/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD cluster // // // /////////////////////////////////////////////////////////////////////////////// #include #include "AliLog.h" #include "AliTRDcluster.h" #include "AliTRDgeometry.h" #include "AliTRDCommonParam.h" #include "AliTRDtrackletWord.h" ClassImp(AliTRDcluster) const Int_t AliTRDcluster::fgkNlut = 128; Double_t *AliTRDcluster::fgLUT = 0x0; //___________________________________________________________________________ AliTRDcluster::AliTRDcluster() :AliCluster() ,fPadCol(0) ,fPadRow(0) ,fPadTime(0) ,fLocalTimeBin(0) ,fNPads(0) ,fClusterMasking(0) ,fDetector(0) ,fQ(0) ,fCenter(0) { // // Default constructor // for (Int_t i = 0; i < 7; i++) { fSignals[i] = 0; } SetBit(kLUT); } //___________________________________________________________________________ AliTRDcluster::AliTRDcluster(Int_t det, UChar_t col, UChar_t row, UChar_t time , const Short_t *sig, UShort_t vid) :AliCluster() ,fPadCol(col) ,fPadRow(row) ,fPadTime(time) ,fLocalTimeBin(0) ,fNPads(0) ,fClusterMasking(0) ,fDetector(det) ,fQ(0.) ,fCenter(0.) { // // Constructor for self constructing cluster. In this approach the information is inserted gradualy into the // cluster and all dependencies are (re)calculated inside the cluster itself. // // A.Bercuci memcpy(&fSignals, sig, 7*sizeof(Short_t)); fQ = fSignals[2]+fSignals[3]+fSignals[4]; SetVolumeId(vid); SetBit(kLUT); } //___________________________________________________________________________ AliTRDcluster::AliTRDcluster(Int_t det, Float_t q , Float_t *pos, Float_t *sig , Int_t *tracks, Char_t npads, Short_t * const signals , UChar_t col, UChar_t row, UChar_t time , Char_t timebin, Float_t center, UShort_t volid) :AliCluster(volid,pos[0],pos[1],pos[2],sig[0],sig[1],0.0,0x0) ,fPadCol(col) ,fPadRow(row) ,fPadTime(time) ,fLocalTimeBin(timebin) ,fNPads(npads) ,fClusterMasking(0) ,fDetector(det) ,fQ(q) ,fCenter(center) { // // Constructor // for (Int_t i = 0; i < 7; i++) { fSignals[i] = signals[i]; } if (tracks) { AddTrackIndex(tracks); } SetBit(kLUT); } //_____________________________________________________________________________ AliTRDcluster::AliTRDcluster(const AliTRDtrackletWord *const tracklet, Int_t det, UShort_t volid) :AliCluster(volid,tracklet->GetX(),tracklet->GetY(),tracklet->GetZ(),0,0,0) ,fPadCol(0) ,fPadRow(0) ,fPadTime(0) ,fLocalTimeBin(0) ,fNPads(0) ,fClusterMasking(0) ,fDetector(det) ,fQ(0.) ,fCenter(0.) { // // Constructor from online tracklet // for (Int_t i = 0; i < 7; i++) { fSignals[i] = 0; } } //_____________________________________________________________________________ AliTRDcluster::AliTRDcluster(const AliTRDcluster &c) :AliCluster(c) ,fPadCol(c.fPadCol) ,fPadRow(c.fPadRow) ,fPadTime(c.fPadTime) ,fLocalTimeBin(c.fLocalTimeBin) ,fNPads(c.fNPads) ,fClusterMasking(c.fClusterMasking) ,fDetector(c.fDetector) ,fQ(c.fQ) ,fCenter(c.fCenter) { // // Copy constructor // SetLabel(c.GetLabel(0),0); SetLabel(c.GetLabel(1),1); SetLabel(c.GetLabel(2),2); SetY(c.GetY()); SetZ(c.GetZ()); AliCluster::SetSigmaY2(c.GetSigmaY2()); SetSigmaZ2(c.GetSigmaZ2()); for (Int_t i = 0; i < 7; i++) { fSignals[i] = c.fSignals[i]; } } //_____________________________________________________________________________ AliTRDcluster &AliTRDcluster::operator=(const AliTRDcluster &c) { // // Assignment operator // if (&c == this) { return *this; } // Call the assignment operator of the base class AliCluster::operator=(c); fPadCol = c.fPadCol; fPadRow = c.fPadRow; fPadTime = c.fPadTime; fLocalTimeBin = c.fLocalTimeBin; fNPads = c.fNPads; fClusterMasking = c.fClusterMasking; fDetector = c.fDetector; fQ = c.fQ; fCenter = c.fCenter; SetLabel(c.GetLabel(0),0); SetLabel(c.GetLabel(1),1); SetLabel(c.GetLabel(2),2); SetY(c.GetY()); SetZ(c.GetZ()); SetSigmaZ2(c.GetSigmaZ2()); for (Int_t i = 0; i < 7; i++) { fSignals[i] = c.fSignals[i]; } return *this; } //_____________________________________________________________________________ void AliTRDcluster::AddTrackIndex(const Int_t * const track) { // // Adds track index. Currently assumed that track is an array of // size 9, and up to 3 track indexes are stored in fTracks[3]. // Indexes are sorted according to: // 1) index of max number of appearances is stored first // 2) if two or more indexes appear equal number of times, the lowest // ones are stored first; // const Int_t kSize = 9; Int_t entries[kSize][2]; Int_t i = 0; Int_t j = 0; Int_t k = 0; Int_t index; Bool_t indexAdded; for (i = 0; i < kSize; i++) { entries[i][0] = -1; entries[i][1] = 0; } for (k = 0; k < kSize; k++) { index = track[k]; indexAdded = kFALSE; j = 0; if (index >= 0) { while ((!indexAdded) && (j < kSize)) { if ((entries[j][0] == index) || (entries[j][1] == 0)) { entries[j][0] = index; entries[j][1] = entries[j][1] + 1; indexAdded = kTRUE; } j++; } } } // Sort by number of appearances and index value Int_t swap = 1; Int_t tmp0; Int_t tmp1; while (swap > 0) { swap = 0; for (i = 0; i < (kSize - 1); i++) { if ((entries[i][0] >= 0) && (entries[i+1][0] >= 0)) { if ((entries[i][1] < entries[i+1][1]) || ((entries[i][1] == entries[i+1][1]) && (entries[i][0] > entries[i+1][0]))) { tmp0 = entries[i][0]; tmp1 = entries[i][1]; entries[i][0] = entries[i+1][0]; entries[i][1] = entries[i+1][1]; entries[i+1][0] = tmp0; entries[i+1][1] = tmp1; swap++; } } } } // Set track indexes for (i = 0; i < 3; i++) { SetLabel(entries[i][0],i); } return; } //_____________________________________________________________________________ void AliTRDcluster::Clear(Option_t *) { // // Reset all member to the default value // fPadCol=0; fPadRow=0; fPadTime=0; fLocalTimeBin=0; fNPads=0; fClusterMasking=0; fDetector=0; for (Int_t i=0; i < 7; i++) fSignals[i]=0; fQ = 0; fCenter = 0; for (Int_t i = 0; i < 3; i++) SetLabel(0,i); SetX(0.); SetY(0.); SetZ(0.); AliCluster::SetSigmaY2(0.); SetSigmaZ2(0.); SetVolumeId(0); } //_____________________________________________________________________________ Float_t AliTRDcluster::GetSumS() const { // // Returns the total charge from a not unfolded cluster // Float_t sum = 0.0; for (Int_t i = 0; i < 7; i++) { sum += fSignals[i]; } return sum; } //___________________________________________________________________________ Double_t AliTRDcluster::GetSX(Int_t tb, Double_t z) { // // Returns the error parameterization in the radial direction for TRD clusters as function of // the calibrated time bin (tb) and optionally distance to anode wire (z). By default (no z information) // the mean value over all cluster to wire distance is chosen. // // There are several contributions which are entering in the definition of the radial errors of the clusters. // Although an analytic defition should be possible for the moment this is not yet available but instead a // numerical parameterization is provided (see AliTRDclusterResolution::ProcessSigma() for the calibration // method). The result is displayed in the figure below as a 2D plot and also as the projection on the drift axis. // //Begin_Html // //End_Html // // Here is a list of uncertainty components: // - Time Response Function (TRF) - the major contribution. since TRF is also not symmetric (even if tail is // cancelled) it also creates a systematic shift dependent on the charge distribution before and after the cluster. // - longitudinal diffusion - increase the width of TRF and scales with square root of drift length // - variation in the drift velocity within the drift cell // // Author // A.Bercuci // if(tb<1 || tb>=24) return 10.; // return huge [10cm] static const Double_t sx[24][10]={ {0.000e+00, 9.352e-01, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 2.309e+00}, {8.387e-02, 8.718e-02, 8.816e-02, 9.444e-02, 9.993e-02, 1.083e-01, 1.161e-01, 1.280e-01, 1.417e-01, 1.406e-01}, {1.097e-01, 1.105e-01, 1.127e-01, 1.151e-01, 1.186e-01, 1.223e-01, 1.272e-01, 1.323e-01, 1.389e-01, 1.490e-01}, {1.407e-01, 1.404e-01, 1.414e-01, 1.430e-01, 1.429e-01, 1.449e-01, 1.476e-01, 1.494e-01, 1.515e-01, 1.589e-01}, {1.681e-01, 1.679e-01, 1.666e-01, 1.657e-01, 1.656e-01, 1.649e-01, 1.652e-01, 1.662e-01, 1.671e-01, 1.694e-01}, {1.745e-01, 1.737e-01, 1.707e-01, 1.690e-01, 1.643e-01, 1.610e-01, 1.612e-01, 1.628e-01, 1.638e-01, 1.659e-01}, {1.583e-01, 1.558e-01, 1.535e-01, 1.488e-01, 1.445e-01, 1.419e-01, 1.428e-01, 1.451e-01, 1.462e-01, 1.494e-01}, {1.414e-01, 1.391e-01, 1.368e-01, 1.300e-01, 1.256e-01, 1.259e-01, 1.285e-01, 1.326e-01, 1.358e-01, 1.406e-01}, {1.307e-01, 1.289e-01, 1.261e-01, 1.216e-01, 1.193e-01, 1.165e-01, 1.201e-01, 1.241e-01, 1.274e-01, 1.344e-01}, {1.251e-01, 1.227e-01, 1.208e-01, 1.155e-01, 1.110e-01, 1.116e-01, 1.133e-01, 1.187e-01, 1.229e-01, 1.308e-01}, {1.234e-01, 1.209e-01, 1.175e-01, 1.127e-01, 1.094e-01, 1.093e-01, 1.109e-01, 1.155e-01, 1.210e-01, 1.275e-01}, {1.215e-01, 1.187e-01, 1.156e-01, 1.108e-01, 1.070e-01, 1.065e-01, 1.090e-01, 1.134e-01, 1.196e-01, 1.251e-01}, {1.202e-01, 1.180e-01, 1.151e-01, 1.108e-01, 1.070e-01, 1.058e-01, 1.089e-01, 1.127e-01, 1.183e-01, 1.256e-01}, {1.207e-01, 1.176e-01, 1.142e-01, 1.109e-01, 1.072e-01, 1.069e-01, 1.088e-01, 1.122e-01, 1.182e-01, 1.252e-01}, {1.213e-01, 1.182e-01, 1.156e-01, 1.102e-01, 1.076e-01, 1.063e-01, 1.091e-01, 1.132e-01, 1.181e-01, 1.243e-01}, {1.205e-01, 1.180e-01, 1.150e-01, 1.104e-01, 1.072e-01, 1.063e-01, 1.083e-01, 1.132e-01, 1.183e-01, 1.243e-01}, {1.212e-01, 1.195e-01, 1.135e-01, 1.107e-01, 1.070e-01, 1.065e-01, 1.097e-01, 1.126e-01, 1.185e-01, 1.238e-01}, {1.201e-01, 1.184e-01, 1.155e-01, 1.111e-01, 1.088e-01, 1.075e-01, 1.089e-01, 1.131e-01, 1.189e-01, 1.237e-01}, {1.197e-01, 1.186e-01, 1.147e-01, 1.113e-01, 1.085e-01, 1.077e-01, 1.105e-01, 1.137e-01, 1.188e-01, 1.245e-01}, {1.213e-01, 1.194e-01, 1.154e-01, 1.114e-01, 1.091e-01, 1.082e-01, 1.098e-01, 1.140e-01, 1.194e-01, 1.247e-01}, {1.210e-01, 1.189e-01, 1.155e-01, 1.119e-01, 1.088e-01, 1.080e-01, 1.105e-01, 1.141e-01, 1.195e-01, 1.244e-01}, {1.196e-01, 1.189e-01, 1.145e-01, 1.105e-01, 1.095e-01, 1.083e-01, 1.087e-01, 1.121e-01, 1.173e-01, 1.208e-01}, {1.123e-01, 1.129e-01, 1.108e-01, 1.110e-01, 1.080e-01, 1.065e-01, 1.056e-01, 1.066e-01, 1.071e-01, 1.095e-01}, {1.136e-01, 1.135e-01, 1.130e-01, 1.122e-01, 1.113e-01, 1.071e-01, 1.041e-01, 1.025e-01, 1.014e-01, 9.973e-02} }; if(z>=0. && z<.25) return sx[tb][Int_t(z/.025)]; Double_t m = 0.; for(Int_t id=10; id--;) m+=sx[tb][id]; return m*.1; } //___________________________________________________________________________ Double_t AliTRDcluster::GetSYdrift(Int_t tb, Int_t ly, Double_t/* z*/) { // // Returns the error parameterization for TRD clusters as function of the drift length (here calibrated time bin tb) // and optionally distance to anode wire (z) for the LUT r-phi cluster shape. By default (no z information) the largest // value over all cluster to wire values is chosen. // // For the LUT method the dependence of s_y with x and d is obtained via a fit to the cluster to MC // resolution. (see class AliTRDclusterResolution for more details). A normalization to the reference radial position // x0 = 0.675 (tb=5 for ideal vd) is also applied (see GetSYprf()). The function is *NOT* calibration aware ! // The result is displayed in the figure below as a 2D plot and also as the projection on the drift axis. A comparison // with the GAUS parameterization is also given // // For the GAUS method the dependence of s_y with x is *analytic* and it is expressed by the relation. // BEGIN_LATEX // #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} // END_LATEX // The result is displayed in the figure below as function of the drift time and compared with the LUT parameterization. //Begin_Html // // //End_Html // // Author // A.Bercuci // if(tb<1 || tb>=24) return 10.; // return huge [10cm] static const Float_t lSy[6][24] = { {75.7561, 0.0325, 0.0175, 0.0174, 0.0206, 0.0232, 0.0253, 0.0262, 0.0265, 0.0264, 0.0266, 0.0257, 0.0258, 0.0261, 0.0259, 0.0253, 0.0257, 0.0261, 0.0255, 0.0250, 0.0259, 0.0266, 0.0278, 0.0319 }, {49.2252, 0.0371, 0.0204, 0.0189, 0.0230, 0.0261, 0.0281, 0.0290, 0.0292, 0.0286, 0.0277, 0.0279, 0.0285, 0.0281, 0.0291, 0.0281, 0.0281, 0.0282, 0.0272, 0.0282, 0.0282, 0.0284, 0.0310, 0.0334 }, {55.1674, 0.0388, 0.0212, 0.0200, 0.0239, 0.0271, 0.0288, 0.0299, 0.0306, 0.0300, 0.0296, 0.0303, 0.0293, 0.0290, 0.0291, 0.0294, 0.0295, 0.0290, 0.0293, 0.0292, 0.0292, 0.0293, 0.0316, 0.0358 }, {45.1004, 0.0411, 0.0225, 0.0215, 0.0249, 0.0281, 0.0301, 0.0315, 0.0320, 0.0308, 0.0318, 0.0321, 0.0312, 0.0311, 0.0316, 0.0315, 0.0310, 0.0308, 0.0313, 0.0303, 0.0314, 0.0314, 0.0324, 0.0369 }, {43.8614, 0.0420, 0.0239, 0.0224, 0.0268, 0.0296, 0.0322, 0.0336, 0.0333, 0.0326, 0.0321, 0.0325, 0.0329, 0.0326, 0.0323, 0.0322, 0.0326, 0.0320, 0.0329, 0.0319, 0.0314, 0.0329, 0.0341, 0.0373 }, {40.5440, 0.0434, 0.0246, 0.0236, 0.0275, 0.0311, 0.0332, 0.0345, 0.0347, 0.0347, 0.0340, 0.0336, 0.0339, 0.0344, 0.0339, 0.0341, 0.0341, 0.0342, 0.0345, 0.0328, 0.0341, 0.0332, 0.0356, 0.0398 }, }; // adjusted ... return TMath::Max(lSy[ly][tb]-0.0150, 0.0010); /* const Double_t sy[24][10]={ {0.000e+00, 2.610e-01, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 4.680e-01}, {3.019e-02, 3.036e-02, 3.131e-02, 3.203e-02, 3.294e-02, 3.407e-02, 3.555e-02, 3.682e-02, 3.766e-02, 3.824e-02}, {1.773e-02, 1.778e-02, 1.772e-02, 1.790e-02, 1.807e-02, 1.833e-02, 1.873e-02, 1.905e-02, 1.958e-02, 2.029e-02}, {1.774e-02, 1.772e-02, 1.746e-02, 1.738e-02, 1.756e-02, 1.756e-02, 1.739e-02, 1.720e-02, 1.743e-02, 1.769e-02}, {2.064e-02, 2.078e-02, 2.069e-02, 2.060e-02, 2.033e-02, 2.024e-02, 2.022e-02, 1.961e-02, 1.922e-02, 1.901e-02}, {2.382e-02, 2.379e-02, 2.371e-02, 2.333e-02, 2.318e-02, 2.285e-02, 2.255e-02, 2.244e-02, 2.174e-02, 2.132e-02}, {2.615e-02, 2.589e-02, 2.539e-02, 2.493e-02, 2.420e-02, 2.396e-02, 2.362e-02, 2.342e-02, 2.321e-02, 2.330e-02}, {2.640e-02, 2.638e-02, 2.577e-02, 2.548e-02, 2.477e-02, 2.436e-02, 2.416e-02, 2.401e-02, 2.399e-02, 2.402e-02}, {2.647e-02, 2.632e-02, 2.587e-02, 2.546e-02, 2.465e-02, 2.447e-02, 2.429e-02, 2.415e-02, 2.429e-02, 2.475e-02}, {2.657e-02, 2.637e-02, 2.580e-02, 2.525e-02, 2.492e-02, 2.441e-02, 2.446e-02, 2.441e-02, 2.478e-02, 2.491e-02}, {2.640e-02, 2.608e-02, 2.583e-02, 2.539e-02, 2.478e-02, 2.440e-02, 2.456e-02, 2.464e-02, 2.486e-02, 2.533e-02}, {2.636e-02, 2.630e-02, 2.584e-02, 2.542e-02, 2.483e-02, 2.451e-02, 2.449e-02, 2.467e-02, 2.496e-02, 2.554e-02}, {2.634e-02, 2.629e-02, 2.583e-02, 2.526e-02, 2.480e-02, 2.460e-02, 2.458e-02, 2.472e-02, 2.518e-02, 2.549e-02}, {2.629e-02, 2.621e-02, 2.581e-02, 2.527e-02, 2.480e-02, 2.458e-02, 2.451e-02, 2.485e-02, 2.516e-02, 2.547e-02}, {2.629e-02, 2.607e-02, 2.573e-02, 2.543e-02, 2.485e-02, 2.464e-02, 2.452e-02, 2.476e-02, 2.505e-02, 2.550e-02}, {2.635e-02, 2.613e-02, 2.578e-02, 2.523e-02, 2.491e-02, 2.465e-02, 2.470e-02, 2.467e-02, 2.515e-02, 2.564e-02}, {2.613e-02, 2.602e-02, 2.587e-02, 2.526e-02, 2.507e-02, 2.482e-02, 2.456e-02, 2.486e-02, 2.509e-02, 2.572e-02}, {2.620e-02, 2.599e-02, 2.563e-02, 2.528e-02, 2.484e-02, 2.462e-02, 2.464e-02, 2.476e-02, 2.513e-02, 2.571e-02}, {2.634e-02, 2.596e-02, 2.565e-02, 2.519e-02, 2.497e-02, 2.457e-02, 2.450e-02, 2.481e-02, 2.511e-02, 2.540e-02}, {2.593e-02, 2.589e-02, 2.563e-02, 2.511e-02, 2.472e-02, 2.453e-02, 2.452e-02, 2.474e-02, 2.501e-02, 2.543e-02}, {2.576e-02, 2.582e-02, 2.526e-02, 2.505e-02, 2.462e-02, 2.446e-02, 2.445e-02, 2.466e-02, 2.486e-02, 2.510e-02}, {2.571e-02, 2.549e-02, 2.533e-02, 2.501e-02, 2.453e-02, 2.443e-02, 2.445e-02, 2.450e-02, 2.448e-02, 2.469e-02}, {2.812e-02, 2.786e-02, 2.776e-02, 2.723e-02, 2.695e-02, 2.650e-02, 2.642e-02, 2.617e-02, 2.612e-02, 2.610e-02}, {3.251e-02, 3.267e-02, 3.223e-02, 3.183e-02, 3.125e-02, 3.106e-02, 3.067e-02, 3.010e-02, 2.936e-02, 2.927e-02} }; if(z>=0. && z<.25) return sy[tb][Int_t(z/.025)] - sy[5][Int_t(z/.025)]; Double_t m = -1.e8; for(Int_t id=10; id--;) if((sy[tb][id] - sy[5][id])>m) m=sy[tb][id]-sy[5][id]; return m;*/ } //___________________________________________________________________________ Double_t AliTRDcluster::GetSYcharge(Float_t q) { // // Parameterization of the r-phi resolution component due to cluster charge. // The value is the offset from the nominal cluster resolution defined as the // cluster resolution at average cluster charge (q0). // // BEGIN_LATEX // #Delta #sigma_{y}(q) = a*(#frac{1}{q} - #frac{1}{q_{0}}) // q_{0} #approx 50 // END_LATEX // The definition is *NOT* robust against gain fluctuations and thus two approaches are possible // when residual miscalibration are available: // - determine parameterization with a resolution matching those of the gain // - define an analytic model which scales with the gain. // // For more details please see AliTRDclusterResolution::ProcessCharge() // //Begin_Html // //End_Html // // Author // A.Bercuci // const Float_t sq0inv = 0.019962; // [1/q0] const Float_t sqb = 0.037328; // [cm] return sqb*(1./q - sq0inv); } //___________________________________________________________________________ Double_t AliTRDcluster::GetSYprf(Int_t ly, Double_t center, Double_t s2) { // // Parameterization of the cluster error in the r-phi direction due to charge sharing between // adiacent pads. Should be identical to what is provided in the OCDB as PRF [TODO] // // The parameterization is obtained from fitting cluster resolution at phi=exb and |x-0.675|<0.225. // For more details see AliTRDclusterResolution::ProcessCenter(). // //Begin_Html // //End_Html // // Author // A.Bercuci // /* const Float_t scy[AliTRDgeometry::kNlayer][4] = { {2.827e-02, 9.600e-04, 4.296e-01, 2.271e-02}, {2.952e-02,-2.198e-04, 4.146e-01, 2.339e-02}, {3.090e-02, 1.514e-03, 4.020e-01, 2.402e-02}, {3.260e-02,-2.037e-03, 3.946e-01, 2.509e-02}, {3.439e-02,-3.601e-04, 3.883e-01, 2.623e-02}, {3.510e-02, 2.066e-03, 3.651e-01, 2.588e-02}, };*/ const Float_t lPRF[] = {0.438, 0.403, 0.393, 0.382, 0.376, 0.345}; return s2*TMath::Gaus(center, 0., lPRF[ly]); } //___________________________________________________________________________ Double_t AliTRDcluster::GetXcorr(Int_t tb, Double_t z) { // // Drift length correction [cm]. Due to variation of mean drift velocity along the drift region // from nominal vd at xd->infinity. For drift velocity determination based on tracking information // the correction should be negligible. //Begin_Html // //End_Html // TODO to be parametrized in term of drift velocity at infinite drift length // A.Bercuci (Mar 28 2009) // if(tb<0 || tb>=24) return 0.; const Int_t nd = 5; static const Double_t dx[24][nd]={ {+1.747e-01,+3.195e-01,+1.641e-01,+1.607e-01,+6.002e-01}, {+5.468e-02,+5.760e-02,+6.365e-02,+8.003e-02,+1.067e-01}, {-6.327e-02,-6.339e-02,-6.423e-02,-6.900e-02,-7.949e-02}, {-1.417e-01,-1.424e-01,-1.450e-01,-1.465e-01,-1.514e-01}, {-1.637e-01,-1.619e-01,-1.622e-01,-1.613e-01,-1.648e-01}, {-1.386e-01,-1.334e-01,-1.261e-01,-1.276e-01,-1.314e-01}, {-8.799e-02,-8.299e-02,-7.861e-02,-8.038e-02,-8.436e-02}, {-5.139e-02,-4.849e-02,-4.641e-02,-4.965e-02,-5.286e-02}, {-2.927e-02,-2.773e-02,-2.807e-02,-3.021e-02,-3.378e-02}, {-1.380e-02,-1.229e-02,-1.335e-02,-1.547e-02,-1.984e-02}, {-4.168e-03,-4.601e-03,-5.462e-03,-8.164e-03,-1.035e-02}, {+2.044e-03,+1.889e-03,+9.603e-04,-1.342e-03,-3.736e-03}, {+3.568e-03,+3.581e-03,+2.391e-03,+2.942e-05,-1.585e-03}, {+4.403e-03,+4.571e-03,+3.509e-03,+8.703e-04,-1.425e-03}, {+4.941e-03,+4.808e-03,+3.284e-03,+1.105e-03,-1.208e-03}, {+5.124e-03,+5.022e-03,+4.305e-03,+2.023e-03,-1.145e-03}, {+4.882e-03,+4.008e-03,+3.408e-03,+7.886e-04,-1.356e-03}, {+3.852e-03,+3.539e-03,+2.057e-03,+1.670e-04,-1.993e-03}, {+2.154e-03,+2.111e-03,+5.723e-04,-1.254e-03,-3.256e-03}, {+1.755e-03,+2.101e-03,+9.516e-04,-1.649e-03,-3.394e-03}, {+1.617e-03,+1.662e-03,+4.169e-04,-9.843e-04,-4.309e-03}, {-9.204e-03,-9.069e-03,-1.182e-02,-1.458e-02,-1.880e-02}, {-6.727e-02,-6.820e-02,-6.804e-02,-7.134e-02,-7.615e-02}, {-1.802e-01,-1.733e-01,-1.633e-01,-1.601e-01,-1.632e-01} }; // const Double_t dx[24][nd]={ // {+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00,+0.000e+00}, // {-2.763e-04,-2.380e-04,-6.286e-04,-9.424e-04,+1.046e-03,+1.932e-03,+1.620e-03,+1.951e-03,-1.321e-03,-1.115e-03}, // {-1.825e-03,-9.245e-04,-1.012e-03,-8.215e-04,+2.703e-05,+1.403e-03,+2.340e-03,+2.577e-03,+2.017e-03,+8.006e-04}, // {-3.070e-03,-8.563e-04,-1.257e-03,+8.491e-05,+4.503e-04,-2.467e-05,-1.793e-04,+5.085e-04,+1.321e-03,+4.056e-04}, // {-3.637e-03,-2.857e-03,-3.098e-03,-2.304e-03,-1.467e-03,-1.755e-03,+4.585e-04,+2.757e-03,+3.184e-03,+3.525e-03}, // {-9.884e-03,-7.695e-03,-7.290e-03,-3.990e-03,-9.982e-04,+2.226e-03,+3.375e-03,+6.419e-03,+7.209e-03,+6.891e-03}, // {-6.844e-03,-5.807e-03,-4.012e-03,-1.566e-03,+5.035e-04,+2.024e-03,+3.225e-03,+3.918e-03,+5.942e-03,+6.024e-03}, // {-2.628e-03,-2.201e-03,-4.562e-04,+9.832e-04,+3.411e-03,+2.062e-03,+1.526e-03,+9.350e-04,+8.842e-04,+1.007e-03}, // {+6.603e-04,+1.545e-03,+1.681e-03,+1.918e-03,+2.165e-03,+1.825e-03,+1.691e-03,-1.923e-04,+1.835e-04,-1.284e-03}, // {+1.895e-03,+1.586e-03,+2.000e-03,+3.537e-03,+2.526e-03,+1.316e-03,+8.229e-04,-7.671e-05,-2.175e-03,-3.528e-03}, // {+2.927e-03,+3.369e-03,+3.603e-03,+2.675e-03,+2.737e-03,+1.133e-03,+4.318e-04,-1.215e-03,-2.443e-03,-3.116e-03}, // {+3.072e-03,+3.564e-03,+3.612e-03,+3.149e-03,+2.768e-03,+1.186e-03,+3.083e-04,-1.447e-03,-2.480e-03,-3.263e-03}, // {+2.697e-03,+3.565e-03,+3.759e-03,+2.855e-03,+2.909e-03,+6.564e-04,-5.224e-04,-3.309e-04,-1.636e-03,-3.739e-03}, // {+3.633e-03,+3.232e-03,+3.727e-03,+3.024e-03,+3.365e-03,+1.598e-03,-6.903e-04,-1.039e-03,-3.176e-03,-4.472e-03}, // {+2.999e-03,+3.942e-03,+3.322e-03,+3.162e-03,+1.978e-03,+1.657e-03,-4.760e-04,-8.343e-04,-2.346e-03,-3.281e-03}, // {+3.734e-03,+3.098e-03,+3.435e-03,+2.512e-03,+2.651e-03,+1.745e-03,+9.424e-04,-1.404e-03,-3.177e-03,-4.444e-03}, // {+3.204e-03,+4.003e-03,+3.068e-03,+2.697e-03,+3.187e-03,+3.878e-04,-1.124e-04,-1.855e-03,-2.584e-03,-3.807e-03}, // {+2.653e-03,+3.631e-03,+2.327e-03,+3.460e-03,+1.810e-03,+1.244e-03,-3.651e-04,-2.664e-04,-2.307e-03,-3.642e-03}, // {+2.538e-03,+3.208e-03,+2.390e-03,+3.519e-03,+1.763e-03,+1.330e-04,+1.669e-04,-1.422e-03,-1.685e-03,-3.519e-03}, // {+2.605e-03,+2.465e-03,+2.771e-03,+2.966e-03,+2.361e-03,+6.029e-04,-4.435e-04,-1.876e-03,-1.694e-03,-3.757e-03}, // {+2.866e-03,+3.315e-03,+3.146e-03,+2.117e-03,+1.933e-03,+9.339e-04,+9.556e-04,-1.314e-03,-3.615e-03,-3.558e-03}, // {+4.002e-03,+3.543e-03,+3.631e-03,+4.127e-03,+1.919e-03,-2.852e-04,-9.484e-04,-2.060e-03,-4.477e-03,-5.491e-03}, // {+6.029e-03,+5.147e-03,+4.286e-03,+2.215e-03,+9.240e-04,-1.554e-03,-2.366e-03,-3.635e-03,-5.372e-03,-6.467e-03}, // {+3.941e-03,+3.995e-03,+5.638e-04,-3.332e-04,-2.539e-03,-3.764e-03,-3.647e-03,-4.900e-03,-5.414e-03,-5.202e-03} // }; if(z>=0. && z<.25) return dx[tb][Int_t(z/.025)]; Double_t m = 0.; for(Int_t id=nd; id--;) m+=dx[tb][id]; return m/nd; } //___________________________________________________________________________ Double_t AliTRDcluster::GetYcorr(Int_t ly, Float_t y) { // // PRF correction for the LUT r-phi cluster shape. //Begin_Html // //End_Html // static const Float_t cy[AliTRDgeometry::kNlayer][3] = { { 4.014e-04, 8.605e-03, -6.880e+00}, {-3.061e-04, 9.663e-03, -6.789e+00}, { 1.124e-03, 1.105e-02, -6.825e+00}, {-1.527e-03, 1.231e-02, -6.777e+00}, { 2.150e-03, 1.387e-02, -6.783e+00}, {-1.296e-03, 1.486e-02, -6.825e+00} }; return cy[ly][0] + cy[ly][1] * TMath::Sin(cy[ly][2] * y); } //_____________________________________________________________________________ Float_t AliTRDcluster::GetXloc(Double_t t0, Double_t vd , const Double_t *const /*q*/ , const Double_t *const /*xq*/ , Double_t /*z*/) { // // (Re)Calculate cluster position in the x direction in local chamber coordinates (with respect to the anode wire // position) using all available information from tracking. // Input parameters: // t0 - calibration aware trigger delay [us] // vd - drift velocity in the region of the cluster [cm/us] // z - distance to the anode wire [cm]. By default average over the drift cell width. // q & xq - array of charges and cluster positions from previous clusters in the tracklet [a.u.] // Output values : // return x position of the cluster with respect to the // anode wire using all tracking information // // The estimation of the radial position is based on calculating the drift time and the drift velocity at the point of // estimation. The drift time can be estimated according to the expression: // BEGIN_LATEX // t_{drift} = t_{bin} - t_{0} - t_{cause}(x) - t_{TC}(q_{i-1}, q_{i-2}, ...) // END_LATEX // where t_0 is the delay of the trigger signal. t_cause is the causality delay between ionisation electrons hitting // the anode and the registration of maximum signal by the electronics - it is due to the rising time of the TRF // A second order correction here comes from the fact that the time spreading of charge at anode is the convolution of // TRF with the diffusion and thus cross-talk between clusters before and after local clusters changes with drift length. // t_TC is the residual charge from previous (in time) clusters due to residual tails after tail cancellation. // This tends to push cluster forward and depends on the magnitude of their charge. // // The drift velocity varies with the drift length (and distance to anode wire) as described by cell structure simulation. // Thus one, in principle, can calculate iteratively the drift length from the expression: // BEGIN_LATEX // x = t_{drift}(x)*v_{drift}(x) // END_LATEX // In practice we use a numerical approach (AliTRDcluster::GetXcorr()) to correct for anisochronity obtained from MC // comparison (see AliTRDclusterResolution::ProcessSigma()). Also the calibration of 0 approximation (no x dependence) // for t_cause is obtained from MC comparisons and impossible to disentangle in real life from trigger delay. // // Author // Alex Bercuci // AliTRDCommonParam *cp = AliTRDCommonParam::Instance(); Double_t fFreq = cp->GetSamplingFrequency(); //drift time corresponding to the center of the time bin Double_t td = (fPadTime + .5)/fFreq; // [us] // correction for t0 td -= t0; // time bin corrected for t0 // Bug in TMath::Nint().root-5.23.02 // TMath::Nint(3.5) = 4 and TMath::Nint(4.5) = 4 Double_t tmp = td*fFreq; fLocalTimeBin = Char_t(TMath::Floor(tmp)); if(tmp-fLocalTimeBin > .5) fLocalTimeBin++; if(td < .2) return 0.; // TRF rising time (fitted) // It should be absorbed by the t0. For the moment t0 is 0 for simulations. // A.Bercuci (Mar 26 2009) td -= 0.189; // apply fitted correction Float_t x = td*vd + (HasXcorr() ? GetXcorr(fLocalTimeBin) : 0.); if(x>0.&&x<.5*AliTRDgeometry::CamHght()+AliTRDgeometry::CdrHght()) SetInChamber(); return x; } //_____________________________________________________________________________ Float_t AliTRDcluster::GetYloc(Double_t y0, Double_t s2, Double_t W , Double_t *const y1, Double_t *const y2) { // // Calculate, in tracking cooordinate system, the r-phi offset the cluster // from the middle of the center pad. Three possible methods are implemented: // - Center of Gravity (COG) see AliTRDcluster::GetDYcog() // - Look-up Table (LUT) see AliTRDcluster::GetDYlut() // - Gauss shape (GAUS) see AliTRDcluster::GetDYgauss() // In addition for the case of LUT method position corrections are also // applied (see AliTRDcluster::GetYcorr()) // if(IsRPhiMethod(kCOG)) GetDYcog(); else if(IsRPhiMethod(kLUT)) GetDYlut(); else if(IsRPhiMethod(kGAUS)) GetDYgauss(s2/W/W, y1, y2); else return 0.; if(y1) (*y1)*=W; if(y2) (*y2)*=W; return y0+fCenter*W+(IsRPhiMethod(kLUT)?GetYcorr(AliTRDgeometry::GetLayer(fDetector), fCenter):0.); } //___________________________________________________________________________ void AliTRDcluster::SetSigmaY2(Float_t s2, Float_t dt, Float_t exb, Float_t x, Float_t z, Float_t tgp) { // // Set variance of TRD cluster in the r-phi direction for each method. // Parameters : // - s2 - variance due to PRF width for the case of Gauss model. Replaced by parameterization in case of LUT. // - dt - transversal diffusion coeficient // - exb - tg of lorentz angle // - x - drift length - with respect to the anode wire // - z - offset from the anode wire // - tgp - local tangent of the track momentum azimuthal angle // // The ingredients from which the error is computed are: // - PRF (charge sharing on adjacent pads) - see AliTRDcluster::GetSYprf() // - diffusion (dependence with drift length and [2nd order] distance to anode wire) - see AliTRDcluster::GetSYdrift() // - charge of the cluster (complex dependence on gain and tail cancellation) - see AliTRDcluster::GetSYcharge() // - lorentz angle (dependence on the drift length and [2nd order] distance to anode wire) - see AliTRDcluster::GetSX() // - track angle (superposition of charges on the anode wire) - see AliTRDseedV1::Fit() // - projection of radial(x) error on r-phi due to fixed value assumed in tracking for x - see AliTRDseedV1::Fit() // // The last 2 contributions to cluster error can be estimated only during tracking when the track angle // is known (tgp). For this reason the errors (and optional position) of TRD clusters are recalculated during // tracking and thus clusters attached to tracks might differ from bare clusters. // // Taking into account all contributions one can write the the TRD cluster error parameterization as: // BEGIN_LATEX // #sigma_{y}^{2} = (#sigma_{diff}*Gauss(0, s_{ly}) + #delta_{#sigma}(q))^{2} + tg^{2}(#alpha_{L})*#sigma_{x}^{2} + tg^{2}(#phi-#alpha_{L})*#sigma_{x}^{2}+[tg(#phi-#alpha_{L})*tg(#alpha_{L})*x]^{2}/12 // END_LATEX // From this formula one can deduce a that the simplest calibration method for PRF and diffusion contributions is // by measuring resolution at B=0T and phi=0. To disentangle further the two remaining contributions one has // to represent s2 as a function of drift length. // // In the gaussian model the diffusion contribution can be expressed as: // BEGIN_LATEX // #sigma^{2}_{y} = #sigma^{2}_{PRF} + #frac{x#delta_{t}^{2}}{(1+tg(#alpha_{L}))^{2}} // END_LATEX // thus resulting the PRF contribution. For the case of the LUT model both contributions have to be determined from // the fit (see AliTRDclusterResolution::ProcessCenter() for details). // // Author: // A.Bercuci // Float_t sigmaY2 = 0.; Int_t ly = AliTRDgeometry::GetLayer(fDetector); if(IsRPhiMethod(kCOG)) sigmaY2 = 4.e-4; else if(IsRPhiMethod(kLUT)){ Float_t sd = GetSYdrift(fLocalTimeBin, ly, z); //printf("drift[%6.2f] ", 1.e4*sd); sigmaY2 = GetSYprf(ly, fCenter, sd); //printf("PRF[%6.2f] ", 1.e4*sigmaY2); // add charge contribution TODO scale with respect to s2 sigmaY2+= GetSYcharge(TMath::Abs(fQ)); //printf("Q[%6.2f] ", 1.e4*sigmaY2); sigmaY2 = TMath::Max(sigmaY2, Float_t(0.0010)); //!! protection sigmaY2*= sigmaY2; } else if(IsRPhiMethod(kGAUS)){ // PRF contribution sigmaY2 = s2; // Diffusion contribution Double_t sD2 = dt/(1.+exb); sD2 *= sD2; sD2 *= x; sigmaY2+= sD2; // add charge contribution TODO scale with respect to s2 //sigmaY2+= GetSYcharge(TMath::Abs(fQ)); } // store tg^2(phi-a_L) and tg^2(a_L) // limit parametrization to a maximum angle of 25 deg if(TMath::Abs(tgp)>0.466) tgp = (tgp>0.)?0.466:-0.466; Double_t tgg = (tgp-exb)/(1.+tgp*exb); tgg *= tgg; Double_t exb2= exb*exb; // Lorentz angle shift contribution Float_t sx = GetSX(fLocalTimeBin, z); sx*=sx; sigmaY2+= exb2*sx; //printf("Al[%6.2f] ", 1.e4*TMath::Sqrt(sigmaY2)); // Radial contribution due to not measuring x in Kalman model sigmaY2+= tgg*sx; //printf("x[%6.2f] ", 1.e4*TMath::Sqrt(sigmaY2)); // Track angle contribution sigmaY2+= tgg*x*x*exb2/12.; //printf("angle[%6.2f]\n", 1.e4*TMath::Sqrt(sigmaY2)); AliCluster::SetSigmaY2(sigmaY2); } //_____________________________________________________________________________ Bool_t AliTRDcluster::IsEqual(const TObject *o) const { // // Compare relevant information of this cluster with another one // const AliTRDcluster *inCluster = dynamic_cast(o); if (!o || !inCluster) return kFALSE; if ( AliCluster::GetX() != inCluster->GetX() ) return kFALSE; if ( AliCluster::GetY() != inCluster->GetY() ) return kFALSE; if ( AliCluster::GetZ() != inCluster->GetZ() ) return kFALSE; if ( fQ != inCluster->fQ ) return kFALSE; if ( fDetector != inCluster->fDetector ) return kFALSE; if ( fPadCol != inCluster->fPadCol ) return kFALSE; if ( fPadRow != inCluster->fPadRow ) return kFALSE; if ( fPadTime != inCluster->fPadTime ) return kFALSE; if ( fClusterMasking != inCluster->fClusterMasking ) return kFALSE; if ( IsInChamber() != inCluster->IsInChamber() ) return kFALSE; if ( IsShared() != inCluster->IsShared() ) return kFALSE; if ( IsUsed() != inCluster->IsUsed() ) return kFALSE; return kTRUE; } //_____________________________________________________________________________ void AliTRDcluster::Print(Option_t *o) const { // // Print cluster information // if(strcmp(o, "a")==0) { AliInfo(Form( "\nDet[%3d] LTrC[%+6.2f %+6.2f %+6.2f] Q[%5.1f] FLAG[in(%c) use(%c) sh(%c)] Y[%s]" "\n LChC[c(%3d) r(%2d) t(%2d)] t-t0[%2d] Npad[%d] cen[%5.3f] mask[%d]" "\n QS[%3d %3d %3d %3d %3d %3d %3d] S2[%e %e]" , fDetector, GetX(), GetY(), GetZ(), fQ, IsInChamber() ? 'y' : 'n', IsUsed() ? 'y' : 'n', IsShared() ? 'y' : 'n', IsRPhiMethod(kGAUS)?"GAUS":(IsRPhiMethod(kLUT)?"LUT":"COG") , fPadCol, fPadRow, fPadTime, fLocalTimeBin, fNPads, fCenter, fClusterMasking , fSignals[0], fSignals[1], fSignals[2], fSignals[3] , fSignals[4], fSignals[5], fSignals[6] , GetSigmaY2(), GetSigmaZ2())); } else { AliInfo(Form("Det[%3d] LTrC[%+6.2f %+6.2f %+6.2f] Q[%5.1f] FLAG[in(%c) use(%c) sh(%c)] Y[%s]", fDetector, GetX(), GetY(), GetZ(), fQ, IsInChamber() ? 'y' : 'n', IsUsed() ? 'y' : 'n', IsShared() ? 'y' : 'n', IsRPhiMethod(kGAUS)?"GAUS":(IsRPhiMethod(kLUT)?"LUT":"COG") )); } } //_____________________________________________________________________________ void AliTRDcluster::SetPadMaskedPosition(UChar_t position) { // // Store the pad corruption position code // // Code: 1 = left cluster // 2 = middle cluster; // 4 = right cluster // for (Int_t ipos = 0; ipos < 3; ipos++) { if (TESTBIT(position, ipos)) SETBIT(fClusterMasking, ipos); } } //_____________________________________________________________________________ void AliTRDcluster::SetPadMaskedStatus(UChar_t status) { // // Store the status of the corrupted pad // // Code: 2 = noisy // 4 = Bridged Left // 8 = Bridged Right // 32 = Not Connected // for (Int_t ipos = 0; ipos < 5; ipos++) { if(TESTBIT(status, ipos)) SETBIT(fClusterMasking, ipos + 3); } } //___________________________________________________________________________ Float_t AliTRDcluster::GetDYcog(const Double_t *const, const Double_t *const) { // // Get COG position // Used for clusters with more than 3 pads - where LUT not applicable // Double_t sum = fSignals[1] +fSignals[2] +fSignals[3] +fSignals[4] +fSignals[5]; // ???????????? CBL // Go to 3 pad COG ???? // ???????????? CBL fCenter = (0.0 * (-fSignals[1] + fSignals[5]) + (-fSignals[2] + fSignals[4])) / sum; return fCenter; } //___________________________________________________________________________ Float_t AliTRDcluster::GetDYlut(const Double_t *const, const Double_t *const) { // // Calculates the cluster position using the lookup table. // Method provided by Bogdan Vulpescu. // if(!fgLUT) FillLUT(); Double_t ampL = fSignals[2], ampC = fSignals[3], ampR = fSignals[4]; Int_t ilayer = AliTRDgeometry::GetLayer(fDetector); Double_t x = 0.0; Double_t xmin, xmax, xwid; Int_t side = 0; Int_t ix; Double_t xMin[AliTRDgeometry::kNlayer] = { 0.006492, 0.006377, 0.006258, 0.006144, 0.006030, 0.005980 }; Double_t xMax[AliTRDgeometry::kNlayer] = { 0.960351, 0.965870, 0.970445, 0.974352, 0.977667, 0.996101 }; if (ampL > ampR) { x = (ampL - ampR) / ampC; side = -1; } else if (ampL < ampR) { x = (ampR - ampL) / ampC; side = +1; } if (ampL != ampR) { xmin = xMin[ilayer] + 0.000005; xmax = xMax[ilayer] - 0.000005; xwid = (xmax - xmin) / 127.0; if (x < xmin) fCenter = 0.0000; else if (x > xmax) fCenter = side * 0.5000; else { ix = (Int_t) ((x - xmin) / xwid); fCenter = side * fgLUT[ilayer*fgkNlut+ix]; } } else fCenter = 0.0; return fCenter; } //___________________________________________________________________________ Float_t AliTRDcluster::GetDYgauss(Double_t s2w, Double_t *const y1, Double_t *const y2) { // // (Re)Calculate cluster position in the y direction in local chamber coordinates using all available information from tracking. // // Input parameters: // s2 - sigma of gaussian parameterization (see bellow for the exact parameterization) // W - pad width // xd - drift length (with respect to the anode wire) [cm] // wt - omega*tau = tg(a_L) // Output values : // y1 and y2 - partial positions based on 2 pads clusters // return y position of the cluster from all information // // Estimation of y coordinate is based on the gaussian approximation of the PRF. Thus one may // calculate the y position knowing the signals q_i-1, q_i and q_i+1 in the 3 adiacent pads by: // BEGIN_LATEX // y = #frac{1}{w_{1}+w_{2}}#[]{w_{1}#(){y_{0}-#frac{W}{2}+#frac{s^{2}}{W}ln#frac{q_{i}}{q_{i-1}}}+w_{2}#(){y_{0}+ #frac{W}{2}+#frac{s^{2}}{W}ln#frac{q_{i+1}}{q_{i}}}} // END_LATEX // where W is the pad width, y_0 is the position of the center pad and s^2 is given by // BEGIN_LATEX // s^{2} = s^{2}_{0} + s^{2}_{diff} (x,B) + #frac{tg^{2}(#phi-#alpha_{L})*l^{2}}{12} // END_LATEX // with s_0 being the PRF for 0 drift and track incidence phi equal to the lorentz angle a_L and the diffusion term // being described by: // BEGIN_LATEX // s_{diff} (x,B) = #frac{D_{L}#sqrt{x}}{1+#(){#omega#tau}^{2}} // END_LATEX // with x being the drift length. The weights w_1 and w_2 are taken to be q_i-1^2 and q_i+1^2 respectively // // Authors // Alex Bercuci // Theodor Rascanu // Double_t w1 = fSignals[2]*fSignals[2]; Double_t w2 = fSignals[4]*fSignals[4]; Double_t w = w1+w2; if(w<1.){ AliError("Missing side signals for cluster."); Print("a"); return 0.; } //Double_t s2w = s2/W/W; Float_t y1r = fSignals[2]>0 ? (-0.5 + s2w*TMath::Log(fSignals[3]/(Float_t)fSignals[2])) : 0.; Float_t y2r = fSignals[4]>0 ? (0.5 + s2w*TMath::Log(fSignals[4]/(Float_t)fSignals[3])) : 0.; if(y1) (*y1) = y1r; if(y2) (*y2) = y2r; return fCenter = (w1*y1r+w2*y2r)/w; } //_____________________________________________________________________________ void AliTRDcluster::FillLUT() { // // Create the LUT // // The lookup table from Bogdan Float_t lut[AliTRDgeometry::kNlayer][fgkNlut] = { { 0.0070, 0.0150, 0.0224, 0.0298, 0.0374, 0.0454, 0.0533, 0.0611, 0.0684, 0.0755, 0.0827, 0.0900, 0.0975, 0.1049, 0.1120, 0.1187, 0.1253, 0.1318, 0.1385, 0.1453, 0.1519, 0.1584, 0.1646, 0.1704, 0.1762, 0.1821, 0.1879, 0.1938, 0.1996, 0.2053, 0.2108, 0.2160, 0.2210, 0.2260, 0.2310, 0.2361, 0.2411, 0.2461, 0.2509, 0.2557, 0.2602, 0.2646, 0.2689, 0.2732, 0.2774, 0.2816, 0.2859, 0.2901, 0.2942, 0.2983, 0.3022, 0.3061, 0.3099, 0.3136, 0.3172, 0.3207, 0.3242, 0.3278, 0.3312, 0.3347, 0.3382, 0.3416, 0.3450, 0.3483, 0.3515, 0.3547, 0.3579, 0.3609, 0.3639, 0.3669, 0.3698, 0.3727, 0.3756, 0.3785, 0.3813, 0.3842, 0.3870, 0.3898, 0.3926, 0.3952, 0.3979, 0.4005, 0.4032, 0.4057, 0.4082, 0.4108, 0.4132, 0.4157, 0.4181, 0.4205, 0.4228, 0.4252, 0.4275, 0.4299, 0.4322, 0.4345, 0.4367, 0.4390, 0.4412, 0.4434, 0.4456, 0.4478, 0.4499, 0.4520, 0.4541, 0.4562, 0.4583, 0.4603, 0.4623, 0.4643, 0.4663, 0.4683, 0.4702, 0.4722, 0.4741, 0.4758, 0.4774, 0.4790, 0.4805, 0.4824, 0.4844, 0.4863, 0.4883, 0.4902, 0.4921, 0.4940, 0.4959, 0.4978 }, { 0.0072, 0.0156, 0.0235, 0.0313, 0.0394, 0.0478, 0.0561, 0.0642, 0.0718, 0.0792, 0.0868, 0.0947, 0.1025, 0.1101, 0.1172, 0.1241, 0.1309, 0.1378, 0.1449, 0.1518, 0.1586, 0.1650, 0.1710, 0.1770, 0.1830, 0.1891, 0.1952, 0.2011, 0.2070, 0.2125, 0.2177, 0.2229, 0.2280, 0.2332, 0.2383, 0.2435, 0.2484, 0.2533, 0.2581, 0.2627, 0.2670, 0.2714, 0.2757, 0.2799, 0.2842, 0.2884, 0.2927, 0.2968, 0.3008, 0.3048, 0.3086, 0.3123, 0.3159, 0.3195, 0.3231, 0.3266, 0.3301, 0.3335, 0.3370, 0.3404, 0.3438, 0.3471, 0.3504, 0.3536, 0.3567, 0.3598, 0.3628, 0.3657, 0.3686, 0.3715, 0.3744, 0.3772, 0.3800, 0.3828, 0.3856, 0.3884, 0.3911, 0.3938, 0.3965, 0.3991, 0.4016, 0.4042, 0.4067, 0.4092, 0.4116, 0.4140, 0.4164, 0.4187, 0.4211, 0.4234, 0.4257, 0.4280, 0.4302, 0.4325, 0.4347, 0.4369, 0.4391, 0.4413, 0.4434, 0.4456, 0.4477, 0.4497, 0.4518, 0.4538, 0.4558, 0.4578, 0.4598, 0.4618, 0.4637, 0.4656, 0.4675, 0.4694, 0.4713, 0.4732, 0.4750, 0.4766, 0.4781, 0.4797, 0.4813, 0.4832, 0.4851, 0.4870, 0.4888, 0.4906, 0.4925, 0.4942, 0.4960, 0.4978 }, { 0.0075, 0.0163, 0.0246, 0.0328, 0.0415, 0.0504, 0.0592, 0.0674, 0.0753, 0.0832, 0.0914, 0.0996, 0.1077, 0.1154, 0.1225, 0.1296, 0.1369, 0.1442, 0.1515, 0.1585, 0.1652, 0.1714, 0.1776, 0.1839, 0.1902, 0.1965, 0.2025, 0.2085, 0.2141, 0.2194, 0.2247, 0.2299, 0.2352, 0.2405, 0.2457, 0.2507, 0.2557, 0.2604, 0.2649, 0.2693, 0.2737, 0.2780, 0.2823, 0.2867, 0.2909, 0.2951, 0.2992, 0.3033, 0.3072, 0.3110, 0.3146, 0.3182, 0.3218, 0.3253, 0.3288, 0.3323, 0.3357, 0.3392, 0.3426, 0.3459, 0.3492, 0.3524, 0.3555, 0.3586, 0.3616, 0.3645, 0.3674, 0.3703, 0.3731, 0.3759, 0.3787, 0.3815, 0.3843, 0.3870, 0.3897, 0.3925, 0.3950, 0.3976, 0.4002, 0.4027, 0.4052, 0.4076, 0.4101, 0.4124, 0.4148, 0.4171, 0.4194, 0.4217, 0.4239, 0.4262, 0.4284, 0.4306, 0.4328, 0.4350, 0.4371, 0.4393, 0.4414, 0.4435, 0.4455, 0.4476, 0.4496, 0.4516, 0.4536, 0.4555, 0.4575, 0.4594, 0.4613, 0.4632, 0.4650, 0.4669, 0.4687, 0.4705, 0.4723, 0.4741, 0.4758, 0.4773, 0.4789, 0.4804, 0.4821, 0.4839, 0.4857, 0.4875, 0.4893, 0.4910, 0.4928, 0.4945, 0.4961, 0.4978 }, { 0.0078, 0.0171, 0.0258, 0.0345, 0.0438, 0.0532, 0.0624, 0.0708, 0.0791, 0.0875, 0.0962, 0.1048, 0.1130, 0.1206, 0.1281, 0.1356, 0.1432, 0.1508, 0.1582, 0.1651, 0.1716, 0.1780, 0.1845, 0.1910, 0.1975, 0.2038, 0.2099, 0.2155, 0.2210, 0.2263, 0.2317, 0.2371, 0.2425, 0.2477, 0.2528, 0.2578, 0.2626, 0.2671, 0.2715, 0.2759, 0.2803, 0.2846, 0.2890, 0.2933, 0.2975, 0.3016, 0.3056, 0.3095, 0.3132, 0.3168, 0.3204, 0.3239, 0.3274, 0.3309, 0.3344, 0.3378, 0.3412, 0.3446, 0.3479, 0.3511, 0.3543, 0.3574, 0.3603, 0.3633, 0.3662, 0.3690, 0.3718, 0.3747, 0.3774, 0.3802, 0.3829, 0.3857, 0.3883, 0.3910, 0.3936, 0.3962, 0.3987, 0.4012, 0.4037, 0.4061, 0.4085, 0.4109, 0.4132, 0.4155, 0.4177, 0.4200, 0.4222, 0.4244, 0.4266, 0.4288, 0.4309, 0.4331, 0.4352, 0.4373, 0.4394, 0.4414, 0.4435, 0.4455, 0.4475, 0.4494, 0.4514, 0.4533, 0.4552, 0.4571, 0.4590, 0.4608, 0.4626, 0.4645, 0.4662, 0.4680, 0.4698, 0.4715, 0.4733, 0.4750, 0.4766, 0.4781, 0.4796, 0.4812, 0.4829, 0.4846, 0.4863, 0.4880, 0.4897, 0.4914, 0.4930, 0.4946, 0.4963, 0.4979 }, { 0.0081, 0.0178, 0.0270, 0.0364, 0.0463, 0.0562, 0.0656, 0.0744, 0.0831, 0.0921, 0.1013, 0.1102, 0.1183, 0.1261, 0.1339, 0.1419, 0.1499, 0.1576, 0.1648, 0.1715, 0.1782, 0.1849, 0.1917, 0.1984, 0.2048, 0.2110, 0.2167, 0.2223, 0.2278, 0.2333, 0.2389, 0.2444, 0.2497, 0.2548, 0.2598, 0.2645, 0.2691, 0.2735, 0.2780, 0.2824, 0.2868, 0.2912, 0.2955, 0.2997, 0.3038, 0.3078, 0.3116, 0.3152, 0.3188, 0.3224, 0.3259, 0.3294, 0.3329, 0.3364, 0.3398, 0.3432, 0.3465, 0.3497, 0.3529, 0.3561, 0.3591, 0.3620, 0.3649, 0.3677, 0.3705, 0.3733, 0.3761, 0.3788, 0.3816, 0.3843, 0.3869, 0.3896, 0.3922, 0.3948, 0.3973, 0.3998, 0.4022, 0.4047, 0.4070, 0.4094, 0.4117, 0.4139, 0.4162, 0.4184, 0.4206, 0.4227, 0.4249, 0.4270, 0.4291, 0.4313, 0.4334, 0.4354, 0.4375, 0.4395, 0.4415, 0.4435, 0.4455, 0.4474, 0.4493, 0.4512, 0.4531, 0.4550, 0.4568, 0.4586, 0.4604, 0.4622, 0.4639, 0.4657, 0.4674, 0.4691, 0.4708, 0.4725, 0.4742, 0.4758, 0.4773, 0.4788, 0.4803, 0.4819, 0.4836, 0.4852, 0.4869, 0.4885, 0.4901, 0.4917, 0.4933, 0.4948, 0.4964, 0.4979 }, { 0.0085, 0.0189, 0.0288, 0.0389, 0.0497, 0.0603, 0.0699, 0.0792, 0.0887, 0.0985, 0.1082, 0.1170, 0.1253, 0.1336, 0.1421, 0.1505, 0.1587, 0.1662, 0.1733, 0.1803, 0.1874, 0.1945, 0.2014, 0.2081, 0.2143, 0.2201, 0.2259, 0.2316, 0.2374, 0.2431, 0.2487, 0.2541, 0.2593, 0.2642, 0.2689, 0.2735, 0.2781, 0.2826, 0.2872, 0.2917, 0.2961, 0.3003, 0.3045, 0.3086, 0.3125, 0.3162, 0.3198, 0.3235, 0.3270, 0.3306, 0.3342, 0.3377, 0.3411, 0.3446, 0.3479, 0.3511, 0.3543, 0.3575, 0.3605, 0.3634, 0.3663, 0.3691, 0.3720, 0.3748, 0.3775, 0.3803, 0.3830, 0.3857, 0.3884, 0.3911, 0.3937, 0.3962, 0.3987, 0.4012, 0.4036, 0.4060, 0.4084, 0.4107, 0.4129, 0.4152, 0.4174, 0.4196, 0.4218, 0.4239, 0.4261, 0.4282, 0.4303, 0.4324, 0.4344, 0.4365, 0.4385, 0.4405, 0.4425, 0.4445, 0.4464, 0.4483, 0.4502, 0.4521, 0.4539, 0.4558, 0.4576, 0.4593, 0.4611, 0.4629, 0.4646, 0.4663, 0.4680, 0.4697, 0.4714, 0.4730, 0.4747, 0.4759, 0.4769, 0.4780, 0.4790, 0.4800, 0.4811, 0.4827, 0.4843, 0.4859, 0.4874, 0.4889, 0.4905, 0.4920, 0.4935, 0.4950, 0.4965, 0.4979 } }; if(!fgLUT) fgLUT = new Double_t[AliTRDgeometry::kNlayer*fgkNlut]; for (Int_t ilayer = 0; ilayer < AliTRDgeometry::kNlayer; ilayer++) { for (Int_t ilut = 0; ilut < fgkNlut; ilut++ ) { fgLUT[ilayer*fgkNlut+ilut] = lut[ilayer][ilut]; } } }