/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // TRD cluster finder // // // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "AliRunLoader.h" #include "AliLoader.h" #include "AliRawReader.h" #include "AliLog.h" #include "AliTRDclusterizerV1.h" #include "AliTRDgeometry.h" #include "AliTRDdataArrayF.h" #include "AliTRDdataArrayI.h" #include "AliTRDdigitsManager.h" #include "AliTRDpadPlane.h" #include "AliTRDrawData.h" #include "AliTRDcalibDB.h" #include "AliTRDSimParam.h" #include "AliTRDRecParam.h" #include "AliTRDCommonParam.h" #include "AliTRDcluster.h" #include "Cal/AliTRDCalROC.h" #include "Cal/AliTRDCalDet.h" ClassImp(AliTRDclusterizerV1) //_____________________________________________________________________________ AliTRDclusterizerV1::AliTRDclusterizerV1() :AliTRDclusterizer() ,fDigitsManager(NULL) { // // AliTRDclusterizerV1 default constructor // } //_____________________________________________________________________________ AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title) :AliTRDclusterizer(name,title) ,fDigitsManager(new AliTRDdigitsManager()) { // // AliTRDclusterizerV1 constructor // fDigitsManager->CreateArrays(); } //_____________________________________________________________________________ AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c) :AliTRDclusterizer(c) ,fDigitsManager(NULL) { // // AliTRDclusterizerV1 copy constructor // } //_____________________________________________________________________________ AliTRDclusterizerV1::~AliTRDclusterizerV1() { // // AliTRDclusterizerV1 destructor // if (fDigitsManager) { delete fDigitsManager; fDigitsManager = NULL; } } //_____________________________________________________________________________ AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c) { // // Assignment operator // if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this); return *this; } //_____________________________________________________________________________ void AliTRDclusterizerV1::Copy(TObject &c) const { // // Copy function // ((AliTRDclusterizerV1 &) c).fDigitsManager = 0; AliTRDclusterizer::Copy(c); } //_____________________________________________________________________________ Bool_t AliTRDclusterizerV1::ReadDigits() { // // Reads the digits arrays from the input aliroot file // if (!fRunLoader) { AliError("No run loader available"); return kFALSE; } AliLoader* loader = fRunLoader->GetLoader("TRDLoader"); if (!loader->TreeD()) { loader->LoadDigits(); } // Read in the digit arrays return (fDigitsManager->ReadDigits(loader->TreeD())); } //_____________________________________________________________________________ Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader) { // // Reads the digits arrays from the ddl file // AliTRDrawData raw; fDigitsManager = raw.Raw2Digits(rawReader); return kTRUE; } //_____________________________________________________________________________ Bool_t AliTRDclusterizerV1::MakeClusters() { // // Generates the cluster. // Int_t row = 0; Int_t col = 0; Int_t time = 0; Int_t icham = 0; Int_t iplan = 0; Int_t isect = 0; Int_t iPad = 0; AliTRDdataArrayI *digitsIn; AliTRDdataArrayI *tracksIn; // Get the geometry AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader); if (!geo) { AliWarning("Loading default TRD geometry!"); geo = new AliTRDgeometry(); } AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliFatal("No AliTRDcalibDB instance available\n"); return kFALSE; } AliTRDSimParam *simParam = AliTRDSimParam::Instance(); if (!simParam) { AliError("No AliTRDSimParam instance available\n"); return kFALSE; } AliTRDRecParam *recParam = AliTRDRecParam::Instance(); if (!recParam) { AliError("No AliTRDRecParam instance available\n"); return kFALSE; } AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance(); if (!commonParam) { AliError("Could not get common parameters\n"); return kFALSE; } // ADC thresholds Float_t ADCthreshold = simParam->GetADCthreshold(); // Threshold value for the maximum Float_t maxThresh = recParam->GetClusMaxThresh(); // Threshold value for the digit signal Float_t sigThresh = recParam->GetClusSigThresh(); // Detector wise calibration object for t0 const AliTRDCalDet *calT0Det = calibration->GetT0Det(); // Detector wise calibration object for the gain factors const AliTRDCalDet *calGainFactorDet = calibration->GetGainFactorDet(); // Iteration limit for unfolding procedure const Float_t kEpsilon = 0.01; const Int_t kNclus = 3; const Int_t kNsig = 5; const Int_t kNdict = AliTRDdigitsManager::kNDict; const Int_t kNtrack = kNdict * kNclus; Int_t iType = 0; Int_t iUnfold = 0; Double_t ratioLeft = 1.0; Double_t ratioRight = 1.0; Int_t iClusterROC = 0; Double_t padSignal[kNsig]; Double_t clusterSignal[kNclus]; Double_t clusterPads[kNclus]; Int_t chamBeg = 0; Int_t chamEnd = AliTRDgeometry::Ncham(); Int_t planBeg = 0; Int_t planEnd = AliTRDgeometry::Nplan(); Int_t sectBeg = 0; Int_t sectEnd = AliTRDgeometry::Nsect(); Int_t nTimeTotal = calibration->GetNumberOfTimeBins(); Int_t dummy[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal)); // Start clustering in every chamber for (icham = chamBeg; icham < chamEnd; icham++) { for (iplan = planBeg; iplan < planEnd; iplan++) { for (isect = sectBeg; isect < sectEnd; isect++) { Int_t idet = geo->GetDetector(iplan,icham,isect); // Get the digits digitsIn = fDigitsManager->GetDigits(idet); // This is to take care of switched off super modules if (digitsIn->GetNtime() == 0) { continue; } digitsIn->Expand(); AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0); tracksTmp->Expand(); Int_t nRowMax = commonParam->GetRowMax(iplan,icham,isect); Int_t nColMax = commonParam->GetColMax(iplan); AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham); // Calibration object with pad wise values for t0 AliTRDCalROC *calT0ROC = calibration->GetT0ROC(idet); // Calibration object with pad wise values for the gain factors AliTRDCalROC *calGainFactorROC = calibration->GetGainFactorROC(idet); // Calibration value for chamber wise t0 Float_t calT0DetValue = calT0Det->GetValue(idet); // Calibration value for chamber wise gain factor Float_t calGainFactorDetValue = calGainFactorDet->GetValue(idet); Int_t nClusters = 0; Int_t nClusters2pad = 0; Int_t nClusters3pad = 0; Int_t nClusters4pad = 0; Int_t nClusters5pad = 0; Int_t nClustersLarge = 0; // Apply the gain and the tail cancelation via digital filter AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow() ,digitsIn->GetNcol() ,digitsIn->GetNtime()); Transform(digitsIn ,digitsOut ,nRowMax,nColMax,nTimeTotal ,ADCthreshold ,calGainFactorROC ,calGainFactorDetValue); // Input digits are not needed any more digitsIn->Compress(1,0); // Loop through the chamber and find the maxima for ( row = 0; row < nRowMax; row++) { for ( col = 2; col < nColMax; col++) { for (time = 0; time < nTimeTotal; time++) { Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Look for the maximum if (signalM >= maxThresh) { Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time)); Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)); if ((TMath::Abs(signalL) <= signalM) && (TMath::Abs(signalR) < signalM)) { if ((TMath::Abs(signalL) >= sigThresh) || (TMath::Abs(signalR) >= sigThresh)) { // Maximum found, mark the position by a negative signal digitsOut->SetDataUnchecked(row,col-1,time,-signalM); } } } } } } tracksTmp->Compress(1,0); // The index to the first cluster of a given ROC Int_t firstClusterROC = -1; // The number of cluster in a given ROC Int_t nClusterROC = 0; // Now check the maxima and calculate the cluster position for ( row = 0; row < nRowMax ; row++) { for (time = 0; time < nTimeTotal; time++) { for ( col = 1; col < nColMax-1; col++) { // Maximum found ? if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) { for (iPad = 0; iPad < kNclus; iPad++) { Int_t iPadCol = col - 1 + iPad; clusterSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time)); } // Count the number of pads in the cluster Int_t nPadCount = 0; Int_t ii; // Look to the left ii = 0; while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii ,time)) >= sigThresh) { nPadCount++; ii++; if (col-ii < 0) break; } // Look to the right ii = 0; while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) { nPadCount++; ii++; if (col+ii+1 >= nColMax) break; } nClusters++; switch (nPadCount) { case 2: iType = 0; nClusters2pad++; break; case 3: iType = 1; nClusters3pad++; break; case 4: iType = 2; nClusters4pad++; break; case 5: iType = 3; nClusters5pad++; break; default: iType = 4; nClustersLarge++; break; }; // Look for 5 pad cluster with minimum in the middle Bool_t fivePadCluster = kFALSE; if (col < (nColMax - 3)) { if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) { fivePadCluster = kTRUE; } if ((fivePadCluster) && (col < (nColMax - 5))) { if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) { fivePadCluster = kFALSE; } } if ((fivePadCluster) && (col > 1)) { if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) { fivePadCluster = kFALSE; } } } // 5 pad cluster // Modify the signal of the overlapping pad for the left part // of the cluster which remains from a previous unfolding if (iUnfold) { clusterSignal[0] *= ratioLeft; iType = 5; iUnfold = 0; } // Unfold the 5 pad cluster if (fivePadCluster) { for (iPad = 0; iPad < kNsig; iPad++) { padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row ,col-1+iPad ,time)); } // Unfold the two maxima and set the signal on // the overlapping pad to the ratio ratioRight = Unfold(kEpsilon,iplan,padSignal); ratioLeft = 1.0 - ratioRight; clusterSignal[2] *= ratioRight; iType = 5; iUnfold = 1; } Double_t clusterCharge = clusterSignal[0] + clusterSignal[1] + clusterSignal[2]; // The position of the cluster clusterPads[0] = row + 0.5; // Take the shift of the additional time bins into account clusterPads[2] = time + 0.5; if (recParam->LUTOn()) { // Calculate the position of the cluster by using the // lookup table method clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0] ,clusterSignal[1] ,clusterSignal[2]); } else { // Calculate the position of the cluster by using the // center of gravity method for (Int_t i = 0; i < kNsig; i++) { padSignal[i] = 0.0; } padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time)); // Central pad padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left pad padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right pad if ((col > 2) && (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) { padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)); } if ((col < nColMax - 3) && (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) { padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)); } clusterPads[1] = GetCOG(padSignal); } Double_t q0 = clusterSignal[0]; Double_t q1 = clusterSignal[1]; Double_t q2 = clusterSignal[2]; Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2) / (clusterCharge*clusterCharge); // // Calculate the position and the error // // Correct for t0 (sum of chamber and pad wise values !!!) Float_t calT0ROCValue = calT0ROC->GetValue(col,row); Int_t clusterTimeBin = TMath::Nint(time - (calT0DetValue + calT0ROCValue)); Double_t colSize = padPlane->GetColSize(col); Double_t rowSize = padPlane->GetRowSize(row); Double_t clusterPos[3]; clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize; clusterPos[1] = padPlane->GetRowPos(row) - 0.5 * rowSize; clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row); Double_t clusterSig[2]; clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize; clusterSig[1] = rowSize * rowSize / 12.0; // Add the cluster to the output array // The track indices will be stored later AliTRDcluster *cluster = AddCluster(clusterPos ,clusterTimeBin ,idet ,clusterCharge ,dummy ,clusterSig ,iType ,clusterPads[1]); // Store the amplitudes of the pads in the cluster for later analysis Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 }; for (Int_t jPad = col-3; jPad <= col+3; jPad++) { if ((jPad < 0) || (jPad >= nColMax-1)) { continue; } signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time))); } cluster->SetSignals(signals); // Temporarily store the row, column and time bin of the center pad // Used to later on assign the track indices cluster->SetLabel( row,0); cluster->SetLabel( col,1); cluster->SetLabel(time,2); // Store the index of the first cluster in the current ROC if (firstClusterROC < 0) { firstClusterROC = RecPoints()->GetEntriesFast() - 1; } // Count the number of cluster in the current ROC nClusterROC++; } // if: Maximum found ? } // loop: pad columns } // loop: time bins } // loop: pad rows delete digitsOut; // // Add the track indices to the found clusters // // Temporary array to collect the track indices Int_t *idxTracks = new Int_t[kNtrack*nClusterROC]; // Loop through the dictionary arrays one-by-one // to keep memory consumption low for (Int_t iDict = 0; iDict < kNdict; iDict++) { tracksIn = fDigitsManager->GetDictionary(idet,iDict); tracksIn->Expand(); // Loop though the clusters found in this ROC for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) { AliTRDcluster *cluster = (AliTRDcluster *) RecPoints()->UncheckedAt(firstClusterROC+iClusterROC); row = cluster->GetLabel(0); col = cluster->GetLabel(1); time = cluster->GetLabel(2); for (iPad = 0; iPad < kNclus; iPad++) { Int_t iPadCol = col - 1 + iPad; Int_t index = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1; idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index; } } // Compress the arrays tracksIn->Compress(1,0); } // Copy the track indices into the cluster // Loop though the clusters found in this ROC for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) { AliTRDcluster *cluster = (AliTRDcluster *) RecPoints()->UncheckedAt(firstClusterROC+iClusterROC); cluster->SetLabel(-9999,0); cluster->SetLabel(-9999,1); cluster->SetLabel(-9999,2); cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]); } delete [] idxTracks; // Write the cluster and reset the array WriteClusters(idet); ResetRecPoints(); } // loop: Sectors } // loop: Planes } // loop: Chambers return kTRUE; } //_____________________________________________________________________________ Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5]) { // // Get COG position // Used for clusters with more than 3 pads - where LUT not applicable // Double_t sum = signal[0] + signal[1] + signal[2] + signal[3] + signal[4]; Double_t res = (0.0 * (-signal[0] + signal[4]) + (-signal[1] + signal[3])) / sum; return res; } //_____________________________________________________________________________ Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal) { // // Method to unfold neighbouring maxima. // The charge ratio on the overlapping pad is calculated // until there is no more change within the range given by eps. // The resulting ratio is then returned to the calling method. // AliTRDcalibDB *calibration = AliTRDcalibDB::Instance(); if (!calibration) { AliError("No AliTRDcalibDB instance available\n"); return kFALSE; } Int_t irc = 0; Int_t itStep = 0; // Count iteration steps Double_t ratio = 0.5; // Start value for ratio Double_t prevRatio = 0.0; // Store previous ratio Double_t newLeftSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal Double_t newSignal[3] = { 0.0, 0.0, 0.0 }; // Start the iteration while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) { itStep++; prevRatio = ratio; // Cluster position according to charge ratio Double_t maxLeft = (ratio*padSignal[2] - padSignal[0]) / (padSignal[0] + padSignal[1] + ratio*padSignal[2]); Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]); // Set cluster charge ratio irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal); Double_t ampLeft = padSignal[1] / newSignal[1]; irc = calibration->PadResponse(1.0,maxRight,plane,newSignal); Double_t ampRight = padSignal[3] / newSignal[1]; // Apply pad response to parameters irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal ); irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal); // Calculate new overlapping ratio ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] / (newLeftSignal[2] + newRightSignal[0])); } return ratio; } //_____________________________________________________________________________ void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn , AliTRDdataArrayF *digitsOut , Int_t nRowMax, Int_t nColMax, Int_t nTimeTotal , Float_t ADCthreshold , AliTRDCalROC *calGainFactorROC , Float_t calGainFactorDetValue) { // // Apply gain factor // Apply tail cancelation: Transform digitsIn to digitsOut // Int_t iRow = 0; Int_t iCol = 0; Int_t iTime = 0; AliTRDRecParam *recParam = AliTRDRecParam::Instance(); if (!recParam) { AliError("No AliTRDRecParam instance available\n"); return; } Double_t *inADC = new Double_t[nTimeTotal]; // ADC data before tail cancellation Double_t *outADC = new Double_t[nTimeTotal]; // ADC data after tail cancellation for (iRow = 0; iRow < nRowMax; iRow++ ) { for (iCol = 0; iCol < nColMax; iCol++ ) { Float_t calGainFactorROCValue = calGainFactorROC->GetValue(iCol,iRow); Double_t gain = calGainFactorDetValue * calGainFactorROCValue; for (iTime = 0; iTime < nTimeTotal; iTime++) { // // Add gain // inADC[iTime] = digitsIn->GetDataUnchecked(iRow,iCol,iTime); inADC[iTime] /= gain; outADC[iTime] = inADC[iTime]; } // Apply the tail cancelation via the digital filter if (recParam->TCOn()) { DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp()); } for (iTime = 0; iTime < nTimeTotal; iTime++) { // Store the amplitude of the digit if above threshold if (outADC[iTime] > ADCthreshold) { digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]); } } } } delete [] inADC; delete [] outADC; return; } //_____________________________________________________________________________ void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target , Int_t n, Int_t nexp) { // // Tail cancellation by deconvolution for PASA v4 TRF // Double_t rates[2]; Double_t coefficients[2]; // Initialization (coefficient = alpha, rates = lambda) Double_t R1 = 1.0; Double_t R2 = 1.0; Double_t C1 = 0.5; Double_t C2 = 0.5; if (nexp == 1) { // 1 Exponentials R1 = 1.156; R2 = 0.130; C1 = 0.066; C2 = 0.000; } if (nexp == 2) { // 2 Exponentials R1 = 1.156; R2 = 0.130; C1 = 0.114; C2 = 0.624; } coefficients[0] = C1; coefficients[1] = C2; Double_t Dt = 0.1; rates[0] = TMath::Exp(-Dt/(R1)); rates[1] = TMath::Exp(-Dt/(R2)); Int_t i = 0; Int_t k = 0; Double_t reminder[2]; Double_t correction; Double_t result; // Attention: computation order is important correction = 0.0; for (k = 0; k < nexp; k++) { reminder[k] = 0.0; } for (i = 0; i < n; i++) { result = (source[i] - correction); // No rescaling target[i] = result; for (k = 0; k < nexp; k++) { reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result); } correction = 0.0; for (k = 0; k < nexp; k++) { correction += reminder[k]; } } }