
TPC calibration strategy

Several different frameworks will be involved in the TPC calibration, includ-
ing DAQ, HLT, DCS and Offline. Several components inside these frame-
works will be involved, among them Detector Algorithms (DA), automatic
quality control (AMORE), Offline Calibration Data Base (OCDB). All cal-
ibrations will be based on common calibration classes, which are discussed
below. These classes are common for all frameworks. Root files containing
these classes are transported between frameworks according to the agreed
protocols.

1 TPC Calibration classes

1.1 Calibration tasks:

1. Pedestal and noise calibration.

a. Pedestal per time bin and pad

b. Pedestal per pad

Electronic calibration

c. Electronics gain calibration (pulser)

d. Time 0 calibration - Electronic calibration (pulser/data)

e. Time response function width (pulser/data)

2. Gain calibration

a. Krypton gain calibration

b. Gain calibration using cosmic (parameterization)

c. Gain calibration using laser - central electrode plane (pad- by-pad
fluctuation)

d. Attenuation loss (cosmic)

3. Drift velocity calibration. -in relation with 3 c

a. Laser system - tracks +CE signals (local drift velocity parameter-
ization)

4. DCS values in OCDB.

a. Corrections(p, T)

1

b. Goofy (drift velocity, attenuation loss)

c. Temperature map.

5. Space point resolution parameterization and cluster shape parameteri-
zation

6. Space point correction

a. E distortions (laser) algorithm to be defined.

b. ExB (B map + laser) algorithm to be defined.

c. Drift velocity map - parameterization algorithm to be defined.

7. Data quality monitoring based on calibration parameters -strongly re-
lated with points (1-6)

a. Noise calibration - Detection of outliers (alarms), FFT spectra for
outliers

b. Electronic gain calibration - Detection of outliers (alarms)

c. Time 0 calibration - Detection of outliers (alarms)

d. Gain calibration using cosmic - Detection of outliers (alarms)

e. Space point resolution parameterization and cluster shape pa-
rameterization - Pulls for sectors, pad-rows, detection of outliers
(alarms)

8. Central electrode plane (Unisochronity correction)

9. Ion tail characteristics and optimization of filter parameters (laser, cos-
mic)

10. Alignment

a. TPC internal alignment -once per year.

b. TPC global alignment -every magnetic field change.

1.2 Data base entries

Existing:

1. Pedestals

2. PadNoise

2

3. PadTime0

4. PadGainFactor

5. Parameters - Currently hardwired numbers - drift velocity, sampling
frequency

6. Temperature

7. Pressure

To be added:

8. ALTRO parameters (Frequency, acquisition window, moving average(on/off),
zero suppression (on/off), Tail cancellation (on/off)

9. Drift velocity (Time Stamp), Attenuation loss (TimeStamp)

10. Alignment

11. Laser tracks

1.3 Calibration entries

TPC calibration information will be generated by calibration classes running
in DAQ and HLT Detector Algorithms. Each calibration class might gener-
ate several calibration objects, as outlined in figure 1 and table 1. Once all
calibration objects are available, final calibration entries might be calculated
based on the initial entries, as outlined in figure 2 and table 2. Calibra-
tion objects are generated in Detector Algorithms. Collection of calibrations
and generation of final calibration entries will be performed by the shuttle
preprocessor.

3

Figure 1: Preprocessor reference data

All calibration entries will be generated by calibration classes. A given
calibration class may generate several calibration objects, see details in the
table below. The naming convention of the calibration classes is AliTPCCal-
ibXXX, where XXX gives the calibration task in question (Pedestal, Pulser,
CE, Tracks, LaserTracks etc.) The calibration objects are correspondingly
named tpccalibXXX.

2 Calibration procedure

All calibrations are calculated based on measured data using the standard
TPC readout chain. Pedestals and noise are generated using special ”black”
triggers, where a signal is generated in all readout pads. Such triggers
are collected in special runs, identified by RunType == PEDESTAL. The
pedestal/noise values are not expected to change during a physics run. The
maximum frequency of pedestal runs is one such run before each physics
run, once experience on the stability of the pedestal/noise measurements is
obtained, it may be decided to reduce this frequency.

Pulser triggers are used to measure the performance of the readout elec-
tronics. A special pulse is given to the gating grid, causing readout from all
pads. The performance of the electronics is not expected to change during
the physics run, and pulser triggers are also taken in special runs, identified
by RunType == PULSER.

The drift velocity of the TPC is monitored by measuring signals generated
by laser pulses at the Central Electrode (CE). The drift velocity depends

4

on environmental parameters (temperature, pressure etc.) and may change
during the physics run. The laser triggers are therefore produced at fixed
intervals during the physics run, identified as a LASER EVENT in the trigger
mask.

5

T
ab

le
1:

P
rep

ro
cessor

referen
ce

d
ata

Calibration class System Reference data OCDB entry
AliTPCCalibXXX name size names size
Pedestal DAQ, HLT tpcCalibPedestal 107.5 MB pedestalMean 2.2 MB

pedestalRMS 2.2 MB
Pulser DAQ tpcCalibPulser 538.2 MB pulserTmean 2.2 MB

pulserTrms 2.2 MB
pulserQmean 2.2 MB

CE DAQ tpcCalibCE 538.2 MB CETmean 2.2 MB
CETrms 2.2 MB
CEQmean 2.2 MB

Tracks HLT, Offline tpcCalibTracks ?? ClusterParam small
tpcCalibTracksGain ?? PadGainFactor

ClusterParam
tpcCalibTracksAlign ?? TPCAlignment

LaserTracks HLT, Offline tpcCalibLaserTracks ?? TPCAlignment small
PIDV0 Offline tpcCalibPIDV0 ?? ?? small
DCS Temperature 200 kB

Pressure 1 kB
GasComposition 1 kB
Voltages

6

2.1 OCDB Calibration entries

Based on the calibration objects described above, final OCDB calibration
entries will be generated by the TPC Shuttle preprocessor. The OCDB
calibration entries will be used to correct TPC raw data for offline processing.

The Pedestal and PadNoise entries will be regnerated each calibration
run, based on data from the AliTPCCalibPedestal calibration object. The
PadTime0 entry will extract data both from AliTPCCalibPulser and Al-
iTPCCalibCE. The combined entry will be regenerated during physics run
(AliTPCCalibCE), and will use information from the previous pulser run, as
available in the OCDB.

The PadGainFactor calibration will require several iterations, and will
be carried out by a standalone calibration procedure, not being part of the
DA/Shuttle framework. The resulting calibration entry will be valid for a
long time frame, and the produced data base entry will be available for the
quasi-online reconstruction.

Table 2: Final OCDB entries
OCDB entry size Reference data

name size
Pedestal 2.2 MB PedestalMean (AliTPCCalPad) 2.2 MB
PadNoise 2.2 MB PedestalRMS (AliTPCCalPad) 2.2 MB
PadTime0 2.2 MB PulserTmean (AliTPCCalPad) 2.2 MB

CETmean (AliTPCCalPad) 2.2 MB
PadGainFactor PulserQmean (AliTPCCalPad) 2.2 MB

CEQmean (AliTPCCalPad) 2.2 MB
TracksGain (AliTPCCalPad) 2.2 MB

DriftVelocity ?? CETmean (AliTPCCalPad or TObjArray)
Attenuation ??
Parameters
Temperature 200 kB DCS (AliSplineFit)
GasComposition DCS (AliSplineFit)
HighVoltage DCS (AliSplineFit)

7

Figure 2: Final calibration data

3 Calibration in the AMORE framework

3.1 General overview

Calibration will run in DAQ and HLT Detector Algorithms. Each of these
will produce a series of calibration classes. The calibration classes will con-
tain functionality to produce histograms, trees and time-dependent graphs
to be fed into AMORE. In general histograms will be used for the automatic
monitoring, and trees will provide input for interactive expert monitoring.
Both histograms and trees will be wrapped in monitoring objects1 before
being submitted to AMORE.

The AMORE framework will take care of collecting subtrees from various
DAs to produce a full tree for the expert monitoring. It will be decided later
whether this collection will take place continuosly or only when triggered
by a request from the Expert monitor. Reference trees and the most recent

1Encapsulating calibration objects originating from the HLT DAs generates problem-
atic dependencies in the current setup. It will be necessary to find a scheme to communi-
cate the relevant objects with a minimum of induced overhead, for instance by including
lightweight classes to generate these objects in AliRoot STEER.

8

tree will be available at any time, but previous trees will normally not be
stored. It might be of interest to allow AMORE alarms to trigger storage of
the current tree to some intermediate storage. The data flow to AMORE is
illustrated in the figure 3.

3.2 Histograms

We plan to generate 7 sets of histograms, for pedestals, noise, gain, t0, width,
gain with Central Electrode and drift velocity from Central Electrode signal.
Each of these signals will be histogrammed sector by sector (each sector is
divided in two read-out chambers, so altogether this makes 72 2-dimensional
histograms). For each signal there will be three set of histograms: pad-by-
pad histograms (2-dim), 1-dim histograms of values (mean value, median,
LTM, fraction of outliers) and 2-dim profile histograms (mean value per pad
row), altogether 2*72*7 2-dimensional histograms and 4*72*7 1-dimensional
histograms. These histograms should be automatically monitored/compared
to reference histograms, and ”status” or ”quality” histograms could be gen-
erated based on these comparisons.

We would also like to monitor the phase of each readout partition, i.e. one
histogram per event with 216 bins corresponding to the readout partitions.
Other variables to be monitored are the drift velocity and gain parameters as
function of time. Here we will have 72 (chambers)x3(fit parameters)x2(drift,
gain) graphs value versus time.

All histograms can be generated from TPC calibration classes (AliTPC-
CalPad). To get Median, LTM , Mean, RMS, outliers list, we have function-
ality inside TPC calibration classes. Selected histograms will be accumulated
as histograms of differences with respect to reference trees.

In addition to this we will have histograms based on cluster and track
information. These histograms will be generated by the HLT, and submitted
to DAQ through the HLT/DAQ interface (HLT appears as a ”subdetector”
in DAQ).

3.3 Expert monitor

The expert monitor will read full trees to be collected in AMORE, based on
subtrees generated by the calibration classes obtained from DAQ and HLT
DAs. The expert monitor will give interactive access to the full calibration
information to allow for efficient detector problem resolution.

9

3.4 Histogram sizes

The size of 2D histograms is on the level of 2 MBy per TPC side. 7x2 MBy
14 MBy. The size of other histograms is negligible in comparison with this
one. Total size will be around 20MBy. If we want to compare results with
reference histograms we should multiply it by 2 40 MBy.

3.5 Refresh frequency

Entries for the calibration histograms should be generated whenever a laser
trigger or a calibration pulse trigger occurs. The frequency of these triggers
have not yet been decided, but they will not exceed 1 Hz and 0.01 Hz re-
spectively. Depending on the signal, 10-100 such triggers are necessary to
obtain a reliable histogram which could be compared to reference histograms.
Comparison should happen continuously once these numbers of calibration
triggers are reached. This would lead to the following maximum repetition
times: gain, t0, width: 0.001Hz. Pedestal and noise information will be
collected from special triggers taken at the beginning and the end of each
run. At the periods these triggers are activated, they will occur with a fre-
quency of 0.1 Hz. Comparison to reference histograms will be made at each
end-of-run.

The parameters drift velocity and gain will be calculated from special
laser triggers, with a frequency of about 0.01 Hz. These calibrations will be
handled by HLT. The drift velocity calibration might be updated for each
such trigger, whereas the gain calibration will be updated when about 1000
tracks are recorded (which will correspond to several times per run).

3.6 Time dependence

Graphs will be generated containing amplitude vs. time, drift velocity vs.
time. These will be based on pedestal/noise measurements done at the end
of each run. We will also record baseline and noise vs. time.

3.7 Global events

We need access to global events to monitor drift velocity and gain using CE.
We assume that the signal coming from the CE and readout by the different
readout partitions (RCUs) is synchronous with either the sampling clock or
the 40 Mhz clock. In the latter case, we need to know the phase of the
trigger with respect to the sampling clock. Other calibrations can be done
patch by patch, i.e. on the LDCs. Calibration tasks run on HLT will need

10

access to ITS and TRD information, but this communication will be handled
internally in the HLT system.

3.8 Event reconstruction

All calibration tasks that need access to reconstruction will be performed by
the HLT, and use HLT reconstruction.

3.9 External access

We need access to reference histograms and trees. We will also need access
to temperature and pressure graphs from DCS. These graphs will be accu-
mulated using HLT, and will be forwarded to AMORE as part of the HLT
calibration classes.

3.10 Critical errors

Discovery of wrong phase, intensity of laser below fixed limit, missing patch-
es/sectors would severely affect the quality of the data, and should trigger
alarms.

11

Figure 3: AMORE calibration flow for the TPC

4 Quality assurance

Data quality monitoring is based on monitoring of statistical properties of the
data. A big fraction of the properties to be monitored are extracted during

12

the calibration procedure. The QA procedure will evolve in time together
with the further development and tuning of the calibration algorithm.

We consider two modes of the QA algorithms:

• Tuning phase (mainly expert mode)

• Standard operation

The expert mode of QA will be particularly important during the com-
missioning phase of ALICE. The main additional functionality implemented
in the expert mode is the possibility to generate statistical graphs using cor-
relation with other variables and make custom selections. These will help us
to better understand the processes in the detector, and make the transition
to the standard operational mode faster.

4.1 Tuning phase

Detect the problems. Define, what is the problem
What do we expect? Defined in the TPC TDR and in the PPR on the

basis of simulation How far we are from the expectation? Modify expectation.
Until which point the information from the detector is reasonable? Define

the limits of working conditions. Up to which point the physics performance
will not be influenced. What impact the observed imperfection could make
on physics performance.

In the following we put focus on these topics.

4.1.1 Quality assurance - pedestal and noise

According to the TPC TDR the electronic noise of Alice TPC was designed
to be on the level of 1000 e, which correspond to 1 ADC channel (TPC TDR).
The most probable signal to noise ratio was about 20 in inner chambers and
∼ 30 in the outer chambers. In such a set-up the space resolution and the
dEdx resolution is determined by other stochastic processes like diffusion
and angular effects. E.g for space resolution the diffusion component is of
the order of ∼ 0.7 mm while the noise component ∼ 0.2 mm. The spatial
resolution can be affected by lowering the gain or increasing the noise level.
E.g increasing the noise by factor of 3, the mean space resolution will be
worsened by a factor ∼ 15%.

The requirements for pedestal knowledge are determined mainly by dEdx
measurement. The relative dEdx resolution in the Alice TPC is on the level of
5%. In order to know the pedestal on the level of 1 % of the most probable
signal (10-20 ADC channel), the required precision and stability of the

13

pedestal should be on level of 0.1 ADC. The pedestal and noise will be
measured before each physics run. The experience from TPC tests in 2006
indicates that such a frequency is sufficient.

noise(ADC) 2 3 4
space resolution worsening factor 1.05 1.15 1.3

The TPC test in 2006 showed that the mean observed noise in the TPC is
even better than the original requirement (∼ 0.7 ADC in IROC). Problems
were encountered at the edges of the chambers, which are more sensitive to
noise induction. As a consequence the noise can be much higher at the edges
and the noise distribution can be highly non-Gaussian. Therefore, some
robust statistic should be used for its estimation.

Input data:

• TPC raw data without zero suppression preprocessed by the calibration
algorithm AliTPCCalibPedestal.

• AliTPCCalibPedestal produce the noise and pedestal maps.

• The noise maps (AliTPCCalPad) - current and reference.

• The pedestal maps (AliTPCCalPad) - current and reference.

Histograms and graphs to be monitored:

• Noise and pedestal distribution for each sector.

• Cumulative noise distribution.

• Distribution of the differences between pedestal and noise from refer-
ence runs.

• The median of the noise distribution as a function of sector

• The median of the noise distribution as a function of time

All these can be generated by AliTPCCalPad. Moreover in the expert
mode using the trees, selections can be be made applying user defined cuts .

Observables to be checked:

• Mean and median of the noise distribution - Alarms on median

• The fraction - p0 of ”non usable” channels - The noise bigger than a
threshold th0 (e.g 4 ADC)

• The fraction - p1 of ”suspicious” channels - The noise bigger than a
threshold th1 (e.g 2 ADC)

14

4.1.2 Quality assurance - not responding channels

The Alice TPC consists of 159 pad rows. Signals from these pad rows are used
in order to extract the properties of the tracks. The resolution of the variables
are scaling as square root of the number of used measurement points. By
simple scaling, the absence of 10 % of the channels lead to 5 % deterioration
of the performance.

There are following reasons:

• Electronic problems. (e.g missing contacts)

• Single event upset.

• Data corruption during data readout.

The fraction and maps due to the latter two reasons can change on a time
scale smaller than one run.

Otherwise we consider changes on the run level. The special pulser will
be used to generate the dead map channel maps.

To eliminate or reduce the fraction of not responding channels due to data
corruption, the decoding algorithm should be made robust enough, and min-
imal amount of channels (digits) should be skipped in case of the detection
of data corruption.

Missing channels due to the single event upset should be on negligible
level (much below % level)

The results for the TPC test 2006 indicates the amount of the dead - not
responding - channels on the level below 1 per mile.

To produce the dead channel map the output of the pulser calibration
can (will) be used (AliTPCCalibPulser).

Input data:

• Raw data sets with pulser ==> AliTPCCalibPulser

• The amplitude maps (AliTPCCalPads)

• The time maps (AliTPCCalPads)

The typical dispersion of the electronics gain is on the percent level.
Results from the TPC test in 2006 show some fraction of the outliers with
significantly higher response. Such outliers are grouped close to the pulser
connectors. There were no observation of outliers in other directions, except
of the pads not responding at all.

Histograms and graphs to be monitored:

• The amplitude distribution for each chamber and each pad geometry.

15

• Graphs of the median of the amplitude distribution.

Observables to be checked:

• The fraction of the pads with signal below p1 ratio of the median (for
given pad type).

16

5 Description of the calibration classes

In this chapter the working principles of the three calibration classes “Al-
iTPCCalibPedestal”, “AliTPCCalibPulser” and “AliTPCCalibCE” will be
explained in detail. After an introduction about the commonalities of the
classes (interface, work flow), each algorithm will be on its own.

5.1 Common introduction

The general idea of the calibration classes is to process and analyse raw data.
The algorithms are supposed to run in different environments, such as in the
offline reconstrution, the high level trigger or in the data acquisition system.
To guarantee flexibility in the data processing, several methods are available
calling each other in a hirachical order. For the decoding of the raw data
two different algorithms are available which led to two branches of process-
ing functions. The relavent functions are called ProcessEvent[Fast] taking
as an input either the DATE eventHeaderStruct an AliRawReader ob-
ject or an AliTPCRawStream[Fast] object. The function which does the
actual processing of the data is called Upate and takes as arguments the
sector, pad row, pad, time bin and adc signal. All this is summariesed in fig.
4.

ProcessEvent(eventHeaderStruct *event)

ProcessEvent(AliRawReader *rawReader)

ProcessEvent(AliTPCRawStream *rawStream)

ProcessEventFast(AliRawReader *rawReader)

ProcessEventFast(AliTPCRawStreamFast
*rawStream)

Update(const Int_t isector, const Int_t iRow, const Int_t iPad,
 const Int_t iTimeBin, const Float_t signal)

Figure 4: Hirachy of the event processing functions of the calibration algo-
rithms.

The calibration data is stored in reference histograms, filled in the Up-
date function, functions called inside, and the EndEvent function. For
each readout chamber and calibration variable XXX one reference histogram

17

is created. These are two dimensional having on the y-axis the channel num-
ber within the ROC and on the x-axis the distribution of the calibration
variable. Setters exist to adjust the range and number of bins. An example
of a reference histogram can be found in fig. ??.

Inside the calibration class the reference histograms are stored in TO-

bjArrays, one for each variable keeping the 72 histograms for the ROCs.
The arrays are called fHistoXXXArray and can be retrieved with the get-
ter function GetHistoXXX(Int t sector, Bool t force=kFALSE). To allocate
memory only if needed, the histograms are created the first time the getter
is called and the force flag is set to kTRUE.

ADC channel
10 20 30 40 50 60 70 80 90 100

Ch
an

ne
l (

pa
d)

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

Figure 5: Example of a reference histogram. Displayed are the electronic
baseline distributions for all pads of one IROC.

For the Pulser and CE calibration after each event the EndEvent func-
tion has to called, doing some post processing, the filling of a part of the
reference histograms and calculation of data stored event by event (see de-
scription below).

After the desired statistics has been accumulated the actual calibration
values pad by pad are calculated by calling the Analyse function. To store
the data a special class AliTPCCalROC is used keeping all values for one
readout chamber. As in case of the reference histograms, the AliTPCCal-
ROC objects are only created upon request, by using the getter function
GetCalRocXXX(Int t sector, Bool t force=kFALSE) with the force flag
set to kTRUE. The objects are also stored in TObjArrays which are called
fCalRocArrayXXX. A pointer the complete arrays is provided by the Get-
CalPadXXX() functions.

18

To save the calibration data the function DumpToFile is available, tak-
ing as arguments the filename and optional a directory name to which it
should be stored in the file and if the file should be updated instead of over-
written.

The process flow described above is summarised in fig. 6

Analyse()

DumpToFile(...)

External Event Loop

ProcessEvent(...)

EndEvent()

Update(...)

Figure 6: Process flow of the calibration algorithms.

5.2 Pedestal calibration class

5.2.1 Signal filling [Update(. . .)]

The Update function fills the reference histograms with the ADC values
of all time bins in the selected range (fFirstTimeBin, fLastTimeBin) with
standard values (60, 1000). The range can be specified by the setter func-
tion SetRangeTime(Int t tMin, Int t tMax). If requested by SetTime-
Analysis(Bool t time = kTRUE), pedestal values for each time bin will be
calculated. This information can be used to fill the pattern memory of the
ALTRO in order to perform a timebin by timebin baseline subsection.

5.2.2 Calibration value calculation [Analyse()]

Calling the Analyse() routine calculates the pedestal and noise values for
each channel by fitting a gaus function on the distribution. In addition a

19

second approach is used calculating the mean and corresponding RMS. If
desired a truncation range can be set using the SetAnalysisTruncation-
Range(Float t down, Float t up) function, where down and up mark the
range as a fraction of the data: e.g. (0.05,0.9) would exclude the lower 5%
and upper 10%.

5.2.3 Stored calibration values

The available calibration values calculated in the pedestal calibration class,
a description as well as the corresponding getter functions are summariesed
in table 3

Cal. value description getter (AliTPCCalROC*) getter (TObjArray*)

Pedestal pedestal value
(mean of a gaus fit)

GetCalRocPedestal(sector) GetCalPadPedestal()

Sigma noise value
(sigma of a gaus fit)

GetCalRocSigma(sector) GetCalPadSigma()

Mean pedestal value
(mean of the distri-
bution)

GetCalRocMean(sector) GetCalPadMean()

RMS noise value
(rms of the distribu-
tion)

GetCalRocRMS(sector) GetCalPadRMS()

Table 3: Calibration values

5.3 Pulser calibration class

5.3.1 Signal filling [Update(. . .)]

In the Upate(. . .) function of the Pulser Calibration class an array (fPadSig-
nal) is filled with the ADC signal information for each timebin of the cur-
rently processed channel (pad). In addition the maximum ADC value and
corresponding timebin is stored (fMaxPadSignal, fMaxTimeBin). Only the
selected time range (fFirstTimeBin, fLastTimeBin) is taken into account.
The range can be set by calling SetRangeTime(Int t firstTimeBin, Int t
lastTimeBin). Before proceeding with the next channel, the ProcessPad()
function is called, which analyses the information currently stored in fPadSig-
nal.

5.3.2 Channel information processing [ProcessPad()]

As a first step the pedestal and noise values for the current pad are queried
(FindPedestal()). Therefore either previouly measured data can be used

20

(SetPedestalDatabase(AliTPCCalPad *pedestalTPC, AliTPCCalPad *pad-
NoiseTPC)) or if not set the pedestal and noise will be calculated. This is
done by calculating the truncated mean and RMS within a range of ±10ADC
channels around the median of the signal distribution stored in fPadSignal.

In the second step the properties of the pulser signal are calculated (Find-
PulserSignal(. . .)). For the analysis it is assumed that there is only one
signal which spreads over a range of minus two to plus seven timebins around
fMaxTimeBin. After the pedestal substraction the signal sum, mean and
RMS are calculated in this range. If the signal sum is below a threshold of 8
times the pad noise (minimum noise set to 1 ADC count), all values are set
to zero.

As a third step the reference histograms for the charge (signal sum) and
signal width information are filled. The time position (signal mean) is stored
in an array for later processing (see below).

5.3.3 Event information processing [EndEvent()]

The EndEvent() function loops over all readout chambers and filles the time
information into the reference histograms. Stored is the deviation from the
mean of the time signals in the currently processed ROC.

5.3.4 Calibration value calculation [Analyse()]

In the Analyse() function the final calibration values are calculated as the
mean of the distributions stored in the reference histograms. The information
is finally stored in AliTPCCalROC objects.

5.3.5 Stored calibration values

The available calibration values calculated in the pulser calibration class, a
description as well as the corresponding getter functions are summariesed in
table 4

Calib. value description getter (AliTPCCalROC*) getter (TObjArray*)

T0 time position (rel-
ative to chamber
mean)

GetCalRocT0(sector) GetCalPadT0()

Q signal sum GetCalRocQ(sector) GetCalPadQ()
RMS signal width GetCalRocRMS(sector) GetCalPadRMS()

Table 4: Calibration values in the pulser calibration class

21

5.4 Central electrode signal calibration class

5.4.1 Signal filling [Update(. . .)]

Before calling either the ProcessEvent(. . .) or the Update(. . .) func-
tion, SetEventInfo(Double t runNumber, Double t timestamp, Double t
eventId) should be called for each event to be able to display some of the
stored calibration values as one a function of on of these information. The
Update(. . .) function itself is exactly the same as described above in the
Calibration Pulser section (5.3.1).

5.4.2 Channel information processing [ProcessPad()]

The first step is getting the pedestal and noise values (see 5.3.1).
In the second step local maxima are searched in the pad signal (Find-

LocalMaxima(. . .). For each chamber a histogram is filled with this infor-
mation. To be accepted as a local maximum the signal has to be five times
larger than the pad noise and needs 2(3) preceding (succeeding) timebins
with a falling signal height. Maxima are expected to arise from the laser
rays, photoelectrons from the central electrode, but also periodic post peaks
following the CE signal have been observed. The largest fraction however
arising from the CE. In the EndEvent() function for each ROC the time
position of the maximum of the local maxima distribution will be calculated,
identified with the time position of the central electrode and stored event by
event in an array (fTMeanArrayEvent).

If no event has been processed yet in this run no further processing on
the pad signal will be done. The reason is that no position information of
the central electrode signal is available at that point.

The third step is the analysis of the central electrode signal (FindCES-
ignal(. . .)). To decide which of the local maxima found before represents the
CE signal, the distance to the identified position of the previous event (see
end of second step) is calculated. The maximum with the smallest distance
is used. Signal sum, mean and RMS are calculated in a range of -4 to +7
timebins around the maximum. If the signal sum is smaller than eight times
the pad noise, all values will be set to zero.

The fourth step filling of the signal sum and width histograms, as well as
filling a temporary array with the time (signal mean) information.

5.4.3 Event information processing [EndEvent()]

In the beginning of the function the mean drift time for each readout side is
calculated.

22

Next it is looped over all sectors for which information are available. If
the local maxima distribution histogram has less entries than 2/3 of the
number of channels of the ROC, it will be skipped. This is the reason if the
calibration algorithm is run on data which has no laser events.

As already described above the maximum position of the local maxima
distribution is calculated. For this purpose the truncated mean within a
range of ±4 timebins around the median of the distribution is used.

To monitor the stability of the laser, the mean charge (signal sum) is
calculated for each ROC and stored event by event.

In a loop over all channels the time reference histograms are filled with the
difference of the pad time signal to the mean arrival time of the corresponding
readout side, calculated above. This approach is used to accumulate statistics
over a long time range in which the drift velocity might change. Non time
dependend and time dependend effects are such hoped to be decoupled to a
large extent. In addition a temporary AliTPCCalROC object is filled with
the time inforation.

The AliTPCCalROC object is used to perform a linear as well as parabolic
2D fit to the data. This information is stored event by event and can be used
to study non uniform changes in the drift velocity.

5.4.4 Calibration value calculation [Analyse()]

In the Analyse() function the final calibration values are calculated as the
mean of the distributions stored in the reference histograms. The information
is finally stored in AliTPCCalROC objects.

5.4.5 Stored calibration values

The available calibration values calculated in the pulser calibration class, a
description as well as the corresponding getter functions are summariesed in
table 5

Calib. value description getter (AliTPCCalROC*) getter (TObjArray*)

T0 time position (rela-
tive to the readout
side)

GetCalRocT0(sector) GetCalPadT0()

Q signal sum GetCalRocQ(sector) GetCalPadQ()
RMS signal width GetCalRocRMS(sector) GetCalPadRMS()

Table 5: Calibration values in the central electrode calibration class

As described above additional data is stored event by event for each
chamber. Table 6 summarieses the information, gives a short description

23

and shows the getter function.

type of information getter description

results of a plane fit GetParamArrayPol1(sector) returns a TObjArray of
TVectorD objects, one
entry per event

results of 2D parabolic fit GetParamArrayPol2(sector) returns a TObjArray of
TVectorD objects, one
entry per event

mean arrival time GetTMeanEvents(sector) returns an array of floats
(TVectorF), one entry per
event

mean signal sum GetQMeanEvents(sector) returns an array of floats
(TVectorF), one entry per
event

Table 6: Event by event information stored for each chamber in the central
electrode calibration class

5.5 Using the Calibration Classes

Listing 1 shows an example how to loop over one root raw data file to fill one
of the calibration classes for either Pedestal and Noise calibration, analysing
data taken with the Calibration Pulser or retrieving information from the
Central Electrode signal acquired from events using the TPC laser system.

The code shows a ROOT macro that is supposed to be executed from the
commandline prompt in the ALICE offline analysis framework AliRoot. In
the example XXX has to be replaced bei one of Pedestal, Pulser or CE.

Examples of how to load the macro and execute it is shown in listing 2 for
the case of a pedestal run and 3 in case of a pulser or laser run. The listings
also demonstrate the possibility of displaying the stored calibration data
using the AliTPCCalPad class. For more information see the documentation
in the class code.

AliTPCCalibXXX* fillCalibObject(const Char_t *filename){

AliTPCCalibXXX * calibObject = new AliTPCCalibXXX;

AliRawReader *rawReader = new AliRawReaderRoot(filename);

if (! rawReader) return 0x0;

5 rawReader ->RewindEvents();

//loop over all events

while (rawReader ->NextEvent())

events = calibObject ->ProcessEvent(rawReader);

10 //Analyse accumulated data

calibObject ->Analyse();

24

//Write Calibration class to file

calibObject ->DumpToFile("CalibXXXDataFile.root");

//return the Calibration Object

15 return calibObject;

}

Listing 1: fillCalibObject.C

root [1] .L fillCalibObject.C

root [2] AliTPCCalibPedestal *calib=fillCalibObject("path/to/file.root")

root [3] Int_t i

root [4] for (i=0;i<72;i++) if (calib ->GetHistoPedestal(i)) cout << i<<endl;

root [5] //assume sector 0 is filled , show its RMS reference histogram

root [6] calib ->GetHistoPedestal(0)->SetEntries(1)

root [7] calib ->GetHistoPedestal(0)->Draw("colz")

root [8] //Unsing the AliTPCCalPad class

root [9] AliTPCCalPad pedestal(calib ->GetCalPadPedestal())

root [10] pedestal ->MakeHisto2D()->Draw("colz"); //A-Side pedestals

root [11] pedestal ->MakeHisto2D(1)->Draw("colz"); //C-Side pedestals

root [12] AliTPCCalPad noise(calib ->GetCalPadRMS())

root [13] noise ->MakeHisto2D()->Draw("colz"); //A-Side noise

root [14] noise ->MakeHisto2D(1)->Draw("colz"); //C-Side noise

root [15] //display single chamber (0)

root [16] pedestal ->GetCalROC(0)->MakeHisto2D()->Draw("colz")

Listing 2: commandsPedestal.cint

root [1] .L fillCalibObject.C

root [2] AliTPCCalibPulser *calib=fillCalibObject("path/to/file.root")

root [3] //or

root [4] AliTPCCalibCE *calib=fillCalibObject("path/to/file.root")

root [5] Int_t i

root [6] for (i=0;i<72;i++) if (calib ->GetHistoT0(i)) cout << i<<endl;

root [7] //assume sector 0 is filled , show its RMS reference histogram

root [8] calib ->GetHistoT0(0)->SetEntries(1)

root [9] calib ->GetHistoT0(0)->Draw("colz")

root [10] //Unsing the AliTPCCalPad class

root [11] AliTPCCalPad t0(calib ->GetCalPadT0())

root [12] t0->MakeHisto2D()->Draw("colz"); //A-Side time arrival

root [13] t0->MakeHisto2D(1)->Draw("colz"); //C-Side time arrival

root [14] AliTPCCalPad q(calib ->GetCalPadQ())

root [15] q->MakeHisto2D()->Draw("colz"); //A-Side signal sum

root [16] q->MakeHisto2D(1)->Draw("colz"); //C-Side signal sum

root [17] //display single chamber (0)

root [18] t0->GetCalROC(0)->MakeHisto2D()->Draw("colz")

Listing 3: commandsPulserCE.cint

25

6 HTML Documentation

AliTPCCalibPedestal
http://aliceinfo.cern.ch/static/aliroot-new/html/roothtml/AliTPCCalibPedestal.html

AliTPCCalibPulser
http://aliceinfo.cern.ch/static/aliroot-new/html/roothtml/AliTPCCalibPulser.html

AliTPCCalibCE
http://aliceinfo.cern.ch/static/aliroot-new/html/roothtml/AliTPCCalibCE.html

26

