root, to be exported to the DAQ FXS fileId: pedestals Trigger types used: CALIBRATION_EVENT */ /* TPCda_pedestal.cxx - calibration algorithm for TPC pedestal runs 10/06/2007 sylvain.chapeland@cern.ch : first version - clean skeleton based on DAQ DA case1 19/10/2007 christian.lippmann@cern.ch : Possibility to write output to ASCII file 24/10/2007 christian.lippmann@cern.ch : Including pedestal calibration for time bins 23/11/2007 christian.lippmann@cern.ch : Fix in order to avoid streamer problems in case of invalid ROOTSTYS. The famous magic line provided by Rene. 28/11/2007 christian.lippmann@cern.ch : TPC mapping file is read from DaqDetDB 18/09/2008 christian.lippmann@cern.ch : Noisy channels are output to ASCII file. Use max noise in ALTRO. 19/09/2008 J.Wiechula@gsi.de: Added export of the calibration data to the AMORE data base. Added support for configuration files. contact: marian.ivanov@cern.ch This process reads RAW data from the files provided as command line arguments and save results in a file (named from RESULT_FILE define - see below). */ #define RESULT_FILE "tpcPedestal.root" #define FILE_ID "pedestals" #define MAPPING_FILE "tpcMapping.root" #define CONFIG_FILE "TPCPEDESTALda.conf" #define AliDebugLevel() -1 extern "C" { #include } #include "event.h" #include "monitor.h" #include "stdio.h" #include "stdlib.h" #include // //Root includes // #include "TFile.h" #include "TArrayF.h" #include "TROOT.h" #include "TPluginManager.h" #include "TSystem.h" #include "TString.h" #include "TObjString.h" #include "TDatime.h" // //AliRoot includes // #include "AliRawReader.h" #include "AliRawReaderDate.h" #include "AliTPCmapper.h" #include "AliTPCRawStream.h" #include "AliTPCROC.h" #include "AliTPCCalROC.h" #include "AliTPCCalPad.h" #include "AliMathBase.h" #include "TTreeStream.h" #include "AliLog.h" #include "AliTPCConfigDA.h" // //AMORE // #include // // TPC calibration algorithm includes // #include "AliTPCCalibPedestal.h" /* Main routine, TPC pedestal detector algorithm to be run on TPC LDC Arguments: list of DATE raw data files */ int main(int argc, char **argv) { // // Main for TPC pedestal detector algorithm // /* log start of process */ printf("TPC DA started - %s\n",__FILE__); if (argc<2) { printf("Wrong number of arguments\n"); return -1; } AliLog::SetClassDebugLevel("AliTPCRawStream",-5); AliLog::SetClassDebugLevel("AliRawReaderDate",-5); AliLog::SetClassDebugLevel("AliTPCAltroMapping",-5); AliLog::SetModuleDebugLevel("RAW",-5); /* magic line */ gROOT->GetPluginManager()->AddHandler("TVirtualStreamerInfo", "*", "TStreamerInfo", "RIO", "TStreamerInfo()"); /* declare monitoring program */ int i, status; status=monitorDeclareMp( __FILE__ ); if (status!=0) { printf("monitorDeclareMp() failed : %s\n",monitorDecodeError(status)); return -1; } // variables AliTPCmapper *mapping = 0; // The TPC mapping char localfile[255]; unsigned long32 runNb=0; // run number // configuration options Bool_t timeAnalysis = kTRUE; Bool_t fastDecoding = kFALSE; if (!mapping){ /* copy locally the mapping file from daq detector config db */ sprintf(localfile,"./%s",MAPPING_FILE); status = daqDA_DB_getFile(MAPPING_FILE,localfile); if (status) { printf("Failed to get mapping file (%s) from DAQdetDB, status=%d\n", MAPPING_FILE, status); return -1; } /* open the mapping file and retrieve mapping object */ TFile *fileMapping = new TFile(MAPPING_FILE, "read"); mapping = (AliTPCmapper*) fileMapping->Get("tpcMapping"); delete fileMapping; } if (mapping == 0) { printf("Failed to get mapping object from %s. ...\n", MAPPING_FILE); return -1; } else { printf("Got mapping object from %s\n", MAPPING_FILE); } // // DA configuration from configuration file // // retrieve configuration file sprintf(localfile,"./%s",CONFIG_FILE); status = daqDA_DB_getFile(CONFIG_FILE,localfile); if (status) { printf("Failed to get configuration file (%s) from DAQdetDB, status=%d\n", CONFIG_FILE, status); return -1; } AliTPCConfigDA config(CONFIG_FILE); // check configuration if ( (Int_t)config.GetValue("NoTimeAnalysis") == 1 ) { printf("WARNING: Time analysis was switched off in the configuration file!\n"); timeAnalysis=kFALSE; } if ( (Int_t)config.GetValue("UseFastDecoder") == 1 ){ printf("Info: The fast decoder will be used for the processing.\n"); fastDecoding=kTRUE; } // create calibration object AliTPCCalibPedestal calibPedestal(config.GetConfigurationMap()); // pedestal and noise calibration calibPedestal.SetAltroMapping(mapping->GetAltroMapping()); // Use altro mapping we got from daqDetDb calibPedestal.SetTimeAnalysis(timeAnalysis); // pedestal(t) calibration //===========================// // loop over RAW data files // //==========================// int nevents=0; for ( i=1; ieventType != physicsEvent) && (event->eventType != calibrationEvent) ) continue; nevents++; // get the run number runNb = event->eventRunNb; // Pedestal calibration calibPedestal.ProcessEvent(event); /* free resources */ free(event); } } // // Analyse pedestals and write them to rootfile // calibPedestal.Analyse(); calibPedestal.AnalyseTime(nevents); printf ("%d physics/calibration events processed.\n",nevents); TFile *fileTPC = new TFile(RESULT_FILE, "recreate"); calibPedestal.Write("tpcCalibPedestal"); delete fileTPC; printf("Wrote %s.\n",RESULT_FILE); /* store the result file on FES */ status=daqDA_FES_storeFile(RESULT_FILE,FILE_ID); if (status) { status = -2; } // //Send objects to the AMORE DB // printf ("AMORE part\n"); const char *amoreDANameorig=gSystem->Getenv("AMORE_DA_NAME"); //cheet a little -- temporary solution (hopefully) // //currently amoreDA uses the environment variable AMORE_DA_NAME to create the mysql //table in which the calib objects are stored. This table is dropped each time AmoreDA //is initialised. This of course makes a problem if we would like to store different //calibration entries in the AMORE DB. Therefore in each DA which writes to the AMORE DB //the AMORE_DA_NAME env variable is overwritten. //find processed sector Char_t sideName='A'; Int_t sector = -1; for ( Int_t roc = 0; roc < 72; roc++ ) { if ( !calibPedestal.GetCalRocPedestal(roc) ) continue; if (mapping->GetSideFromRoc(roc)==1) sideName='C'; sector = mapping->GetSectorFromRoc(roc); } gSystem->Setenv("AMORE_DA_NAME",Form("TPC-%c%02d-%s",sideName,sector,FILE_ID)); // // end cheet if (sector>-1){ TDatime time; TObjString info(Form("Run: %u; Date: %s",runNb,time.AsSQLString())); amore::da::AmoreDA amoreDA(amore::da::AmoreDA::kSender); Int_t statusDA=0; statusDA+=amoreDA.Send("Pedestals",calibPedestal.GetCalPadPedestal()); statusDA+=amoreDA.Send("Noise",calibPedestal.GetCalPadRMS()); statusDA+=amoreDA.Send("Info",&info); if ( statusDA ) printf("Waring: Failed to write one of the calib objects to the AMORE database\n"); } else { printf("Waring: No data found!\n"); } // reset env var if (amoreDANameorig) gSystem->Setenv("AMORE_DA_NAME",amoreDANameorig); // // Now prepare ASCII files for local ALTRO configuration through DDL. // ofstream pedfile; ofstream noisefile; ofstream pedmemfile; ofstream noisychannelfile; char filename[255]; sprintf(filename,"tpcPedestals.data"); pedfile.open(filename); sprintf(filename,"tpcNoise.data"); noisefile.open(filename); sprintf(filename,"tpcPedestalMem.data"); pedmemfile.open(filename); sprintf(filename,"tpcNoisyChannels.data"); noisychannelfile.open(filename); TArrayF **timePed = calibPedestal.GetTimePedestals(); // pedestal values for each time bin Int_t ctr_channel = 0; Int_t ctr_altro = 0; Int_t ctr_pattern = 0; Int_t ctr_noisy = 0; pedfile << 10 << std::endl; // Mark file to contain PEDESTALS per channel noisefile << 11 << std::endl; // Mark file to contain NOISE per altro pedmemfile << 12 << std::endl; // Mark file to contain PEDESTALs per time bin noisychannelfile << 14 << std::endl; // Mark file to contain NOISY CHANNELS for ( Int_t roc = 0; roc < 72; roc++ ) { if ( !calibPedestal.GetCalRocPedestal(roc) ) continue; Int_t side = mapping->GetSideFromRoc(roc); Int_t sector = mapping->GetSectorFromRoc(roc); //printf("Analysing ROC %d (side %d, sector %d) ...\n", roc, side, sector); Int_t nru = mapping->IsIROC(roc) ? 2 : 4; for ( int rcu = 0; rcu < nru; rcu++ ) { Int_t patch = mapping->IsIROC(roc) ? rcu : rcu+2; for ( int branch = 0; branch < 2; branch++ ) { for ( int fec = 0; fec < mapping->GetNfec(patch, branch); fec++ ) { for ( int altro = 0; altro < 8; altro++ ) { Float_t rms = 0.; Float_t maxrms = 0.; Float_t ctr_altrochannel = 0.; for ( int channel = 0; channel < 16; channel++ ) { Int_t hwadd = mapping->CodeHWAddress(branch, fec, altro, channel); Int_t row = mapping->GetPadRow(patch, hwadd); // row in a ROC Int_t globalrow = mapping->GetGlobalPadRow(patch, hwadd); // row in full sector Int_t pad = mapping->GetPad(patch, hwadd); Float_t ped = calibPedestal.GetCalRocPedestal(roc)->GetValue(row,pad); // fixed pedestal pedfile << ctr_channel++ << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd << "\t" << ped << std::endl; // pedestal(t) if ( timePed && fabs(timePed[globalrow][pad].GetSum()) > 1e-10 ) { pedmemfile << ctr_pattern++ << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd; for ( Int_t timebin = 0; timebin < 1024; timebin++ ) pedmemfile << "\t" << timePed[globalrow][pad].At(timebin); pedmemfile << std::endl; } // rms=noise Float_t rms2 = calibPedestal.GetCalRocRMS(roc)->GetValue(row,pad); if ( fabs(ped) < 1.e-10 ) { // dead channel noisychannelfile << ctr_noisy++ << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd << "\t" << rms2 << std::endl; } else if ( (ped > 1.e-10) && (rms2 > 1.e-10) ) { // not dead // Find noisy channels if ( ((roc<36) && (rms2 > 2.0)) || // IROC ((roc>35) && (row<65) && (rms2 > 2.0)) || // OROC, small pads ((roc>35) && (row>64) && (rms2 > 3.0)) ) { // OROC, large pads (50% more signal) noisychannelfile << ctr_noisy++ << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd << "\t" << rms2 << std::endl; } else { // Not noisy. Get average and maximum noise in this ALTRO rms += rms2; ctr_altrochannel += 1.; if (rms2 > maxrms) maxrms = rms2; } // end if noisy } // end if some signal } // end channel for loop Int_t hwadd = mapping->CodeHWAddress(branch, fec, altro, 0); // ALTRO address // Noise data (rms) averaged over all channels in this ALTRO. if ( ctr_altrochannel > 1.e-10 ) { /* // average noise of this ALTRO (excluding high-noise channels) noisefile << ctr_altro << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd << "\t" << rms/ctr_altrochannel << std::endl; */ // maximum noise of this ALTRO (excluding high-noise channels) noisefile << ctr_altro << "\t" << side << "\t" << sector << "\t" << patch << "\t" << hwadd << "\t" << maxrms << std::endl; ctr_altro++; } } // end altro for loop } // end fec for loop } // end branch for loop } // end rcu for loop } // end roc loop pedfile.close(); noisefile.close(); pedmemfile.close(); noisychannelfile.close(); printf("Wrote ASCII files. Found %d noisy channels.\n", ctr_noisy); return status; }