/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Class providing the calibration parameters by accessing the CDB // // // // Request an instance with AliTRDcalibDB::Instance() // // If a new event is processed set the event number with SetRun // // Then request the calibration data // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include "AliTRDcalibDB.h" #include "AliTRDgeometry.h" #include "AliTRDpadPlane.h" #include "AliTRDCommonParam.h" #include "Cal/AliTRDCalROC.h" #include "Cal/AliTRDCalChamberPos.h" #include "Cal/AliTRDCalStackPos.h" #include "Cal/AliTRDCalSuperModulePos.h" #include "Cal/AliTRDCalPad.h" #include "Cal/AliTRDCalDet.h" #include "Cal/AliTRDCalGlobals.h" #include "Cal/AliTRDCalPIDLQ.h" #include "Cal/AliTRDCalMonitoring.h" #include "Cal/AliTRDCalSuperModuleStatus.h" #include "Cal/AliTRDCalChamberStatus.h" #include "Cal/AliTRDCalMCMStatus.h" #include "Cal/AliTRDCalPadStatus.h" #include "Cal/AliTRDCalSingleChamberStatus.h" ClassImp(AliTRDcalibDB) AliTRDcalibDB* AliTRDcalibDB::fgInstance = 0; Bool_t AliTRDcalibDB::fgTerminated = kFALSE; //_ singleton implementation __________________________________________________ AliTRDcalibDB* AliTRDcalibDB::Instance() { // // Singleton implementation // Returns an instance of this class, it is created if neccessary // if (fgTerminated != kFALSE) return 0; if (fgInstance == 0) fgInstance = new AliTRDcalibDB(); return fgInstance; } void AliTRDcalibDB::Terminate() { // // Singleton implementation // Deletes the instance of this class and sets the terminated flag, instances cannot be requested anymore // This function can be called several times. // fgTerminated = kTRUE; if (fgInstance != 0) { delete fgInstance; fgInstance = 0; } } //_____________________________________________________________________________ AliTRDcalibDB::AliTRDcalibDB() { // // constructor // // TODO Default runnumber is set to 0, this should be changed later to an invalid value (e.g. -1) to prevent // TODO invalid calibration data to be used. fRun = 0; fPadResponse.fPRFbin = 0; fPadResponse.fPRFlo = 0.0; fPadResponse.fPRFhi = 0.0; fPadResponse.fPRFwid = 0.0; fPadResponse.fPRFpad = 0; fPadResponse.fPRFsmp = 0; AliCDBManager* manager = AliCDBManager::Instance(); if (!manager) { std::cout << "AliTRDcalibDB: CRITICAL: Failed to get instance of AliCDBManager." << std::endl; fLocator = 0; } else fLocator = manager->GetStorage("local://$ALICE_ROOT"); for (Int_t i=0; i : return CacheCDBEntry(kID, "TRD/Calib/"); break; // See function CacheCDBEntry for details. // and // b) For calibration data which depends on two objects: One containing a value per detector and one the local fluctuations per pad: // case kID : return CacheMergeCDBEntry(kID, "TRD/Calib/", "TRD/Calib/"); break; // See function CacheMergeCDBEntry for details. // switch (id) { // parameters defined per pad and chamber case kIDVdriftPad : return CacheCDBEntry(kIDVdriftPad, "TRD/Calib/LocalVdrift"); break; case kIDVdriftChamber : return CacheCDBEntry(kIDVdriftChamber, "TRD/Calib/ChamberVdrift"); break; case kIDT0Pad : return CacheCDBEntry(kIDT0Pad, "TRD/Calib/LocalT0"); break; case kIDT0Chamber : return CacheCDBEntry(kIDT0Chamber, "TRD/Calib/ChamberT0"); break; case kIDGainFactorPad : return CacheCDBEntry(kIDGainFactorPad, "TRD/Calib/LocalGainFactor"); break; case kIDGainFactorChamber : return CacheCDBEntry(kIDGainFactorChamber, "TRD/Calib/ChamberGainFactor"); break; // parameters defined per pad case kIDPRFWidth : return CacheCDBEntry(kIDPRFWidth, "TRD/Calib/PRFWidth"); break; // status values case kIDSuperModuleStatus : return CacheCDBEntry(kIDSuperModuleStatus, "TRD/Calib/SuperModuleStatus"); break; case kIDChamberStatus : return CacheCDBEntry(kIDChamberStatus, "TRD/Calib/ChamberStatus"); break; case kIDMCMStatus : return CacheCDBEntry(kIDMCMStatus, "TRD/Calib/MCMStatus"); break; case kIDPadStatus : return CacheCDBEntry(kIDPadStatus, "TRD/Calib/PadStatus"); break; // global parameters case kIDMonitoringData : return CacheCDBEntry(kIDMonitoringData, "TRD/Calib/MonitoringData"); break; case kIDGlobals : return CacheCDBEntry(kIDGlobals, "TRD/Calib/Globals"); break; case kIDSuperModulePos : return CacheCDBEntry(kIDSuperModulePos, "TRD/Calib/SuperModulePos"); break; case kIDChamberPos : return CacheCDBEntry(kIDChamberPos, "TRD/Calib/ChamberPos"); break; case kIDStackPos : return CacheCDBEntry(kIDStackPos, "TRD/Calib/StackPos"); break; case kIDPIDLQ : return CacheCDBEntry(kIDPIDLQ, "TRD/Calib/PIDLQ"); break; } return 0; } //_____________________________________________________________________________ AliCDBEntry* AliTRDcalibDB::GetCDBEntry(const char* cdbPath) { // // Retrieves an entry with path from the CDB. // if (fRun < 0) { AliFatal("AliTRDcalibDB: Run number not set! Use AliTRDcalibDB::SetRun."); //std::cerr << "AliTRDcalibDB: Run number not set! Use AliTRDcalibDB::SetRun." << std::endl; return 0; } if (!fLocator) { std::cerr << "AliTRDcalibDB: Storage Locator not available." << std::endl; return 0; } AliCDBEntry* entry = fLocator->Get(cdbPath, fRun); if (!entry) { std::cerr << "AliTRDcalibDB: Failed to get entry: " << cdbPath << std::endl; return 0; } std::cout << "AliTRDcalibDB: Retrieved object: " << cdbPath << std::endl; return entry; } //_____________________________________________________________________________ const TObject* AliTRDcalibDB::CacheCDBEntry(Int_t id, const char* cdbPath) { // // Caches the entry with cdb path // if (!fCDBCache[id]) { fCDBEntries[id] = GetCDBEntry(cdbPath); if (fCDBEntries[id]) fCDBCache[id] = fCDBEntries[id]->GetObject(); } return fCDBCache[id]; } //_____________________________________________________________________________ void AliTRDcalibDB::SetRun(Long64_t run) { // // Sets current run number. Calibration data is read from the corresponding file. // When the run number changes the caching is invalidated. // if (fRun == run) return; fRun = run; Invalidate(); } //_____________________________________________________________________________ void AliTRDcalibDB::Invalidate() { // // Invalidates cache (when run number is changed). // for (Int_t i=0; iIsOwner() == kFALSE && fCDBCache[i]) delete fCDBCache[i]; delete fCDBEntries[i]; fCDBEntries[i] = 0; fCDBCache[i] = 0; } } } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetChamberPos(Int_t det, Float_t* xyz) { // // Returns the deviation of the chamber position from the nominal position. // const AliTRDCalChamberPos* chamber = dynamic_cast(GetCachedCDBObject(kIDChamberPos)); if (!chamber) return kFALSE; const Float_t* kvalues = chamber->GetPos(det); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetChamberRot(Int_t det, Float_t* xyz) { // // Returns the rotation of the chamber from the nominal position. // const AliTRDCalChamberPos* chamber = dynamic_cast(GetCachedCDBObject(kIDChamberPos)); if (!chamber) return kFALSE; const Float_t* kvalues = chamber->GetRot(det); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetStackPos(Int_t chamber, Int_t sector, Float_t* xyz) { // // Returns the deviation of the stack position from the nominal position. // const AliTRDCalStackPos* stack = dynamic_cast(GetCachedCDBObject(kIDStackPos)); if (!stack) return kFALSE; const Float_t* kvalues = stack->GetPos(chamber, sector); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetStackRot(Int_t chamber, Int_t sector, Float_t* xyz) { // // Returns the rotation of the stack from the nominal position. // const AliTRDCalStackPos* stack = dynamic_cast(GetCachedCDBObject(kIDStackPos)); if (!stack) return kFALSE; const Float_t* kvalues = stack->GetRot(chamber, sector); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetSuperModulePos(Int_t sm, Float_t* xyz) { // // Returns the deviation of the supermodule position from the nominal position. // const AliTRDCalSuperModulePos* smPos = dynamic_cast(GetCachedCDBObject(kIDSuperModulePos)); if (!smPos) return kFALSE; const Float_t* kvalues = smPos->GetPos(sm); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::GetSuperModuleRot(Int_t sm, Float_t* xyz) { // // Returns the rotation of the supermodule from the nominal position. // const AliTRDCalSuperModulePos* smPos = dynamic_cast(GetCachedCDBObject(kIDSuperModulePos)); if (!smPos) return kFALSE; const Float_t* kvalues = smPos->GetRot(sm); if (!kvalues) return kFALSE; xyz[0] = kvalues[0]; xyz[1] = kvalues[1]; xyz[2] = kvalues[2]; return kTRUE; } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetVdrift(Int_t det, Int_t col, Int_t row) { // // Returns the drift velocity for the given pad. // const AliTRDCalPad* calPad = dynamic_cast (GetCachedCDBObject(kIDVdriftPad)); if (!calPad) return -1; AliTRDCalROC* roc = calPad->GetCalROC(det); if (!roc) return -1; const AliTRDCalDet* calChamber = dynamic_cast (GetCachedCDBObject(kIDVdriftChamber)); if (!calChamber) return -1; return calChamber->GetValue(det) * roc->GetValue(col, row); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetVdriftAverage(Int_t det) { // // Returns the average drift velocity for the given detector // const AliTRDCalDet* calDet = dynamic_cast (GetCachedCDBObject(kIDVdriftChamber)); if (!calDet) return -1; return calDet->GetValue(det); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetT0(Int_t det, Int_t col, Int_t row) { // // Returns t0 for the given pad. // const AliTRDCalPad* calPad = dynamic_cast (GetCachedCDBObject(kIDT0Pad)); if (!calPad) return -1; AliTRDCalROC* roc = calPad->GetCalROC(det); if (!roc) return -1; const AliTRDCalDet* calChamber = dynamic_cast (GetCachedCDBObject(kIDT0Chamber)); if (!calChamber) return -1; return calChamber->GetValue(det) * roc->GetValue(col, row); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetT0Average(Int_t det) { // // Returns the average t0 for the given detector // const AliTRDCalDet* calDet = dynamic_cast (GetCachedCDBObject(kIDT0Chamber)); if (!calDet) return -1; return calDet->GetValue(det); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetGainFactor(Int_t det, Int_t col, Int_t row) { // // Returns the gain factor for the given pad. // const AliTRDCalPad* calPad = dynamic_cast (GetCachedCDBObject(kIDGainFactorPad)); if (!calPad) return -1; AliTRDCalROC* roc = calPad->GetCalROC(det); if (!roc) return -1; const AliTRDCalDet* calChamber = dynamic_cast (GetCachedCDBObject(kIDGainFactorChamber)); if (!calChamber) return -1; return calChamber->GetValue(det) * roc->GetValue(col, row); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetGainFactorAverage(Int_t det) { // // Returns the average gain factor for the given detector // const AliTRDCalDet* calDet = dynamic_cast (GetCachedCDBObject(kIDGainFactorChamber)); if (!calDet) return -1; return calDet->GetValue(det); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetPRFWidth(Int_t det, Int_t col, Int_t row) { // // Returns the PRF width for the given pad. // const AliTRDCalPad* calPad = dynamic_cast (GetCachedCDBObject(kIDPRFWidth)); if (!calPad) return -1; AliTRDCalROC* roc = calPad->GetCalROC(det); if (!roc) return -1; return roc->GetValue(col, row); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetSamplingFrequency() { // // Returns the sampling frequency of the TRD read-out. // const AliTRDCalGlobals* calGlobal = dynamic_cast (GetCachedCDBObject(kIDGlobals)); if (!calGlobal) return -1; return calGlobal->GetSamplingFrequency(); } //_____________________________________________________________________________ Int_t AliTRDcalibDB::GetNumberOfTimeBins() { // // Returns the number of time bins which are read-out. // const AliTRDCalGlobals* calGlobal = dynamic_cast (GetCachedCDBObject(kIDGlobals)); if (!calGlobal) return -1; return calGlobal->GetNumberOfTimeBins(); } //_____________________________________________________________________________ Char_t AliTRDcalibDB::GetPadStatus(Int_t det, Int_t col, Int_t row) { // // Returns the status of the given pad // const AliTRDCalPadStatus* cal = dynamic_cast (GetCachedCDBObject(kIDPadStatus)); if (!cal) return -1; const AliTRDCalSingleChamberStatus* roc = cal->GetCalROC(det); if (!roc) return -1; return roc->GetStatus(col, row); } //_____________________________________________________________________________ Char_t AliTRDcalibDB::GetMCMStatus(Int_t det, Int_t col, Int_t row) { // // Returns the status of the given MCM // const AliTRDCalMCMStatus* cal = dynamic_cast (GetCachedCDBObject(kIDMCMStatus)); if (!cal) return -1; const AliTRDCalSingleChamberStatus* roc = cal->GetCalROC(det); if (!roc) return -1; return roc->GetStatus(col, row); } //_____________________________________________________________________________ Char_t AliTRDcalibDB::GetChamberStatus(Int_t det) { // // Returns the status of the given chamber // const AliTRDCalChamberStatus* cal = dynamic_cast (GetCachedCDBObject(kIDChamberStatus)); if (!cal) return -1; return cal->GetStatus(det); } //_____________________________________________________________________________ Char_t AliTRDcalibDB::GetSuperModuleStatus(Int_t sm) { // // Returns the status of the given chamber // const AliTRDCalSuperModuleStatus* cal = dynamic_cast (GetCachedCDBObject(kIDSuperModuleStatus)); if (!cal) return -1; return cal->GetStatus(sm); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsPadMasked(Int_t det, Int_t col, Int_t row) { // // Returns status, see name of functions for details ;-) // const AliTRDCalPadStatus* cal = dynamic_cast (GetCachedCDBObject(kIDPadStatus)); if (!cal) return -1; return cal->IsMasked(det, col, row); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsPadBridgedLeft(Int_t det, Int_t col, Int_t row) { // // Returns status, see name of functions for details ;-) // const AliTRDCalPadStatus* cal = dynamic_cast (GetCachedCDBObject(kIDPadStatus)); if (!cal) return -1; return cal->IsBridgedLeft(det, col, row); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsPadBridgedRight(Int_t det, Int_t col, Int_t row) { // // Returns status, see name of functions for details ;-) // const AliTRDCalPadStatus* cal = dynamic_cast (GetCachedCDBObject(kIDPadStatus)); if (!cal) return -1; return cal->IsBridgedRight(det, col, row); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsMCMMasked(Int_t det, Int_t col, Int_t row) { // // Returns status, see name of functions for details ;-) // const AliTRDCalMCMStatus* cal = dynamic_cast (GetCachedCDBObject(kIDMCMStatus)); if (!cal) return -1; return cal->IsMasked(det, col, row); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsChamberInstalled(Int_t det) { // // Returns status, see name of functions for details ;-) // const AliTRDCalChamberStatus* cal = dynamic_cast (GetCachedCDBObject(kIDChamberStatus)); if (!cal) return -1; return cal->IsInstalled(det); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsChamberMasked(Int_t det) { // // Returns status, see name of functions for details ;-) // const AliTRDCalChamberStatus* cal = dynamic_cast (GetCachedCDBObject(kIDChamberStatus)); if (!cal) return -1; return cal->IsMasked(det); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsSuperModuleInstalled(Int_t det) { // // Returns status, see name of functions for details ;-) // const AliTRDCalSuperModuleStatus* cal = dynamic_cast (GetCachedCDBObject(kIDSuperModuleStatus)); if (!cal) return -1; return cal->IsInstalled(det); } //_____________________________________________________________________________ Bool_t AliTRDcalibDB::IsSuperModuleMasked(Int_t det) { // // Returns status, see name of functions for details ;-) // const AliTRDCalSuperModuleStatus* cal = dynamic_cast (GetCachedCDBObject(kIDSuperModuleStatus)); if (!cal) return -1; return cal->IsMasked(det); } //_____________________________________________________________________________ const AliTRDCalPIDLQ* AliTRDcalibDB::GetPIDLQObject() { // // Returns the object storing the distributions for PID with likelihood // return dynamic_cast (GetCachedCDBObject(kIDPIDLQ)); } //_____________________________________________________________________________ const AliTRDCalMonitoring* AliTRDcalibDB::GetMonitoringObject() { // // Returns the object storing the monitoring data // return dynamic_cast (GetCachedCDBObject(kIDMonitoringData)); } //_____________________________________________________________________________ Float_t AliTRDcalibDB::GetOmegaTau(Float_t vdrift) { // // Returns omega*tau (tan(Lorentz-angle)) for a given drift velocity // and a B-field for Xe/CO2 (15%). // The values are according to a GARFIELD simulation. // // This function basically does not belong to the calibration class. It should be moved somewhere else. // However, currently it is in use by simulation and reconstruction. // AliTRDCommonParam* commonParam = AliTRDCommonParam::Instance(); if (!commonParam) return -1; Float_t fieldAbs = TMath::Abs(commonParam->GetField()); Float_t fieldSgn = 1.0; if (fieldAbs > 0.0) { fieldSgn = commonParam->GetField() / fieldAbs; } const Int_t kNb = 5; Float_t p0[kNb] = { 0.004810, 0.007412, 0.010252, 0.013409, 0.016888 }; Float_t p1[kNb] = { 0.054875, 0.081534, 0.107333, 0.131983, 0.155455 }; Float_t p2[kNb] = { -0.008682, -0.012896, -0.016987, -0.020880, -0.024623 }; Float_t p3[kNb] = { 0.000155, 0.000238, 0.000330, 0.000428, 0.000541 }; Int_t ib = ((Int_t) (10 * (fieldAbs - 0.15))); ib = TMath::Max( 0,ib); ib = TMath::Min(kNb,ib); Float_t alphaL = p0[ib] + p1[ib] * vdrift + p2[ib] * vdrift*vdrift + p3[ib] * vdrift*vdrift*vdrift; return TMath::Tan(fieldSgn * alphaL); } //_____________________________________________________________________________ void AliTRDcalibDB::SamplePRF() { // // Samples the pad response function // const Int_t kPRFbin = 61; Float_t prf[kNplan][kPRFbin] = { {2.9037e-02, 3.3608e-02, 3.9020e-02, 4.5292e-02, 5.2694e-02, 6.1362e-02, 7.1461e-02, 8.3362e-02, 9.7063e-02, 1.1307e-01, 1.3140e-01, 1.5235e-01, 1.7623e-01, 2.0290e-01, 2.3294e-01, 2.6586e-01, 3.0177e-01, 3.4028e-01, 3.8077e-01, 4.2267e-01, 4.6493e-01, 5.0657e-01, 5.4655e-01, 5.8397e-01, 6.1767e-01, 6.4744e-01, 6.7212e-01, 6.9188e-01, 7.0627e-01, 7.1499e-01, 7.1851e-01, 7.1499e-01, 7.0627e-01, 6.9188e-01, 6.7212e-01, 6.4744e-01, 6.1767e-01, 5.8397e-01, 5.4655e-01, 5.0657e-01, 4.6493e-01, 4.2267e-01, 3.8077e-01, 3.4028e-01, 3.0177e-01, 2.6586e-01, 2.3294e-01, 2.0290e-01, 1.7623e-01, 1.5235e-01, 1.3140e-01, 1.1307e-01, 9.7063e-02, 8.3362e-02, 7.1461e-02, 6.1362e-02, 5.2694e-02, 4.5292e-02, 3.9020e-02, 3.3608e-02, 2.9037e-02}, {2.5478e-02, 2.9695e-02, 3.4655e-02, 4.0454e-02, 4.7342e-02, 5.5487e-02, 6.5038e-02, 7.6378e-02, 8.9696e-02, 1.0516e-01, 1.2327e-01, 1.4415e-01, 1.6794e-01, 1.9516e-01, 2.2573e-01, 2.5959e-01, 2.9694e-01, 3.3719e-01, 3.7978e-01, 4.2407e-01, 4.6889e-01, 5.1322e-01, 5.5569e-01, 5.9535e-01, 6.3141e-01, 6.6259e-01, 6.8882e-01, 7.0983e-01, 7.2471e-01, 7.3398e-01, 7.3761e-01, 7.3398e-01, 7.2471e-01, 7.0983e-01, 6.8882e-01, 6.6259e-01, 6.3141e-01, 5.9535e-01, 5.5569e-01, 5.1322e-01, 4.6889e-01, 4.2407e-01, 3.7978e-01, 3.3719e-01, 2.9694e-01, 2.5959e-01, 2.2573e-01, 1.9516e-01, 1.6794e-01, 1.4415e-01, 1.2327e-01, 1.0516e-01, 8.9696e-02, 7.6378e-02, 6.5038e-02, 5.5487e-02, 4.7342e-02, 4.0454e-02, 3.4655e-02, 2.9695e-02, 2.5478e-02}, {2.2363e-02, 2.6233e-02, 3.0782e-02, 3.6140e-02, 4.2535e-02, 5.0157e-02, 5.9197e-02, 6.9900e-02, 8.2707e-02, 9.7811e-02, 1.1548e-01, 1.3601e-01, 1.5998e-01, 1.8739e-01, 2.1840e-01, 2.5318e-01, 2.9182e-01, 3.3373e-01, 3.7837e-01, 4.2498e-01, 4.7235e-01, 5.1918e-01, 5.6426e-01, 6.0621e-01, 6.4399e-01, 6.7700e-01, 7.0472e-01, 7.2637e-01, 7.4206e-01, 7.5179e-01, 7.5551e-01, 7.5179e-01, 7.4206e-01, 7.2637e-01, 7.0472e-01, 6.7700e-01, 6.4399e-01, 6.0621e-01, 5.6426e-01, 5.1918e-01, 4.7235e-01, 4.2498e-01, 3.7837e-01, 3.3373e-01, 2.9182e-01, 2.5318e-01, 2.1840e-01, 1.8739e-01, 1.5998e-01, 1.3601e-01, 1.1548e-01, 9.7811e-02, 8.2707e-02, 6.9900e-02, 5.9197e-02, 5.0157e-02, 4.2535e-02, 3.6140e-02, 3.0782e-02, 2.6233e-02, 2.2363e-02}, {1.9635e-02, 2.3167e-02, 2.7343e-02, 3.2293e-02, 3.8224e-02, 4.5335e-02, 5.3849e-02, 6.4039e-02, 7.6210e-02, 9.0739e-02, 1.0805e-01, 1.2841e-01, 1.5216e-01, 1.7960e-01, 2.1099e-01, 2.4671e-01, 2.8647e-01, 3.2996e-01, 3.7660e-01, 4.2547e-01, 4.7536e-01, 5.2473e-01, 5.7215e-01, 6.1632e-01, 6.5616e-01, 6.9075e-01, 7.1939e-01, 7.4199e-01, 7.5838e-01, 7.6848e-01, 7.7227e-01, 7.6848e-01, 7.5838e-01, 7.4199e-01, 7.1939e-01, 6.9075e-01, 6.5616e-01, 6.1632e-01, 5.7215e-01, 5.2473e-01, 4.7536e-01, 4.2547e-01, 3.7660e-01, 3.2996e-01, 2.8647e-01, 2.4671e-01, 2.1099e-01, 1.7960e-01, 1.5216e-01, 1.2841e-01, 1.0805e-01, 9.0739e-02, 7.6210e-02, 6.4039e-02, 5.3849e-02, 4.5335e-02, 3.8224e-02, 3.2293e-02, 2.7343e-02, 2.3167e-02, 1.9635e-02}, {1.7224e-02, 2.0450e-02, 2.4286e-02, 2.8860e-02, 3.4357e-02, 4.0979e-02, 4.8966e-02, 5.8612e-02, 7.0253e-02, 8.4257e-02, 1.0102e-01, 1.2094e-01, 1.4442e-01, 1.7196e-01, 2.0381e-01, 2.4013e-01, 2.8093e-01, 3.2594e-01, 3.7450e-01, 4.2563e-01, 4.7796e-01, 5.2991e-01, 5.7974e-01, 6.2599e-01, 6.6750e-01, 7.0344e-01, 7.3329e-01, 7.5676e-01, 7.7371e-01, 7.8410e-01, 7.8793e-01, 7.8410e-01, 7.7371e-01, 7.5676e-01, 7.3329e-01, 7.0344e-01, 6.6750e-01, 6.2599e-01, 5.7974e-01, 5.2991e-01, 4.7796e-01, 4.2563e-01, 3.7450e-01, 3.2594e-01, 2.8093e-01, 2.4013e-01, 2.0381e-01, 1.7196e-01, 1.4442e-01, 1.2094e-01, 1.0102e-01, 8.4257e-02, 7.0253e-02, 5.8612e-02, 4.8966e-02, 4.0979e-02, 3.4357e-02, 2.8860e-02, 2.4286e-02, 2.0450e-02, 1.7224e-02}, {1.5096e-02, 1.8041e-02, 2.1566e-02, 2.5793e-02, 3.0886e-02, 3.7044e-02, 4.4515e-02, 5.3604e-02, 6.4668e-02, 7.8109e-02, 9.4364e-02, 1.1389e-01, 1.3716e-01, 1.6461e-01, 1.9663e-01, 2.3350e-01, 2.7527e-01, 3.2170e-01, 3.7214e-01, 4.2549e-01, 4.8024e-01, 5.3460e-01, 5.8677e-01, 6.3512e-01, 6.7838e-01, 7.1569e-01, 7.4655e-01, 7.7071e-01, 7.8810e-01, 7.9871e-01, 8.0255e-01, 7.9871e-01, 7.8810e-01, 7.7071e-01, 7.4655e-01, 7.1569e-01, 6.7838e-01, 6.3512e-01, 5.8677e-01, 5.3460e-01, 4.8024e-01, 4.2549e-01, 3.7214e-01, 3.2170e-01, 2.7527e-01, 2.3350e-01, 1.9663e-01, 1.6461e-01, 1.3716e-01, 1.1389e-01, 9.4364e-02, 7.8109e-02, 6.4668e-02, 5.3604e-02, 4.4515e-02, 3.7044e-02, 3.0886e-02, 2.5793e-02, 2.1566e-02, 1.8041e-02, 1.5096e-02}}; // More sampling precision with linear interpolation fPadResponse.fPRFlo = -1.5; fPadResponse.fPRFhi = 1.5; Float_t pad[kPRFbin]; Int_t sPRFbin = kPRFbin; Float_t sPRFwid = (fPadResponse.fPRFhi - fPadResponse.fPRFlo) / ((Float_t) sPRFbin); for (Int_t iPad = 0; iPad < sPRFbin; iPad++) { pad[iPad] = ((Float_t) iPad + 0.5) * sPRFwid + fPadResponse.fPRFlo; } fPadResponse.fPRFbin = 500; fPadResponse.fPRFwid = (fPadResponse.fPRFhi - fPadResponse.fPRFlo) / ((Float_t) fPadResponse.fPRFbin); fPadResponse.fPRFpad = ((Int_t) (1.0 / fPadResponse.fPRFwid)); if (fPadResponse.fPRFsmp) delete [] fPadResponse.fPRFsmp; fPadResponse.fPRFsmp = new Float_t[kNplan*fPadResponse.fPRFbin]; Int_t ipos1; Int_t ipos2; Float_t diff; for (Int_t iPla = 0; iPla < kNplan; iPla++) { for (Int_t iBin = 0; iBin < fPadResponse.fPRFbin; iBin++) { Float_t bin = (((Float_t) iBin) + 0.5) * fPadResponse.fPRFwid + fPadResponse.fPRFlo; ipos1 = ipos2 = 0; diff = 0; do { diff = bin - pad[ipos2++]; } while ((diff > 0) && (ipos2 < kPRFbin)); if (ipos2 == kPRFbin) { fPadResponse.fPRFsmp[iPla*fPadResponse.fPRFbin+iBin] = prf[iPla][ipos2-1]; } else if (ipos2 == 1) { fPadResponse.fPRFsmp[iPla*fPadResponse.fPRFbin+iBin] = prf[iPla][ipos2-1]; } else { ipos2--; if (ipos2 >= kPRFbin) ipos2 = kPRFbin - 1; ipos1 = ipos2 - 1; fPadResponse.fPRFsmp[iPla*fPadResponse.fPRFbin+iBin] = prf[iPla][ipos2] + diff * (prf[iPla][ipos2] - prf[iPla][ipos1]) / sPRFwid; } } } } //_____________________________________________________________________________ Int_t AliTRDcalibDB::PadResponse(Double_t signal, Double_t dist , Int_t plane, Double_t *pad) const { // // Applies the pad response // Int_t iBin = ((Int_t) (( - dist - fPadResponse.fPRFlo) / fPadResponse.fPRFwid)); Int_t iOff = plane * fPadResponse.fPRFbin; Int_t iBin0 = iBin - fPadResponse.fPRFpad + iOff; Int_t iBin1 = iBin + iOff; Int_t iBin2 = iBin + fPadResponse.fPRFpad + iOff; pad[0] = 0.0; pad[1] = 0.0; pad[2] = 0.0; if ((iBin1 >= 0) && (iBin1 < (fPadResponse.fPRFbin*kNplan))) { if (iBin0 >= 0) { pad[0] = signal * fPadResponse.fPRFsmp[iBin0]; } pad[1] = signal * fPadResponse.fPRFsmp[iBin1]; if (iBin2 < (fPadResponse.fPRFbin*kNplan)) { pad[2] = signal * fPadResponse.fPRFsmp[iBin2]; } return 1; } else { return 0; } }