/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD cluster // // // /////////////////////////////////////////////////////////////////////////////// #include "TMath.h" #include "AliLog.h" #include "AliTRDcluster.h" #include "AliTRDgeometry.h" #include "AliTRDCommonParam.h" ClassImp(AliTRDcluster) //___________________________________________________________________________ AliTRDcluster::AliTRDcluster() :AliCluster() ,fPadCol(0) ,fPadRow(0) ,fPadTime(0) ,fLocalTimeBin(0) ,fNPads(0) ,fClusterMasking(0) ,fDetector(0) ,fQ(0) ,fCenter(0) { // // Default constructor // for (Int_t i = 0; i < 7; i++) { fSignals[i] = 0; } } //___________________________________________________________________________ AliTRDcluster::AliTRDcluster(Int_t det, Float_t q , Float_t *pos, Float_t *sig , Int_t *tracks, Char_t npads, Short_t *signals , UChar_t col, UChar_t row, UChar_t time , Char_t timebin, Float_t center, UShort_t volid) :AliCluster(volid,pos[0],pos[1],pos[2],sig[0],sig[1],0.0,0x0) ,fPadCol(col) ,fPadRow(row) ,fPadTime(time) ,fLocalTimeBin(timebin) ,fNPads(npads) ,fClusterMasking(0) ,fDetector(det) ,fQ(q) ,fCenter(center) { // // Constructor // for (Int_t i = 0; i < 7; i++) { fSignals[i] = signals[i]; } if (tracks) { AddTrackIndex(tracks); } } //_____________________________________________________________________________ AliTRDcluster::AliTRDcluster(const AliTRDcluster &c) :AliCluster(c) ,fPadCol(c.fPadCol) ,fPadRow(c.fPadRow) ,fPadTime(c.fPadTime) ,fLocalTimeBin(c.fLocalTimeBin) ,fNPads(c.fNPads) ,fClusterMasking(c.fClusterMasking) ,fDetector(c.fDetector) ,fQ(c.fQ) ,fCenter(c.fCenter) { // // Copy constructor // SetBit(kInChamber, c.IsInChamber()); SetLabel(c.GetLabel(0),0); SetLabel(c.GetLabel(1),1); SetLabel(c.GetLabel(2),2); SetY(c.GetY()); SetZ(c.GetZ()); SetSigmaY2(c.GetSigmaY2()); SetSigmaZ2(c.GetSigmaZ2()); for (Int_t i = 0; i < 7; i++) { fSignals[i] = c.fSignals[i]; } } //_____________________________________________________________________________ void AliTRDcluster::AddTrackIndex(Int_t *track) { // // Adds track index. Currently assumed that track is an array of // size 9, and up to 3 track indexes are stored in fTracks[3]. // Indexes are sorted according to: // 1) index of max number of appearances is stored first // 2) if two or more indexes appear equal number of times, the lowest // ones are stored first; // const Int_t kSize = 9; Int_t entries[kSize][2]; Int_t i = 0; Int_t j = 0; Int_t k = 0; Int_t index; Bool_t indexAdded; for (i = 0; i < kSize; i++) { entries[i][0] = -1; entries[i][1] = 0; } for (k = 0; k < kSize; k++) { index = track[k]; indexAdded = kFALSE; j = 0; if (index >= 0) { while ((!indexAdded) && (j < kSize)) { if ((entries[j][0] == index) || (entries[j][1] == 0)) { entries[j][0] = index; entries[j][1] = entries[j][1] + 1; indexAdded = kTRUE; } j++; } } } // Sort by number of appearances and index value Int_t swap = 1; Int_t tmp0; Int_t tmp1; while (swap > 0) { swap = 0; for (i = 0; i < (kSize - 1); i++) { if ((entries[i][0] >= 0) && (entries[i+1][0] >= 0)) { if ((entries[i][1] < entries[i+1][1]) || ((entries[i][1] == entries[i+1][1]) && (entries[i][0] > entries[i+1][0]))) { tmp0 = entries[i][0]; tmp1 = entries[i][1]; entries[i][0] = entries[i+1][0]; entries[i][1] = entries[i+1][1]; entries[i+1][0] = tmp0; entries[i+1][1] = tmp1; swap++; } } } } // Set track indexes for (i = 0; i < 3; i++) { SetLabel(entries[i][0],i); } return; } //_____________________________________________________________________________ void AliTRDcluster::Clear(Option_t *) { // // Reset all member to the default value // fPadCol=0; fPadRow=0; fPadTime=0; fLocalTimeBin=0; fNPads=0; fClusterMasking=0; fDetector=0; for (Int_t i=0; i < 7; i++) fSignals[i]=0; fQ = 0; fCenter = 0; for (Int_t i = 0; i < 3; i++) SetLabel(0,i); SetX(0); SetY(0); SetZ(0); SetSigmaY2(0); SetSigmaZ2(0); SetVolumeId(0); } //_____________________________________________________________________________ Float_t AliTRDcluster::GetSumS() const { // // Returns the total charge from a not unfolded cluster // Float_t sum = 0.0; for (Int_t i = 0; i < 7; i++) { sum += fSignals[i]; } return sum; } //_____________________________________________________________________________ Float_t AliTRDcluster::GetXloc(Double_t t0, Double_t vd, Double_t *const q, Double_t *const xq, Double_t z) { // // (Re)Calculate cluster position in the x direction in local chamber coordinates (with respect to the anode wire // position) using all available information from tracking. // Input parameters: // t0 - calibration aware trigger delay [us] // vd - drift velocity in the region of the cluster [cm/us] // z - distance to the anode wire [cm]. By default 0.2 !! // q & xq - array of charges and cluster positions from previous clusters in the tracklet [a.u.] // Output values : // return x position of the cluster with respect to the // anode wire using all tracking information // // The estimation of the radial position is based on calculating the drift time and the drift velocity at the point of // estimation. The drift time can be estimated according to the expression: // BEGIN_LATEX // t_{drift} = t_{bin} - t_{0} - t_{cause}(x) - t_{TC}(q_{i-1}, q_{i-2}, ...) // END_LATEX // where t_0 is the delay of the trigger signal. t_cause is the causality delay between ionisation electrons hitting // the anode and the registration of maximum signal by the electronics - it is due to the rising time of the TRF // convoluted with the diffusion width. t_TC is the residual charge from previous bins due to residual tails after tail // cancellation. // // The drift velocity is considered to vary linearly with the drift length (independent of the distance to the anode wire // in the z direction). Thus one can write the calculate iteratively the drift length from the expression: // BEGIN_LATEX // x = t_{drift}(x)*v_{drfit}(x) // END_LATEX // // Authors // Alex Bercuci // AliTRDCommonParam *cp = AliTRDCommonParam::Instance(); Double_t fFreq = cp->GetSamplingFrequency(); //drift time corresponding to the center of the time bin Double_t td = (fPadTime + .5)/fFreq; // [us] if(td < t0+2.5) return 0.; // do not calculate radial posion of clusters in the amplification region // correction for t0 td -= t0; Double_t x = vd*td, xold=0.; Float_t tc0 = 0.244, // TRF rising time 0.2us dtcdx = 0.009, // diffusion contribution to the rising time of the signal kTC = 0.; // tail cancellation residual while(TMath::Abs(x-xold)>1.e-3){ // convergence on 10um level xold = x; Float_t tc = tc0 - dtcdx*x; Float_t tq = 0.; if(q && xq){ for(Int_t iq=0; iq<3; iq++) tq += q[iq]*TMath::Exp(-kTC*(x - xq[iq])); } Float_t vdcorr = x/cp->TimeStruct(vd, x-.5*AliTRDgeometry::CamHght(), z); x = (td - tc - tq) * vdcorr; } return x; } //_____________________________________________________________________________ Float_t AliTRDcluster::GetYloc(Double_t s2, Double_t W, Double_t xd, Double_t wt, Double_t *const y1, Double_t *const y2) { // // (Re)Calculate cluster position in the y direction in local chamber coordinates using all available information from tracking. // // Input parameters: // s2 - sigma of gaussian parameterization (see bellow for the exact parameterization) // W - pad width // xd - drift length (with respect to the anode wire) [cm] // wt - omega*tau = tg(a_L) // Output values : // y1 and y2 - partial positions based on 2 pads clusters // return y position of the cluster from all information // // Estimation of y coordinate is based on the gaussian approximation of the PRF. Thus one may // calculate the y position knowing the signals q_i-1, q_i and q_i+1 in the 3 adiacent pads by: // BEGIN_LATEX // y = #frac{1}{w_{1}+w_{2}}#[]{w_{1}#(){y_{0}-#frac{W}{2}+#frac{s^{2}}{W}ln#frac{q_{i}}{q_{i-1}}}+w_{2}#(){y_{0}+ #frac{W}{2}+#frac{s^{2}}{W}ln#frac{q_{i+1}}{q_{i}}}} // END_LATEX // where W is the pad width, y_0 is the position of the center pad and s^2 is given by // BEGIN_LATEX // s^{2} = s^{2}_{0} + s^{2}_{diff} (x,B) + #frac{tg^{2}(#phi-#alpha_{L})*l^{2}}{12} // END_LATEX // with s_0 being the PRF for 0 drift and track incidence phi equal to the lorentz angle a_L and the diffusion term // being described by: // BEGIN_LATEX // s_{diff} (x,B) = #frac{D_{L}#sqrt{x}}{1+#(){#omega#tau}^{2}} // END_LATEX // with x being the drift length. The weights w_1 and w_2 are taken to be q_i-1^2 and q_i+1^2 respectively // // Authors // Alex Bercuci // Theodor Rascanu // Float_t y0 = GetY()-W*fCenter; Double_t w1 = fSignals[2]*fSignals[2]; Double_t w2 = fSignals[4]*fSignals[4]; Float_t y1r = fSignals[2]>0 ? (y0 - .5*W + s2*TMath::Log(fSignals[3]/(Float_t)fSignals[2])/W) : 0.; Float_t y2r = fSignals[4]>0 ? (y0 + .5*W + s2*TMath::Log(fSignals[4]/(Float_t)fSignals[3])/W) : 0.; if(y1) (*y1) = y1r; if(y2) (*y2) = y2r; Double_t ld = TMath::Max(xd - 0.*AliTRDgeometry::CamHght(), 0.); return (w1*y1r+w2*y2r)/(w1+w2) - ld*wt; } //_____________________________________________________________________________ Bool_t AliTRDcluster::IsEqual(const TObject *o) const { // // Compare relevant information of this cluster with another one // const AliTRDcluster *inCluster = dynamic_cast(o); if (!o || !inCluster) return kFALSE; if ( AliCluster::GetX() != inCluster->GetX() ) return kFALSE; if ( AliCluster::GetY() != inCluster->GetY() ) return kFALSE; if ( AliCluster::GetZ() != inCluster->GetZ() ) return kFALSE; if ( fQ != inCluster->fQ ) return kFALSE; if ( fDetector != inCluster->fDetector ) return kFALSE; if ( fPadCol != inCluster->fPadCol ) return kFALSE; if ( fPadRow != inCluster->fPadRow ) return kFALSE; if ( fPadTime != inCluster->fPadTime ) return kFALSE; if ( fClusterMasking != inCluster->fClusterMasking ) return kFALSE; if ( IsInChamber() != inCluster->IsInChamber() ) return kFALSE; if ( IsShared() != inCluster->IsShared() ) return kFALSE; if ( IsUsed() != inCluster->IsUsed() ) return kFALSE; return kTRUE; } //_____________________________________________________________________________ void AliTRDcluster::Print(Option_t *o) const { AliInfo(Form("Det[%3d] LTrC[%7.2f %7.2f %7.2f] Q[%f] Stat[in(%c) use(%c) sh(%c)]", fDetector, GetX(), GetY(), GetZ(), fQ, IsInChamber() ? 'y' : 'n', IsUsed() ? 'y' : 'n', IsShared() ? 'y' : 'n')); if(strcmp(o, "a")!=0) return; AliInfo(Form("LChC[c(%3d) r(%2d) t(%2d)] t-t0[%2d] Npad[%d] cen[%5.3f] mask[%d]", fPadCol, fPadRow, fPadTime, fLocalTimeBin, fNPads, fCenter, fClusterMasking)); AliInfo(Form("Signals[%3d %3d %3d %3d %3d %3d %3d]", fSignals[0], fSignals[1], fSignals[2], fSignals[3], fSignals[4], fSignals[5], fSignals[6])); } //_____________________________________________________________________________ void AliTRDcluster::SetPadMaskedPosition(UChar_t position) { // // store the pad corruption position code // // Code: 1 = left cluster // 2 = middle cluster; // 4 = right cluster // for(Int_t ipos = 0; ipos < 3; ipos++) if(TESTBIT(position, ipos)) SETBIT(fClusterMasking, ipos); } //_____________________________________________________________________________ void AliTRDcluster::SetPadMaskedStatus(UChar_t status) { // // store the status of the corrupted pad // // Code: 2 = noisy // 4 = Bridged Left // 8 = Bridged Right // 32 = Not Connected for(Int_t ipos = 0; ipos < 5; ipos++) if(TESTBIT(status, ipos)) SETBIT(fClusterMasking, ipos + 3); }